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ABSTRACT Pharmacokinetics which describes the time course of drug absorption, distribution, 
metabolism, and excretion in the body is critical in formulating drug therapy. Nonlinear Mixed Effects 
(NLME) models are popularly used in many longitudinal studies, including human immunodeficiency viral 
dynamics, pharmacokinetic analyses, and studies of growth and decay.This work aimed to develop efficient 
NLME models for analyzing Theophylline concentration data within the pharmacokinetics framework. The 
data consisted of Theophylline concentration (mg/L) measurements of 12 asthmatic patients who were 
treated with oral Theophylline. The serum concentrations were measured at 11 times per subject over 25 
hours periods. Hence, a total of 132 observations were obtained. Six different pharmacokinetics models 
were fitted in a step-wise manner to these data within the framework of NLME techniques. The best of 
these models that yielded the most efficient estimates of the physiological factors such as absorption rate 
(��), elimination rate (��), and clearance (��) in the patients was determined using suitable model selection 
criteria. The results showed that the clearance and absorption rate have mixed effects with estimated values 
of ��� = 0.0397 and ���= 1.54203 (for fixed effects) while the effect of the elimination rate in all the patients 
is fixed with the estimated value of ��� =0.0860. Also, the low estimated standard deviations of the random 
effects components of ��(0.1699) and ��(0.6384)over the entire samples is a clear evidence that the fitted 
model was quite consistent and efficient.Results from this study would further serve as useful guides to 
clinicians and drug developers in the proper formulation and administration of Theophylline therapy on 
patients suffering from respiratory diseases. 
 

Keywords: Pharmacokinetics; theophylline concentration; nonlinear mixed effects model;  
  compartmental model  
 
 

ÖZET Vücutta zamanla meydana gelen ilaç emilimi, dağılımı, metabolizması ve boşaltımını tanımlayan 
farmakokinetikler, ilaç terapi formüllerinde çok önemlidir. Doğrusal olmayan karışık etki (DOKE) 
modelleri, büyüme ve çürüme çalışmaları, farmakokinetik analizler ve insan immün yetmezliği viral 
dinamiklerini kapsayan birçok longitudinal çalışmada popüler olarak kullanılmaktadır. Bu çalışmada 
farmakokinetik yapı için teofilin konsantrasyon verisi analiz edilerek etkili DOKE modelleri geliştirmek 
amaçlanmaktadır. Veri seti, ağızdan teofilin ile tedavi edilen 12 astım hastasının teofilin konsantrasyon 
ölçümlerini içermektedir. Serum konsantrasyonları, 25 saatlik periyotlarla her hastadan 11 kez 
ölçülmüştür. Dolayısıyla 132 gözlem elde edilmiştir. DOKE teknikleri çerçevesinde bu veri seti için altı 
farklı farmakokinetik model aşamalı olarak tahmin edilmiştir. Hastalarda emilim hızı (��), eleme hızı 
(��) ve aralık (��) gibi fizyolojik faktörlerin en etkili tahminini sağlayan en iyi modeller uygun model 
seçim kriteri kullanılarak belirlenmiştir. Sonuçlar, eleme hızının tüm hastalarda ��� = 0.0860 tahmin 
değeri ile sabit olmasına rağmen, aralık ve emilim hızının �� = 0.0397 ve ��� = 1.54203 (sabit etkiler 
için) tahmin değerleri ile karışık etkiye sahip olduğunu göstermiştir. Ayrıca, tüm örneklemlerden elde 
edilen ��(0.1699) ve ��(0.6384) rasgele etki bileşenlerinin standart sapmasının düşük tahmin edilmesi, 
tahmin edilen modelin tutarlı ve etkili olduğunu gösteren açık bir kanıttır. Bu çalışmanın sonuçları 
klinisyenlere ve ilaç geliştiricilere solunum yolu hastalığı ile savaşan hastaların teofilin terapisinin 
yönetimi ve formülasyonunda yararlı bir rehber olarak hizmet edecektir.  
 

Anahtar Kelimeler: Farmakokinetikler; teofilin konsantrasyonu; doğrusal olmayan karışık etki modeli;  
                bölümlü model   
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ne of the most common studies where clustered data arise is in pharmacokinetic (PK) analysis 

in which serial blood samples are collected from each of several subjects following doses of a 

drug and assayed for drug concentration. 1 Pharmacokinetic analysis is important in developing 

dosing strategies for different subgroups.2 Population pharmacokinetic analysis provides a very valuable 

aid to the development process of drug dosing strategies by identifying and quantifying the variability in 

drug concentrations in the body.3 ‘Population’ here clarifies the fact that one wish to gain an 

understanding of the dose/concentration relationship across different possible groups (i.e. population) as 

defined by covariates such as sex, age and weight.  

There are different statistical approaches to population pharmacokinetic data analysis which include the 

Two-stage, naive pooled data, and Non-linear Mixed Effects (NLME) modelling approaches among 

others.4-6 The literature has however favoured the use of NLME method for modelling pharmacokinetic 

data more than the naive pooled data and two-stage approaches due to its flexibility, applicability to 

sparse data and ability to provide less biased estimates of the between-individual variation.2 

The NLME models constitute powerful tools not only for estimating the population pharmacokinetic 

parameters but as well as the between-individual variance parameters.7 The appropriateness of the 

assumptions contained in these models may sometimes be difficult to validate, especially those 

concerning the unobservable quantities. It is therefore important that medical/pharmacological 

information is used during modeling.7 

Given the above background, the present work aimed to investigate the use of NLME modelling 

techniques for the analysis of complex pharmacokinetic data. The application of this modelling 

technique was illustrated with real life data set on theophylline concentration pharmacokinetics. 

The subsequent sections of this paper are arranged as follows. The general concept of NLME models was 

introduced in Section 2. Section 3 provided the basic concepts of pharmacokinetics while Section 4 

presented the description of theophylline concentration data set used and the compartmental 

pharmacokinetic models fitted to the data. The estimation procedure, analysis and results were 

presented in Section 5 while detailed discussion of results and conclusion were given in Section 6. 

