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Evaluating the Performances of ROC Curve Estimation
Methods for Different Distributions and

Different Kernel Functions

Farkli Dagilimlar ve Farkli Cekirdek Fonksiyonlar1 i¢in
ROC Egrisi Tahmin Yéntemlerinin Performanslariin Incelenmesi
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ABSTRACT Objective: Receiver operating characteristic (ROC)
curve is a statistical method used to examine the actual effective-
ness of a diagnostic test or a biomarker in a comprehensive and
reliable way. Several methods have been proposed to estimate ROC
curve properly. The aim of the present study is to compare recent
ROC curve estimation methods for different distribution and sam-
ple sizes. Material and Methods: Log-concave density and
smooth log-concave density estimate based ROC curve estimation,
kernel based ROC curve estimation with Gaussian, Epanechnikov,
rectangular, triangular kernels, and binormal ROC estimation
methods were compared for different simulation scenarios. Re-
sults: The ROC curve estimation methods based on kernel esti-
mates gave their best performances when the biomarker values of
non-diseased group are normal but the biomarker values of the dis-
eased group are right-skewed, with a notable difference from other
methods. Epanechnikov and rectangular kernel methods yielded
better performance than other kernel methods in small sample sizes;
but this difference disappeared as the sample size increased. The
methods based on kernel or log-concave density estimate gave their
worst results for the simulation scenario where the data were non-
normal but symmetric. Conclusion: The performances of the other
methods examined in the study exceeded the performance of the
binormal method in highly skewed data in both groups and when
the distribution of diseased and non-diseased populations were
right-skewed and normal, respectively.

Keywords: Diagnostic test; receiver operating characteristic curve;
kernel density estimation;
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OZET Amag: Ahci isletim karakteristizi [receiver operating

characteristic (ROC)] egrisi, bir tan1 testinin veya bir biyobelirtecin
gercek etkinligini kapsamli ve giivenilir bir sekilde incelemek igin
kullanilan istatistiksel bir yontemdir. ROC egrisini dogru bir sekil-
de tahmin etmek i¢in cesitli yontemler onerilmistir. Bu ¢alismanin
amaci, farkli dagilim ve orneklem biiyikliikleri igin giincel ROC
egrisi tahmin yontemlerini karsilagtirmaktir. Gere¢ ve Yontem-
ler: Log-konkav yogunluk ve diizgiin log-konkav yogunluk tahmini
tabanli ROC egrisi tahmin yontemi, Gaussian, Epanechnikov, dik-
dortgen, tiggen kernel fonksiyonu kullanan kernel tabanli ROC eg-
risi tahmin yontemleri ve binormal ROC egrisi tahmin y6ntemleri
farkli simiilasyon senaryolar kullanilarak karsilagtirilmistir. Bulgu-
lar: Kernel tahmincilerine dayanan ROC egrisi tahmin yontemleri,
saglikli grubun biyobelirte¢ degerlerinin normal dagilim, hasta gru-
bun biyobelirteg degerlerinin saga carpik dagilim gosterdigi du-
rumda, diger yontemlerden biiyiik farkla en iyi performanst goster-
mistir. Epanechnikov vedikdortgen kernel yontemleri, diger kernel
yontemlerinden kiigiik drneklemlerde daha iyi performans goster-
mekle birlikte aralarindaki fark, 6rneklem biyiikliigiindeki artigla
ortadan kalkmistir. Kernel ve log-konkav yogunluk tahminine daya-
11 yontemler, verinin normal olmadig: fakat simetrik oldugu durum-
da en kotii sonucu vermislerdir. Sonug: Calismada incelenen yon-
temlerin performanslari, her iki grupta yiiksek oranda garpik veriler
olmasi durumunda ve hasta ve saglikli popiilasyonlarin dagilimlar
sirastyla saga carpik dagilim ve normal dagilim oldugunda,
binormal ydntemin performansini gegmistir.

Anahtar kelimeler: Tani testi; alici islem karakteristik egrisi;
kernel yogunluk tahmini;
log-konkav yogunluk tahmini
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In clinical decision making, it is important to distinguish patients and healthy individuals as accu-
rately as possible, with diagnostic tests, which are evaluation methods based on laboratory techniques,
clinical observations or original equipment measurements, used to identify a disease. Receiver operating
characteristic (ROC) curve is a statistical method used to examine the actual effectiveness of a diagnostic
test or a biomarker in a comprehensive and reliable way.™2 For the continuous diagnostic test results, sen-
sitivity and specificity are being computed for all possible cut-off values which discriminate the subjects
as diseaseoL and non-diseased. The ROC curve shows the arrangement between sensitivity and the 1-
specificity.”

Let xq, x5, ..., X, and y;,v,, ...,y denote the test results of n subjects belonging to random sample
from diseased population and m subjects belonging to random sample from non-diseased population;
Fx(.) and Gy(.) denote the cumulative distribution functions of the two independent random variables X
and Y from the diseased and non-diseased populations respectively. For a given cut-off point c, the test
result is positive if it is greater than c. So, the theoretical ROC curve can be defined as a plot of [1 - Gy (c),
1 - Fx(c)]. Let u be a possible false positive rate (FPR) corresponding to a cut-off point for positivity,

FPR=P(Y>c¢)=1—-Gy(c)=u. Q)
Then one can write,
Gy(c)=1—-u (2)
and
c=G(1-uw (3)

Hence, sensitivity [true positive rate (TPR)] can be given as TPR = P(X > ¢) = 1 — Fx(c). So, ROC
curve can be given as in equation-4.

ROC(u) = 1 — Fy[Gy*(1 — ul. (4)

Also assume that all observations in the diseased and non-diseased samples are mutually independent
and empirical distribution function related to diseased sample and quantile function related to non-diseased

sample are defines as Fy(.) and Gy_l(.), respectively. When there is no knowledge about the underlying
distributions of both samples and so Fx(.) and Gy, (.) have completely unknown structures functions, plug-
ging the empirical counterparts into the equation-1, yields a non-parametric ROC curve estimation method,
namely empirical ROC curve estimation.>® Although it is robust and represents data accurately, especially
for small sample sizes it has a problem of variability and as it is a step function there can be different Food
Programs Reporting Systems for a TPR value, and vice versa. Besides, the estimated ROC curve being in a
jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve.”8 Another
approach is the parametric ROC curve estimation which assumes that the Fx(.) and G, (.) have a known
structure and which computes the ROC curve based on the estimates of these distribution functions. The
most prevalent choice for these functions is the cumulative distribution function of a standard normal distri-
bution, which gives the binormal ROC curve as given in equation-5, where a = (uy — uy)/oyx and g =
oy/ox.* In equation-5, o and B are estimated by using sample estimates of population means and standard
deviations of diseased and healthy populations.

ROC(w) = ®[a + D~ (w)] (5)

But parametric ROC curves have some distributional assumptions. Several methods have been explored
to estimate a ROC curve more precisely. These include using kernel estimates of Fyx(.) and Gy(.) in equa-

tion-4.* Let f(.) and g(.) be the probability density functions of random variables X and Y from the dis-
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eased and non-diseased populations, and f(.) and gG(.) are their kernel estimates, respectively. One can
write,

fo) = oS ka (52) 6)
and
IO) = o Tir e (52 ™

where hg and h,, are the bandwidths, k, and k,, are the kernel functions for diseased and non-diseased popu-
lations. Zou et al. suggested estimating the points on the ROC curve by using the integral of kernel esti-
mates.? By taking the integrals of f(x) and g(y) to the right of threshold one can get £ (x) and G (y). Plug-
ging these estimates in equation-4, new ROC curve estimation has been obtained.

Rufibach has proposed to use log-concave density estimates and also kernel smoothed version of the
log-concave probability density function, instead of kernel function, which can be used for asymmetric and
unimodal densities.? The density function f(.) is called log-concave if it is in the form f(x) = exp @(x)
for some concave function ¢: R — [—, «]. For a sample of independent and identically distributed random
variables X, ..., X,, from f(x), the density estimate was calculated by maximizing the log-likelihood func-
tion

@) =n"" L 9(X) (8)

over all functions ¢ that are concave and produce a probability density.** Rufibach defined smooth ROC
curve estimator by computing log-concave distribution function estimates of Fy(.) and Gy (.) both for dis-
eased and non-diseased samples, and then plugging these estimates in equation-4.*

In the present paper, we aimed to compare the performances of different ROC curve estimation meth-
ods; including estimators derived from kernel estimators including different kernel functions, estimators de-
rived from log-concave density estimates and fully parametric binormal method, for the diagnostic test re-
sults coming from different distributions with different sample sizes. Also to investigate the impact of differ-
ent kernel functions on the performance of a ROC curve estimation, we compared four different kernel func-
tions.