   NONLINEAR MIXED EFFECT MODELS 

The NLME models constitute powerful tools for handling clustered data like the pharmacokinetic data 

discussed here.8 They are especially useful to account for inter-subject and intra-subject variations 

which is crucial for developing dosage strategies for drugs especially those with a narrow therapeutic 

range, therefore facilitating adaptation of drug dosage to the individual patient (therapeutic drug 

monitoring)2.In these models, the response is assumed to be a function of fixed (population) effects, non-

observable individual specific random effects, and an error term. Also, some of the fixed and/or random 

effects occur nonlinearly in the response function.8 

Mixed-effects models are primarily used to describe relationships between a response variable and some 

covariates in data that are grouped according to one or more classification factors.9 The most general 

form of NLME models as given by Lindstrom and Bates6 is of the form;  ��� 	= 	�	(�� , ���) 	+ ���,  = 1, … , ", # = 1, … , $� ,           (1) 

where " is the number of groups or subjects, $� is the number of observations in the  %& group or 

subject, ��� is the #%& response for the  %&group or subject, � is a general nonlinear function, ��� is the 

O
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predictor vector for the #%& response of the  %& group or subject, the residual errors ���are assumed to be 

independent and identically distributed normal random variables with mean zero and variance '(. The 

quantity �� is a mixed effects parameter vector that is expressed as a linear function of the fixed effects 

vector ) and the random effects vector *� and is given by the equation; �� 	= 	+�)	 +	,�*�               (2) 

where +� and ,�, which might depend on the fixed and/or random effects terms and possibly some 

covariates are the design matrices for the fixed effects vector - and random effects vector *� 
respectively. It is assumed that *� is multivariate normally distributed with mean vector zero and 

variance-covariance matrix . and is independent of ��� for all   and  #. 
The parameters in a mixed effects model can be classified into two types: fixed effects, associated with the 

average effect of predictors on the response, and variance-covariance components, associated with the 

covariance structure of the random effects and of the error term.7 In many practical applications estimates of 

the random effects are also of interest.7 There are typically no analytic or closed-form expressions for 

parameter estimates since the likelihoods involve integrations with respect to the unobservable random 

effects.8 Therefore estimation relies on approximation. Several approximations have been proposed for NLME 

models. Some of them include alternating algorithm proposed by Lindstrom and Bates, Laplacian 

approximation, importance sampling, Gaussian quadrature and full Exponential Laplace approximation.6,10-13 

Using any of the methods listed above requires an iterative algorithm which requires the use of computer 

programs because computation is very intensive. There is still an on-going debate in the statistical literature 

about estimation methods for NLME models even after so many research works have been carried out 

concerning this over the years. Pinheiro found out that, in most cases, Lindstrom and Bates approximation 

gives very accurate results and is computational efficient.6,7 

NLME modeling is a rich class models which is applicable in many fields.14 Model building techniques 

for NLME models involve determining which effects should have an associated random component and 

which should be purely fixed; using covariates to explain inter-individual parameter variability; using 

structured random effects variance-covariance matrices (e.g. diagonal matrices) to reduce the number of 

parameters in the model.7 

The focus of the present work is on the application of NLME modeling technique to the analysis of 

pharmacokinetic data.The model building technique is iterative in nature which involves fitting a 

tentative model that is modified after a number of re-fittings (iterations) to arrive at the best model. The 

Akaike Information Criterion (AIC), the Bayesian Criterion (BIC), and the likelihood ratio test (LRT) 

can be used to discriminate between models.9,15-17 The process is repeated until no further improvement 

is possible. In comparing alternative models one must also analyze the residuals from the fit, checking 

for departures from the assumptions in the model.7 

Without loss of generality, a heuristic algorithm for NLME modelling technique to model a 

pharmacokinetic dataset include the following five basic steps: i.) plot the structure of data; ii.) fit model 

separately for each group; iii.) fit non-linear mixed effect model; iv.) analyse non-linear mixed effect 

model; and v.) incorporate covariates into the model if necessary. 

It is important to remark that, the basic NLME model can be extended by allowing the variability of the 

residual errors to have a different structure apart from the homoscedastic structure.18 Such classes of variance 
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models for modeling heteroscedasticity include “fixed variance”, “different variances per stratum”, “power of 

a variance covariate” and “constant plus power of a variance covariate” amongst others. However, following 

Davidian and Giltinan, the general variance function for the residual errors is defined as19 /01	(���	|	*3) 	= 	'(4((5�� , 6�� , 7)	,  	 = 	1, . . . , ", #	 = 	1, . . . , $� ,           (3) 

where 5�� 	= 	8	[���|*3], 6�� is a vector of variance-covariates,7is a vector of variance parameters and 4(·) is the variance function, assumed continuous in 7.The variance structures of the residual errors of 

most PK data belong to the class of “power of a variance covariate” where the covariate is the fitted 

concentration. But when the range of possible values of the observations contains zero, it is better to 

model the errors using a combined additive (homoscedastic)and proportional error model which is the 

“constant plus power of a variance covariate” class.20 Therefore, following Davidian and Giltinan, the 

constant plus power of a variance model as employed in this work is of the form19 /01	(���) 	= 	'(4((6�� , 7)              (4) 

where 4<6�� , 7= = >? + |6��|@A               (5) 

It is worth to remark that, the analysis carried out in this work is based on the alternating algorithm of 

Lindstrom and Bates (1990) which was later developed into statistical package for NLME modelling by 

Pinheiro et al. and documented under ‘nlme’ package in R software (www.R-project.org).21 Thus, all the 

analytical tasks performed in this work were carried out using the R statistical package. 

   PHARMACOKINETICS CONCEPTS 

Pharmacokinetics as defined earlier is the study of the mechanisms and kinetics of drugs’ absorption, 

distribution, metabolism, and elimination by the body in animals or humans.22 Gibaldi and Perrier 

defined Pharmacokinetics as the study of the time course of drug absorption, distribution, metabolism, 

and excretion. In simple terms, Pharmacokinetics is the study of what the body does to the drug and this 

is important in developing dosing strategies.23,24 

A drug’s effect is often related to its concentration at the site of action, so it would be useful to monitor 

this concentration in animals (rats) or selected humans having the ailment for which the drug is 

designed.25 This leads to expressing the drug concentration mathematically in terms of some biological 

factors referred to as parameters. These expressions are called pharmacokinetic models.  