I MATERIAL AND METHODS

We performed a simulation study to compare the performances of different methods for different scenarios
given in Table 1. Scenario-1 serves as a benchmark for comparing other estimators to the binormal model,
which both the biomarker values of both non-diseased and diseased populations are symmetric and normal.
It has been customary to assume that the biomarker values for the non-diseased population may be normal
but diseased population to be non-normal and right-skewed in diagnostic studies. Scenario-2 is used to simu-
late data for this situation, where the biomarker values of non-diseased group is normal, but the diseased
group is non-normal and skewed. Scenario-3 is used to evaluate the performance of ROC curve estimators,
in situation both distributions are right-skewed, where data generated from gamma distribution. Scenario-4 is
used in situation both distributions are highly right-skewed where data generated from exponential distribu-
tion. Scenario-5 is used to for symmetric but non-normal distributions, where data generated from lognormal
distribution. Scenarios have been selected similar with the related studies in the literature, to allow the results
to be analogous. 1241
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TABLE 1: Scenarios used in the simulation study.

Scenario Diseased Non-diseased n-m
1 N(1,1) N(0,1)
20-20
2 Gamma(2,1) N(2,1) 5050
3 Gamma(4,1.5) Gamma(2,1) 100-100
4 Exponential(1 = 1/4.6) Exponential(A = 1/2.5) 200-200
5 Lognormal(2,1) Lognormal(0,1)

We compared seven methods which are fully parametric binormal method, log-concave and smooth log-
concave methods proposed by Rufibach, and four ROC curve estimation method based on kernel estimation
proposed by Zou.22 In fully parametric binormal model, we estimated « and g in equation-5 directly from
the mean and variance of the underlying distributions. For kernel based ROC curve estimators, we used four
different kernel functions; namely Gaussian, Epanechnikov, rectangular and triangular kernel. The method of
Sheather and Jones was used for bandwidth selection.’® As all the kernels are symmetrical, first of all we
normalized the data with quantile normalization as suggested by Robin et al.X* To ensure standardization, we
performed normalization for all methods.

We computed ROC (u) values for u; grid points, i = 1,2, ..., ng,4.. We compared the results using av-
erage square error (ASE), a generally used index for evaluating performance of an ROC curve estimator
ROC (w), for the true ROC curve ROC (u). ASE has been defined as in equation-9.221442

ASE = 3,97 (ROT (u) ~ROC(1))?

©)

Ngrid

In the simulation study, we took n,,;4,=500 and the number of repetition was taken as r=1000. R 4.0.4

software used for the simulations. pPROC package was used for the ROC curve estimation methods except
the binormal method.

I RESULTS

The mean, standard deviation and standard error of the ASE values for each simulation scenarios described
in Table 1 are given. The results are presented in Table 2 for Scenario-1, Table 3 for Scenario-2, Table 4 for
Scenario-3, Table 5 for Scenario-4 and Table 6 for Scenario-5.
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TABLE 2: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased
population are X~N (1, 1) and from the non-diseased population are Y~N (0, 1).

Method n=20 n=50 n=100 n=200
Mean 0.00850 0.00345 0.00168 0.00081
Full parametric binormal SD 0.01024 0.00440 0.00209 0.00108
SEM 0.00032 0.00014 0.00007 0.00003
Mean 0.08194 0.08003 0.07851 0.07867
Based on kernel estimate-
) SD 0.02628 0.02020 0.01846 0.01654
Gaussian kernel
SEM 0.00083 0.00064 0.00058 0.00052
Mean 0.08189 0.08002 0.07850 0.07867
Based on kernel estimate-
. SD 0.02619 0.02016 0.01845 0.01653
Epanechnikov kernel
SEM 0.00083 0.00064 0.00058 0.00052
Mean 0.08188 0.08001 0.07850 0.07867
Based on kernel estimate-
SD 0.02616 0.02015 0.01844 0.01652
Rectangular kernel
SEM 0.00083 0.00064 0.00058 0.00052
Mean 0.08191 0.08002 0.07850 0.07867
Based on kernel estimate-
) SD 0.02622 0.02017 0.01845 0.01653
Triangular kernel
SEM 0.00083 0.00064 0.00058 0.00052
Mean 0.08772 0.08360 0.08229 0.08024
Based on log-concave density estimate SD 0.04896 0.03068 0.02178 0.01438
SEM 0.00155 0.00097 0.00069 0.00045
Mean 0.08596 0.08284 0.08188 0.08003
Based on smooth log-concave sD 0.04743 0.03013 0.02154 0.01429
density estimate
SEM 0.00150 0.00095 0.00068 0.00045

SD: Standard deviation; SEM: standard error of mean.
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TABLE 3: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased
population are X~Gamma(2, 1) and from the non-diseased population are and Y ~N (2, 1).