To facilitate complete understanding of the distribution, elimination, activity, and toxicity of a drug, it is very 

important to have a complete detailed description of the simplest pharmacokinetic model consistent with the 

data observed for the drug tendency in man.25 This becomes increasingly important with drugs that have a 

low therapeutic index and serious side-effects such as the cardiac glycoside digoxin.26 

Pharmacokinetic data analysis can be compartmental or non-compartmental.2 The Non-Compartmental 

Analysis (NCA) which is not commonly used is simple and does not require the assumption of a specific 

compartmental model for the drug of interest. However, the relatively large number of data points 

required for a reliable estimation of pharmacokinetic parameters using the NCA method may be 

disadvantageous.2 The compartmental model on the other hand requires that the body be represented by 

one or more compartments and hence, pharmacokinetics of drugs is generally represented by 

compartmental models. The model could have one, two or multi-compartments.   
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In this paper, we restrict ourselves to single-compartment pharmacokinetic models. Most of these 

models are structured such that the relationship between the drug concentration and the parameters are 

nonlinear and as a result modeling becomes very tasking.  

One procedure for estimating the parameters of pharmacokinetic model is the Standard Two-Stage (STS) 

approach which requires fitting a pharmacokinetic model to the data of each individual. Thereafter, 

summary statistics are computed for the total collection of individual parameter estimates.4 Following 

this approach, the between-individual variation tends to beover-estimated while it might not be 

efficient to apply this approach for individual model fit when the individual data are too sparse.2,27 

Another procedure for compartmental modeling is the non-linear mixed effects (NLME) modeling 

technique which has been described in Section 2. This procedure, as adopted in this study, constitutes 

powerful tools not only for estimating the population pharmacokinetic parameters but as well as the 

between-individual variance parameters.7 The clustered nature of pharmacokinetic data makes it a good 

candidate for NLME models. 

RELEVANT PHARMACOKINETIC PARAMETERS 

According to Younggil, the following are some of the necessary pharmacokinetic parameters that should be 

determined during development of dosage strategies for a drug: i.) Total clearance (�B) ii.) Fraction of dose 

excreted unchanged in urine (��) iii. Volume of distribution at steady state (/CC) iv. Volume of distribution 

during the terminal phase (/D) v. Blood/plasma concentration ratio vi. Terminal half-life (E?/(,D) vii. Fraction 

of unbound drug in plasma (�G) viii. Elimination rate (��) ix. Area under curve (AUC) x. Bioavailable fraction 

of dose (H), if applicable, and xi. Absorption rate constant (��), if applicable.28 

It is important to note that it may not be necessary or possible to obtain all the parameters listed above 

for some drugs before one can fully describe the pharmacokinetics of the drugs.2 

   MODELLING THEOPHYLLINE PHARMACOKINETIC DATA 

Theophylline (also known as 1,3-dimethylxanthine) is a Bronchodilator which is a drug used in therapy 

for respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD).29 For 

Theophylline, a one-compartment model is the standard7and is described below. 

Suppose that a (drug) substance enters the body via ingestion, the first-order one-compartment open PK 

model that describes the working of the substance in the body is defined by the following system of 

Ordinary Differential Equations (ODEs):30 

                �I?(E) = −���?(E)              (6) �I((E) = ���?(E) − ���((E), ��, �� > 0            (7) 

where �I?(E) represents the mass of drug present at time E in the external compartment 

(stomach/intestines), �I((E) is the mass of drug absorbed into the body (e.g. plasma). The coefficient �� 

describes the absorption rate from the external to the central compartment while �� is the elimination 

rate from the central compartment.�I?(E) and �I((E)shall henceforth be referred to as just �I? and �I( 

respectively for simplicity. 

If we differentiate (4) again we have, �L( = ���I? − ���I(       (8) 
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If we substitute (6) into (7) for �I? and the resulting equation in term of �I? is again substituted into (8), 

we shall have a single second-order differential equation for the central compartment of the form; �L( + (�� + ��)�I( + �����( 	= 	0             (9) 

Solving (9) above results to the quadratic equation below M( + (�� + ��)M + ���� = 0            (10)	
The solutions to (10) are;M? = −��and M( = −��. Therefore, a solution for (6) is 							�((E) = N?OPQRM?ES + N(OPQRM(ES → 	�((E) = N?OPQR−��ES + N(OPQR−��ES          (11) 

Putting (11) along with its first derivative into (7) leads to the general solution for	�?. The general 

solution of the system consisting of equations (6) and (7) therefore is: 

�?(E) = UVWUXUX N(OPQR−��ES            (12) 

 	�((E) = N?OPQR−��ES + N(OPQR−��ES           (13) 

Now let �?(EY) be the mass of the drug in the body at time (EY) when the drug was ingested, therefore �?(EY) = Z (dose ingested) and �((EY) = 0 (because no drug would have been absorbed yet). Solving 

(12) and (13) simultaneously with �?(EY) = Z and �((EY) = 0 leads to 

N( = Z���� − �� OPQR��EYS 
N? = Z���� − �� OPQR��EYS 
Putting the solutions for N? and N( in (12) and (13), the explicit solutions for (6) and (7) become �?(E) = ZOPQR−��(E − EY)S            (14) 

�((E) = [UXUXWUV OPQR−��(E − EY)S − OPQR−��(E − EY)S         (15) 

Dividing equation (15) by the volume of distribution / to have the expression to be for concentration 

gives 

�% = Z��/(�� − ��) (OPQR−��(E − EY)S − OPQR−��(E − EY)S) 

But since / = \]UV, so we have 

�% = Z������(�� − ��) (OPQR−��(E − EY)S − OPQR−��(E − EY)S) 

where �� is the clearance. In most cases, EY is taken to be equal to zero (i.e., EY = 0), the model therefore 

can be simply written as 

�% = [UVUX\](UXWUV) (OPQR−��ES − OPQR−��ES)           (16) 

where �% is the plasma concentration at time E (mg/L), E is the time (hr), D is the dose (mg/kg), �� is the 

clearance (L/kg), �� is the elimination rate constant (1/hr), and �� is the absorption rate constant (1/hr). 
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When estimating model (16) using the NLME modeling techniques, it is necessary to take the logarithms of 

the rates (��, �� and ��) to ensure that the rates are positive. Therefore, model (16) can thus be written as 

�% = [�^_R�UV`�UXW�\]S�^_R�UXSW�^_R�UVS (OPQR−OPQRB��SES − OPQR−OPQRB��SES)        (17) 

where B�� = 	log(��), B�� = 	log(��),  and B�� = 	log(��). The required NLME model can thus be written as 

��� = [d�^_Refd`eAdWegdS�^_ReAdSW�^_RefdS × <OPQi−OPQRjk�SE��l − OPQi−OPQmj(�E��nl= + ���       (18) 

The ��� in model (18) represents o� of model (6) which denotes the drug concentration in the blood. 