Method n=20 n=50 n=100 n=200
Mean 0.01420 0.00807 0.00642 0.00542
Full parametric binormal SD 0.01469 0.00739 0.00521 0.00349
SEM 0.00046 0.00023 0.00016 0.00011
Mean 0.00989 0.00939 0.00884 0.00844
Based on kernel estimate-
) SD 0.00694 0.00555 0.00475 0.00434
Gaussian kernel
SEM 0.00022 0.00018 0.00015 0.00014
Mean 0.00984 0.00937 0.00883 0.00844
Based on kernel estimate-
. SD 0.00692 0.00554 0.00474 0.00434
Epanechnikov kernel
SEM 0.00022 0.00018 0.00015 0.00014
Mean 0.00983 0.00937 0.00883 0.00844
Based on kernel estimate-
SD 0.00692 0.00554 0.00474 0.00434
Rectangular kernel
SEM 0.00022 0.00018 0.00015 0.00014
Mean 0.00985 0.00938 0.00883 0.00844
Based on kernel estimate-
) SD 0.00693 0.00554 0.00474 0.00434
Triangular kernel
SEM 0.00022 0.00018 0.00015 0.00014
Mean 0.01858 0.01153 0.00969 0.00824
Based on log-concave density estimate SD 0.01731 0.00950 0.00661 0.00427
SEM 0.00055 0.00030 0.00021 0.00014
Mean 0.01708 0.01095 0.00938 0.00808
Based on smooth log-concave sD 001641 0.00923 0.00649 0.00422
density estimate
SEM 0.00052 0.00029 0.00021 0.00013

SD: Standard deviation; SEM: Standard error of mean.
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TABLE 4: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased
population are X~Gamma(4,1.5) and from the non-diseased population are and Y ~Gamma(2, 1).

Method n=20 n=50 n=100 n=200
Mean 0.01555 0.00738 0.00484 0.00328
Full parametric binormal SD 0.01736 0.00725 0.00425 0.00230
SEM 0.00055 0.00023 0.00013 0.00007
Mean 0.03495 0.03337 0.03337 0.03223
Based on kernel estimate-
) SD 0.01662 0.01214 0.01214 0.01113
Gaussian kernel
SEM 0.00053 0.00038 0.00038 0.00035
Mean 0.03490 0.03276 0.03335 0.03222
Based on kernel estimate-
. SD 0.01661 0.01349 0.01214 0.01113
Epanechnikov kernel
SEM 0.00053 0.00043 0.00038 0.00035
Mean 0.03489 0.03276 0.03335 0.03222
Based on kernel estimate-
SD 0.01657 0.01347 0.01213 0.01112
Rectangular kernel
SEM 0.00052 0.00043 0.00038 0.00035
Mean 0.03492 0.03277 0.03336 0.03222
Based on kernel estimate-
) SD 0.01659 0.01349 0.01213 0.01113
Triangular kernel
SEM 0.00052 0.00043 0.00038 0.00035
Mean 0.04599 0.03760 0.03474 0.03382
Based on log-concave density estimate SD 0.03557 0.02227 0.01577 0.01110
SEM 0.00112 0.00070 0.00050 0.00035
Mean 0.04528 0.03746 0.03471 0.03382
Based on smooth log-concave
density estimate SD 0.03430 0.02185 0.01559 0.01102
SEM 0.00108 0.00069 0.00049 0.00035

SD: Standard deviation; SEM: Standard error of mean.
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TABLE 5: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased
population are X~Exponential (A = 1/4.6) and from the non-diseased population are and Y ~Exponential(1 = 1/2.5).

Method n=20 n=50 n=100 n=200
Mean 0.05467 0.04227 0.03660 0.03252
Full parametric binormal SD 0.02878 0.01794 0.01151 0.00807
SEM 0.00091 0.00057 0.00036 0.00026
Mean 0.02747 0.02688 0.02614 0.02594
Based on kernel estimate-
) SD 0.01408 0.01190 0.00987 0.00926
Gaussian kernel
SEM 0.00045 0.00038 0.00031 0.00029
Mean 0.02743 0.02686 0.02613 0.02594
Based on kernel estimate-
) SD 0.01404 0.01188 0.00986 0.00926
Epanechnikov kernel
SEM 0.00044 0.00038 0.00031 0.00029
Mean 0.02742 0.02686 0.02613 0.02594
Based on kernel estimate-
SD 0.01402 0.01188 0.00986 0.00926
Rectangular kernel
SEM 0.00044 0.00038 0.00031 0.00029
Mean 0.02744 0.02687 0.02613 0.02594
Based on kernel estimate-
) SD 0.01405 0.01189 0.00987 0.00926
Triangular kernel
SEM 0.00044 0.00038 0.00031 0.00029
Mean 0.03612 0.03073 0.02901 0.02788
Based on log-concave density estimate SD 0.03014 0.01965 0.01340 0.00908
SEM 0.00095 0.00062 0.00042 0.00029
Mean 0.03467 0.03013 0.02870 0.02771
Based on smooth log-concave
density estimate SD 0.02910 0.01930 0.01327 0.00903
SEM 0.00092 0.00061 0.00042 0.00029

SD: Standard deviation; SEM: Standard error of mean.
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TABLE 6: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased
population are X~Lognormal(2,1) and from the non-diseased population are and Y ~Lognormal(0,1).