Hence, the full description of (18) within the NLME model framework is as follows; 

 	��� = ��� = �	(�� , [E�� , Z�]) 	+ �            (19) 

where �� 	= 	+�)	 +	,�*� as defined in (2) with 

+� = p1 0 00 1 00 0 1q; ,� = p1 0 00 1 00 0 1q 

and 

�� = rB���B���B���
s = pΦ?�

Φ(�
Φk�

q = +� rβ?
β(
βk

s + ,� pb?�b(�bk�
q 

→ �� = pΦ?�
Φ(�
Φk�

q = p1 0 00 1 00 0 1q rβ?
β(
βk

s + p1 0 00 1 00 0 1q pb?�b(�bk�
q 

Therefore, model (18) becomes 

��� = [d�^_R(uf`vfd)`(uA`vAd)W(ug`vgd)S�^_R(uA`vAd)SW�^_R(uf`vfd)S <OPQi−OPQR(-k + wk�)SE��l − OPQi−OPQR(-( + w(�)SE��l= + ���    (20) 

with  = 1, … , " subjects and # = 1, … , $� measurements, ��� is the #%&measured plasma concentration 

for the  %& subject, E�� is the time at which the #%& measurement for the  %&subject is taken. 

It should be noted that not all the terms in the model may eventually be present after the analysis of a 

given data. Also, the use of covariates in modelling also changes the structure of � in the model. For 

example, if a covariate like weight is found to be linearly related with the absorption rate B��, then the 

structure of ��above changes to 

�� = pΦ?�
Φ(�
Φk�

q = p1 0 0 00 1 0 xE�0 0 1 0 q
yz
zz
{β?
β(
βk
β|}~

~~
� + p1 0 00 1 00 0 1q pb?�b(�bk�

q 

which incorporates the weight variable xE� of the  %& subject while �| is the fixed effect parameter of 

weight on B��. The variation in �(� may be explained straight away by xE�, hence b(� may be deleted 

from the model without any loss in efficiency. 

DATA DESCRIPTION 

The data employed in this study were published data discussed and used by Boeckmann et al.31. The data 

consist of Theophylline concentration (mg/L) measurements on 12 asthmatic patients who were treated 
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with oral Theophylline. The serum concentrations were measured at 11 times per subject over 25 hours 

period, hence a total of 132 observations were obtained. The data contained different doses of oral 

Theophylline administered to each patient, the Theophylline concentration, weight and concentration 

time (in hours).The doses were adjusted for weight and ranged from 3.10 mg to 5.86 mg, while the 

concentration measurements ranged from 0.00 mg/L to 11.4 mg/L with mean concentration of 4.96 mg/L 

and standard deviation of 2.87 mg/L. These measurements were taken within a range of 0hr to 24.65 hr 

after dose. Initial body weights ranged from 54.6 kg to 86.4 kg with a mean of 69.58 kg and standard 

deviation of 9.13 kg. The detailed summary statistics of the clinical characteristics in the data are 

presented in Table 1. 

 

TABLE 1: The summary statistics of the clinical characteristics of all the 12 asthmatic patients who were treated  
with oral Theophylline. The serum concentration in each patient was measured 11 times within 25 hours period. 

 Mean Median Minimum Maximum Std. dev. 

Oral Dose (mg/kg) 4.63 4.53 3.10 5.86 0.72 
Weight (kg) 69.58 70.50 54.60 86.40 9.13 
Time (hr) 5.89 3.53 0.00 24.65 6.93 
Theophylline Concentration(mg/L) 4.96 5.28 0.00 11.40 2.87 
 

   ANALYSIS AND RESULTS 

The NLME models were fitted to the Theophylline data described above based on the models’ 

formulations in Section 4. The “nlme” package21 in R statistical software32 was employed for fitting the 

NLME models. 

As a preliminary step, it is important to determine which of the rates (�� , �� and �� to be estimated) 

should be fixed, random or mixed. Figure 1 is the plot of serum concentration for each subject in the 

study against time. All the graphs in Figure 1 suggested that the serum concentration of the asthma 

patients depicted non-linear structure with time. As a result, we fitted separate nonlinear regression 

model on the serum concentration observed on each patient. This enables us to detect between-subject 

variation through the plots of the 95% confidence intervals for each of the rates.  

 
FIGURE 1: Plots of serum concentration against time for all subjects. 
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As can be observed in Figure 2, the plots of the individual estimated 95% confidence interval suggested 

that the elimination rate (��) can be considered fixed since it seems to be characterized with little 

variation among subjects while the between-subject variations of the estimates of both the absorption 

rate (��) and clearance (��) are visibly high. Hence, both �� and �� can be considered to contain both 

the fixed and random effects.  

For a clear overview of the relationship between the three estimated rates, we present the pair-wise 

scatter plots of the individual nonlinear least squares estimates of the rates as shown in Figure 3 where it 

can be observed that the first subject in the sample seems to have a very low �� and �� values while the 

ninth subject has a high �� value. Not only that, the linear relationship between the elimination rate (��) and clearance (��) is also apparent from the pair-wise plot in Figure 4 which simply underscores 

the co-movement of the elimination rate and the clearance in theophylline drug administration.  

 

 
FIGURE 2: Plots of individual 95% confidence intervals of the  

fitted serum concentrations for all subjects. 

 

 
FIGURE 3: Pairs plots of random effects of the parameters  

of the pharmacokinetic model. 
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Using the operational model in (20) with all its components remained as defined, the NLME model was 

fitted to the theophylline data as presented in the Appendix in which all the rates were considered fully 

mixed. This model, as given below is called model 1 

��� = Z�OPQR(-k + wk�) + (-( + w(�) − (-? + w?�)SOPQR(-( + w(�)S − OPQR(-k + wk�)S <OPQi−OPQR(-k + wk�)SE��l− OPQi−OPQR(-( + w(�)SE��l= + ��� 

with  	 = 	1, . . . , 12 patients or groups and #	 = 	1, . . . , 11 measurements per patient or group, ��� is the #%& 

measured plasma concentration for the  %& patient, E�� is the time at which the #%& measurement for the  %& patient is taken. The results of the fitted model are presented in Table 2 in which the estimates of the 

fixed effects parameters and the standard deviations of the random effects parameters of the model are 

reported. 
 

TABLE 2: Estimates of the parameters in all the fitted models. NB: The fixed effects of ���, ���, ���  
were estimated as -?, -( and -k respectively while the standard deviations of their corresponding random effects  

over all the subjects were estimated as ��? , ��( and ��k respectively. 

Model Rates 
Fixed effect Parameters -�, � = 1,2,3 

Standard Deviation of Random effects ���, � = 1,2,3 

Residual errors variability parameters 7� 7� 

Model 1 

��� 0.4514 0.6378 

- - ��� -2.4327 0.1311 ��� -3.2145 0.2512 

Model 2 

��� 0.4655 0.6439 

- - ��� -2.4547 1.9308x10-5 ��� -3.2272 0.1669 

Model 3 

��� 0.4657 0.6436 

- - ��� -2.4547 - ��� -3.2272 0.1669 

Model 4 

��� 0.4331 0.6384 

0.7293 0.3191 ��� -2.4538 - ��� -3.2275 0.1699 

Model 5 

��� 0.4334 0.6334 

0.7251 0.3164 
��� -2.4560 - ��� -2.7104 0.1551 )� -0.0075 - 

Model 6 

��� -3.5491 0.0841 

0.2851 0.0887 
��� 0.4310 - ��� -3.2577 0.1359 )� 0.0149 - 

 

 

Recall that, in the formulation of the PK model, it is assumed that ��, �� and �� are purely independent. 

However, the correlations of their estimated logarithm values as presented in Table 3 indicated a high 

correlation between B�� and B�� (�� = 0.995, p < 0.001), which simply  suggests interdependency between 

these two PK parameters. As a result, we fitted another model such that the estimated random effects in 
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the model are independent and that the random-effects variance-covariance structure is not ill-

conditioned. This second model is labeled model 2 in Table 2. In essence, the regression equation for 

model 2 is the same as that of model 1, the exception is that the variance-covariance matrix of the error 

term in model 2 is not ill-conditioned which guarantees independence of random effects parameters. 

The fixed effects and the standard deviations of the random effects obtained for the second fitted model 

(model 2) are presented in Table 2. 

 

TABLE 3: Correlation values between the estimated random effects terms in Model 1. 

 ��� ��� ��� ��� 1 0.012 -0.089 ��� - 1 0.995 ��� - - 1 

 

TABLE 4: Comparison and choice of models using the BIC and LRT. 

Model BIC Log-likelihood Number of parameters P-value Winning model 

Model 1 395.4702 -173.3211 10   
Model 2 388.2266 -177.0235 7 0.0601 (Model 1 vs model 2) Model 2 

Model 3 383.3397 -177.0214 6 0.9488 (Model 2 vs model 3) Model 3 
Model 4 374.4193 -167.6784 8 <0.0001 (Model 3 vs model 4) Model 4 
Model 5 377.4424 -166.7486 9 0.1727 (Model 6 vs model 4) Model 4 
Model 6 440.7853 -198.4200 9 <0.0001(Model 6 vs model 4) Model 4 

 

For ease of models` comparison, the values of the BIC33-35 and the Likelihood Ratio Test (LRT)36 for the 

fitted models were equally reported in Table 4. From the results in Table 4, it can be observed that both 

the BIC and the p-values of the LRT indicated that the simpler model 2 cannot be said to be poorer than 

model 1, in fact, the BIC suggests that model 2 is better. 

It could be observed from the results of model 2 in Table 2 that the standard deviation of the 

estimated parameter B��(considered random) is grossly smaller than those of the other two 

parameters. This further suggested that the effects of B�� should be considered fixed. As a result, we 

proceeded to fit another model (model 3) where B�� is considered purely fixed and a comparison of 

model 3 with model 2 is provided in Table 4. The value of BIC for model 3 which is relatively smaller 

than that of model 2 suggested that the simpler model, model 3with fixed effect parameter B��was a 

better model than model 2.The regression equation for model 3 is a reduced version of model (20) for 

model 1 and is given by 

��� = �[�^_R(uf)`(uA`vAd)W(ug`vgd)S�^_R(uA`vAd)SW�^_R(uf)S × <OPQi−OPQR(-k)SE��l − OPQi−OPQR(-( + w(�)SE��l=� + ���(21) 

As a way to check for the adequacy of the fitted model 3, the plot of standardized residuals against 

the fitted values of plasma concentration is presented by Figure 4a from where it can be observed 

that the error variance increases as the fitted Theophylline concentration increases. This therefore 

suggested that a homoscedastic variance model for the within-group residuals cannot be assumed 

for the data. Hence, a heteroscedastic model where the errors are represented by a combined 
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additive (homoscedastic) and proportional error model need to be fitted using the model`s variance 

formulations in equations (4) and (5). A new model with these properties was fitted and labeled 

model 4 the results of which are again reported in Table 2. The regression equation for model 4 is 

the same as that of model 3. The only difference between model 3 and model 4 is in their error 

variance structures which in turn caused a slight difference in the values of the main parameter 

estimates. The main parameter estimates here are the fixed effects parameters and random effects 

covariance components. 

A comparison of model 4 with the previously fitted model, model 3 using the BIC criteria indicated that 

model 4 with BIC value of 374.4193 is a better model than model 3 with a relatively higher BIC value of 

383.3397 as shown in Table 4. We equally provide the plot of the standardized residuals of model 4 

versus the fitted values as shown by Figure 4b from where it can be observed thatthe error variance 

increases as the fitted Theophylline concentration increases which simply confirms the adequacy of 

model 4 as an heteroscedastic NLME model. 

Furthermore, it is imperative to examine the possible impacts of patients` weights (if any) on inter-

individual variations of some of the PK parameters especially, the absorption rate ��and the clearance �� whose effects are considered to be random. Thus, we investigated if patients` weights account for 

inter-individual variation in PK parameters �� and ��. To this effect, we obtain the scatter plot of the 

weight covariate versus the estimated absorption rate ��� and clearance ��� as determined from model 

4. This scatter plots are shown in Figure 5. The scatter plots in Figure 6 seem to indicate increase in 

absorption rate of theophylline as patient’s weight increases while the clearance decreases as weight 

increases. The NLME model fitted with weight variable (xE�) included as covariate with each of the 

PK parameters B��and B�� are labelled model 5 and model 6 respectively the results of which are 

presented in Table 2. The results of BIC and LRT for comparing models 5 and 6 each with model 4 are 

presented in Table 4. The regression equations for model 5 and model 6 with weight variable xE� 
included as covariate in place of random effect components of the PK parameters B�� (clearance) and B�� (absorption rate) are given by  

��� = �[�^_R(uf)`(uA`vAd)W(ug`�%du�)S�^_R(uA`vAd)SW�^_R(uf)S <OPQi−OPQR(-k)SE��l − OPQi−OPQR(-( + w(�)SE��l=� + ���              (22) 

and 

��� = �[�^_R(uf)`(uA`�%du�)W(ug`vgd)S�^_R(uA`�%du�)SW�^_R(uf)S <OPQi−OPQR(-k)SE��l − OPQi−OPQR(-( + xE�-|)SE��l=� + ���        (23) 

respectively, where xE� is the weight of the  %& patient. 

A comparison of each models 5 and 6 with model 4 using the BIC criteria as shown in Table 4 again 

indicated that parsimonious model 4 is better than both models 5 and 6. This simply showed that the 

inclusion of the weight variable as covariate in the PK model is not necessary, more so that the covariate 

(Z) that represents the amount of oral dose of theophylline administered on the patients in the model is 

weight adjusted. Hence, model 4 becomes the final chosen model, and the PK model building process for 

the theophylline data hereby terminates. 
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 (a)     (b) 
FIGURE 4: Plot of standardized residual errors against the fitted values of theophylline concentrations for model 3 (a) and model 4 (b). 

 

 
FIGURE 5: Plot of patients’ weights against the estimated absorption rate and clearance  

(in logarithm scale) for all the 12 asthmatic patients. 

The estimates of the PK parameters in the final chosen model (model 4) fitted to the Theophylline data 

have been reported in Table 2. Specifically, the estimates of the fixed effects components of clearance 

(��), absorption rate (��) and elimination rate (��) parameters (all in logarithm scales) as provided by the 

final model (model 4) are B�� � = 0.4514,  B�� � = -2.4327 and B�� � = -3.2145 respectively. Therefore, the 

estimated values of these PK parameters in their original scale as provided by the final model (model 4) 

are ��� =1.5420, ��� =	0.0860 and ��� =	0.0397 respectively.  

The above estimates of the parameters (���, ���, ���) summarized the pharmacokinetic processes for the 

population. The value of �� indicates the fraction of theophylline present at the absorption site that is 

absorbed per hour. A value of �� greater than 1 implies rapid absorption, that is, almost all the drug 

would be absorbed over the time interval. The estimated fixed effect component of �� is 1.5420 hr-1 

which indicates that, on the average, theophylline undergoes rapid absorption in the population of 

subjects. Also, �� describes the change in the amount of theophylline in the body due to theophylline 

elimination over time. The estimated value of �� of 0.0860 hr-1 implies that, on the average, 8.6% of 

theophylline remaining in the body is removed each hour. Furthermore, �� describes the volume of 
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blood (or plasma) from which theophylline is eliminated per hour (drug loss from the body). A value of 

0.0397 L/Kg/hr estimated for �� implies that an average of 0.0397 Litres of blood is cleared of 

theophylline per hour. 

Moreover, in addition to characterizing the average of the PK parameters in the population, the goal of 

PK modelling is to determine how the parameters (��, ��, ��) vary in the population of subjects in order 

to develop safe and effective drug regimens. If between-subject variation in (��, ��, ��) is large, it may 

be difficult to design a general routine treatment14. The estimated between-subject variations in�� 

(0.6384) and ��(0.1699) combined with experts’ knowledge are useful for development of dosage 

strategies for administering theophylline to patients with respiratory diseases. 

   DISCUSSION AND CONCLUSION 

The procedures for developing, estimating and analysing PK models using NLME techniques have been 

provided in this work. The NLME modelling technique is very suitable for modelling cluster dependent 

data such as those encountered in PK analysis. The subject-specific nature of NLME models makes them 

very suitable for handling pharmacokinetic models.  

The modelling procedure adopted in this study started by plotting individual patient responses 

(theophylline concentration) against time as presented by Figure 1. This was done in order to have a 

clear overview of the pattern of the serum concentration over time. All the twelve line graphs in Figure 

1 revealed the non-linear pattern of the theophylline serum concentration on all the asthmatic patients. 

Results of separate non-linear regression models fitted on individual patient’s theophylline data showed 

the behaviours of the three major PK parameters (absorption rate, elimination rate and clearance) in the 

models. The plots of the 95% confidence intervals of the estimates of the three PK parameters on 

individual patients as reported by Figure 2 suggested that the effects of elimination rate, �� should be 

considered fixed while those of the absorption rate �� and clearance, �� should be considered mixed 

(having both fixed and random effects). All these notwithstanding, we considered the models’ fitting to 

the data hierarchically until the best model that satisfies the needed required criteria is achieved.  

A full NLME model where all the rates were considered mixed and the random effects variance-

covariance matrix is positive definite was first fitted to the data, called model 1. Results from this model 

showed a high correlation between the random effects components of PK parameters �� and ��, which is 

an indication that the random effects variance-covariance matrix is ill-conditioned and that the 

requirement of independence between random effects parameters is not fulfilled. This led us to fit model 

2 that allowed the random effects variance-covariance matrix to be represented by a diagonal matrix in 

order to satisfy the requirement of independence.  

The smaller BIC value of the simpler model 2 compared to model 1 confirms that model 2 is a better 

model. However, the small standard deviation of the elimination rate �� in the model further suggested 

that the effects of��in the model should be considered fixed. Therefore, a simpler model 3 which defines �� as a fixed effect was fitted and was found to be better as indicated by its smaller BIC value compared 

to model 2. However, the plot of the residual errors of model 3 against the fitted values provided the 

evidence that homoscedasticity cannot be assumed for the residual errors in the model, therefore, model 

4 which facilitates modelling the errors with a combined additive (homoscedastic) and proportional 

error model was again fitted to the data. 
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We investigated further if it is possible to improve the current model 4 by including the weight 

variable as covariate in the model. This was done separately by fitting models 5 and 6 in which the 

weight variable was incorporated into the model to replace the random effect components of 

clearance parameter (model 5) and absorption rate parameter (model 6). All the results obtained 

clearly indicated that model 4 with smallest BIC value was superior to both models 5 and 6 with 

relatively higher BIC values compared to model 4. Hence, inclusion of weight as covariate in the PK 

model did not improve the efficiency of the model and was therefore ignored and the modelling 

process terminates. 

Another point against the inclusion of weight in the model is that the oral dose (Z) of 

theophylline administered on each of the asthmatic patients as incorporated in the final model 

(21) is weight adjusted. A real justification for this is clear in the high value of Pearson 

correlation coefficient between the oral dose of theophylline (Z) and weight of the patients of −0.99 which is highly significant (p < 0.0001). Hence, the inclusion of weight as covariate in the 

model could trigger another problem of multicollinearity which obviously could render the 

model less efficient. 

Without loss of generality, it can be concluded that the final NLME PK model that best fits the 

theophylline data discussed in this study is model 4 which is governed by non-linear regression 

model (21) with the variance-covariance matrix of its error term ��� specified as in equations (4) and 

(5). This final model, as estimated, contains the fixed effects components of the clearance parameter 

(B��) -?, absorption rate parameter  (B��) -(, and elimination rate parameter (B��)-k.This modelalso 

contains the random effects component (w?�) of the clearance parameter B��and random effects 

component (wk�) of the absorption rate parameter B��. The above parameter mix in model (21) 

clearly indicated that only the effect of the absorption rate �� was considered purely fixed in the 

model as earlier justified. 

The estimates of the three PK parameters absorption rate (1.5420), elimination rate (0.0860) and 

clearance (0.0397) in the final model is an indication that these basic PK parameters are positive on the 

rate of theophylline concentration in asthmatic patients. 

To further check for the adequacy of the final fitted model (model 4), we examined whether the 

error terms of the fitted model possesses the required normality assumption via its estimated 

residuals. The quantile-quantile (normal probability) plot and box-plots of the standardized 

residuals of the model as displayed in Figure 6a and b respectively showed that the normality 

assumption on the error term with mean zero is not severely violated. The box-plots of the 

standardised residuals of each subject were plotted as shown in Figure 6b to ensure clear overview 

of the behaviours of the residuals across the twelve subjects. The dotted points in the box-plots 

were the median residual values which were all quite close to the vertical line drawn on zero 

standardised residual in the plot. Although, the boxplots of the residuals as shown in Figure 6b 

generally suggest that there are outlying residual points in all the subjects or groups. However, this 

might be accounted for if the error terms in the models are assumed to follow a thick-tailed or 

skewed distribution such as the student-t, slash37 or skew-normal38,39 distributions instead of the 

normal distribution. This might be taken up in future study. 
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 (a)     (b) 

FIGURE 6: (a) The quantile-quantile probability plot of the standardized residuals of the final model (model 4).  
(b) The box-plots of the standardized residuals of model 4 plotted for each of the twelve subjects. 

 (a)     (b) 

FIGURE 7: (a) The quantile-quantile plots of the random effects of the absorption rate B��  and clearance, B�� .  
(b) Plots of the fitted and actual theophylline concentrations for each of the twelve asthma patients.  

The dot-lines are the actual (sample) values, the blue and pink lines represent the fixed/population and individual fitted values respectively. 

 

It is also necessary to check if the estimated effects of the two random effects parameters��and ��are 

normally distributed as required by the model. This was examined by plotting the quantile-quantile (Q-

Q) plots of the estimated effects of the two parameters (in logarithmic scales) as shown in Figure 7a. It is 

obvious from the Q-Q plots in Figure 7a that the estimated effects of the two random effect parameters 

do not violate the normality assumption as required. 

Finally, we examined the closeness of the estimated theophylline concentration with the observed ones 

in the samples based on the fitted model. This is achieved by plotting the fitted theophylline 

concentrations by the model superimposed on the actual concentrations (dotted lines) for all the twelve 

subjects as display in Figure 7b. The graphs in Figure 7b indicate that the individual fitted values are 

closer to the actual values than the fixed/population values, an indication that the NLME model fitted to 

the data is quite appropriate and efficient. 

In conclusion, this study has provided a thorough review of techniques for fitting pharmacokinetic 

models within the framework of NLME methodology. The work has updated the basic procedures for 

analysing classical pharmacokinetic data for determining drug dosing strategies. However, the 

development and application of NLME models to pharmacokinetic data presented here is not exhaustive,  
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APPENDIX: The Theophylline published data ‘Subject ID’ is the number identifying the subject on whom the observation was 
made, ‘Dose’ is the dose of theophylline administered orally to the subject, ‘Time’ is the time since the drug was administered 

on the subject, ‘Conc.’ is the theophylline concentration in the subject and ‘Wt’ is the weight of the subject.31 
Subject ID Wt (Kg) Dose (mg/Kg) Time (hr) Conc. (mg/L) Subject ID Wt (Kg) Dose (mg) Time (hr) Conc. (mg/L) 

1 79.6 4.02 0 0.74 7 64.6 4.95 0 0.15 
1 79.6 4.02 0.25 2.84 7 64.6 4.95 0.25 0.85 
1 79.6 4.02 0.57 6.57 7 64.6 4.95 0.5 2.35 
1 79.6 4.02 1.12 10.5 7 64.6 4.95 1.02 5.02 
1 79.6 4.02 2.02 9.66 7 64.6 4.95 2.02 6.58 
1 79.6 4.02 3.82 8.58 7 64.6 4.95 3.48 7.09 
1 79.6 4.02 5.1 8.36 7 64.6 4.95 5 6.66 
1 79.6 4.02 7.03 7.47 7 64.6 4.95 6.98 5.25 
1 79.6 4.02 9.05 6.89 7 64.6 4.95 9 4.39 
1 79.6 4.02 12.12 5.94 7 64.6 4.95 12.05 3.53 
1 79.6 4.02 24.37 3.28 7 64.6 4.95 24.22 1.15 
2 72.4 4.4 0 0 8 70.5 4.53 0 0 
2 72.4 4.4 0.27 1.72 8 70.5 4.53 0.25 3.05 
2 72.4 4.4 0.52 7.91 8 70.5 4.53 0.52 3.05 
2 72.4 4.4 1 8.31 8 70.5 4.53 0.98 7.31 
2 72.4 4.4 1.92 8.33 8 70.5 4.53 2.02 7.56 
2 72.4 4.4 3.5 6.85 8 70.5 4.53 3.53 6.59 
2 72.4 4.4 5.02 6.08 8 70.5 4.53 5.05 5.88 
2 72.4 4.4 7.03 5.4 8 70.5 4.53 7.15 4.73 
2 72.4 4.4 9 4.55 8 70.5 4.53 9.07 4.57 
2 72.4 4.4 12 3.01 8 70.5 4.53 12.1 3 
2 72.4 4.4 24.3 0.9 8 70.5 4.53 24.12 1.25 
3 70.5 4.53 0 0 9 86.4 3.1 0 0 
3 70.5 4.53 0.27 4.4 9 86.4 3.1 0.3 7.37 
3 70.5 4.53 0.58 6.9 9 86.4 3.1 0.63 9.03 
3 70.5 4.53 1.02 8.2 9 86.4 3.1 1.05 7.14 
3 70.5 4.53 2.02 7.8 9 86.4 3.1 2.02 6.33 
3 70.5 4.53 3.62 7.5 9 86.4 3.1 3.53 5.66 
3 70.5 4.53 5.08 6.2 9 86.4 3.1 5.02 5.67 
3 70.5 4.53 7.07 5.3 9 86.4 3.1 7.17 4.24 
3 70.5 4.53 9 4.9 9 86.4 3.1 8.8 4.11 
3 70.5 4.53 12.15 3.7 9 86.4 3.1 11.6 3.16 
3 70.5 4.53 24.17 1.05 9 86.4 3.1 24.43 1.12 
4 72.7 4.4 0 0 10 58.2 5.5 0 0.24 
4 72.7 4.4 0.35 1.89 10 58.2 5.5 0.37 2.89 
4 72.7 4.4 0.6 4.6 10 58.2 5.5 0.77 5.22 
4 72.7 4.4 1.07 8.6 10 58.2 5.5 1.02 6.41 
4 72.7 4.4 2.13 8.38 10 58.2 5.5 2.05 7.83 
4 72.7 4.4 3.5 7.54 10 58.2 5.5 3.55 10.21 
4 72.7 4.4 5.02 6.88 10 58.2 5.5 5.05 9.18 
4 72.7 4.4 7.02 5.78 10 58.2 5.5 7.08 8.02 
4 72.7 4.4 9.02 5.33 10 58.2 5.5 9.38 7.14 
4 72.7 4.4 11.98 4.19 10 58.2 5.5 12.1 5.68 
4 72.7 4.4 24.65 1.15 10 58.2 5.5 23.7 2.42 
5 54.6 5.86 0 0 11 65 4.92 0 0 
5 54.6 5.86 0.3 2.02 11 65 4.92 0.25 4.86 
5 54.6 5.86 0.52 5.63 11 65 4.92 0.5 7.24 
5 54.6 5.86 1 11.4 11 65 4.92 0.98 8 
5 54.6 5.86 2.02 9.33 11 65 4.92 1.98 6.81 
5 54.6 5.86 3.5 8.74 11 65 4.92 3.6 5.87 
5 54.6 5.86 5.02 7.56 11 65 4.92 5.02 5.22 
5 54.6 5.86 7.02 7.09 11 65 4.92 7.03 4.45 
5 54.6 5.86 9.1 5.9 11 65 4.92 9.03 3.62 
5 54.6 5.86 12 4.37 11 65 4.92 12.12 2.69 
5 54.6 5.86 24.35 1.57 11 65 4.92 24.08 0.86 
6 80 4 0 0 12 60.5 5.3 0 0 
6 80 4 0.27 1.29 12 60.5 5.3 0.25 1.25 
6 80 4 0.58 3.08 12 60.5 5.3 0.5 3.96 
6 80 4 1.15 6.44 12 60.5 5.3 1 7.82 
6 80 4 2.03 6.32 12 60.5 5.3 2 9.72 
6 80 4 3.57 5.53 12 60.5 5.3 3.52 9.75 
6 80 4 5 4.94 12 60.5 5.3 5.07 8.57 
6 80 4 7 4.02 12 60.5 5.3 7.07 6.59 
6 80 4 9.22 3.46 12 60.5 5.3 9.03 6.11 
6 80 4 12.1 2.78 12 60.5 5.3 12.05 4.57 
6 80 4 23.85 0.92 12 60.5 5.3 24.15 1.17 
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as it is difficult for a single article to fully document the entire process and concept. Much attention has 

been focused on practical application of NLME modelling to a real life pharmacokinetic dataset, and we 

hope that this gives additional insight to readers already familiar with the NLME concept and provide a 

foundation for appreciating its principle and usefulness to those new to the concept. We have presented 

an analysis of a specific application using theophylline pharmacokinetics. 

This work has only looked at the analysis of pharmacokinetic data using the NLME model from the 

frequentist approach. However, the development of NLME model for analysing pharmacokinetic data 

can be approached from Bayesian perspective through the incorporation of necessary prior information 

in the model.40,41 In future studies, we hope to continue in developing methodologies for NLME models 

within both the Frequentist and Bayesian paradigm for better efficiency. 
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