Method n=20 n=50 n=100 n=200
Mean 0.00964 0.00452 0.00255 0.00150
Full parametric binormal SD 0.01119 0.00526 0.00281 0.00005
SEM 0.00035 0.00017 0.00009 0.00092
Mean 0.10381 0.10501 0.10467 0.10493
Based on kernel estimate-
) SD 0.02735 0.02341 0.02037 0.01858
Gaussian kernel
SEM 0.00086 0.00074 0.00064 0.00059
Mean 0.10377 0.10500 0.10467 0.10493
Based on kernel estimate-
. SD 0.02727 0.02337 0.02035 0.01857
Epanechnikov kernel
SEM 0.00086 0.00074 0.00064 0.00059
Mean 0.10377 0.10499 0.10467 0.10493
Based on kernel estimate-
SD 0.02723 0.02335 0.02034 0.01857
Rectangular kernel
SEM 0.00086 0.00074 0.00064 0.00059
Mean 0.10378 0.10500 0.10467 0.10493
Based on kernel estimate-
) SD 0.02730 0.02338 0.02035 0.01858
Triangular kernel
SEM 0.00086 0.00074 0.00064 0.00059
Mean 0.11623 0.11092 0.10792 0.10728
Based on log-concave density estimate SD 0.05288 0.03404 0.02335 0.01730
SEM 0.00167 0.00108 0.00074 0.00055
Mean 0.11395 0.10992 0.107915 0.10699
Based on smooth log-concave sD 005109 0.03342 002334655 0.01720
density estimate
SEM 0.00162 0.00106 0.000738283 0.00054

SD: Standard deviation; SEM: Standard error of mean.

I DISCUSSION

Statistical modeling of ROC curves is a vast topic and offers several future research lines. In the present
study, we compared the performances of recently proposed several ROC curve estimation methods, using
different techniques to smooth the ROC curve, in different simulation scenarios.

As expected, the ROC estimators from fully parametric binormal model yielded the best performance
when the data follow normal distribution in both groups. It is observed that the kernel based estimates were
better than the log-concave density based estimates when the data follow normal distribution in both groups.
In kernel based ROC curve estimation methods, although the difference was not notable, Epanechnikov and
rectangular kernel gave the best performances for Scenario-1. The ROC curve estimation method based on
the smooth log-concave density estimate was better than the log-concave density estimate when the data fol-
low normal distribution in both groups.
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When the distribution of the biomarker values of non-diseased group is normal, but the diseased groups
is non-normal and skewed (Scenario-2), the performance of the full parametric binormal ROC curve estima-
tion decreased dramatically. However, the ASE values were still smaller that the that of the ROC curve esti-
mation methods based on the log-concave density estimate and smooth log-concave density estimate. Again,
smooth version of the log-concave density estimate yielded better results than the log-concave density esti-
mate. On the other hand, methods based on kernel estimates gave best results compared to other methods.
The performances of kernel based methods for this scenario were similar to the results of full parametric bi-
normal method in case of Scenario-1. Especially in small samples, Epanechnikov and rectangular kernel
methods yielded better performance than other kernel methods; but it has been seen that this difference dis-
appeared as the sample size increased.

When the distributions of both diseased and non-diseased population are moderately right-skewed,
(both generated from gamma distribution, i.e. Scenario-3), it was not surprising that the full parametric bi-
normal model gave slightly better results than the other methods, since the skewness of the data was not very
high level. On the other hand, for small sample size, full parametric binormal model performed worse than it
did in Scenario-2, where diseased population is right-skewed and the non-diseased population follow normal
distribution. But it gave better performance than that it did in Scenario-2 for moderate and large sample
sizes. The ROC estimation methods based on kernel estimation gave slightly worse performances than the
full parametric binormal method for Scenario-3. Estimates based on log-concave and smooth log-concave
density estimates yielded the worse results. Kernel and log-concave density estimate based ROC estimation
methods could not outperform the binormal method although the biomarker distributions were right-skewed
in diseased and non-diseased populations.

For the situation where both distributions are highly right-skewed and data generated from exponential
distribution (Scenario-4), the ROC estimation methods based on kernel and log-concave density estimates,
finally outperformed the performance of fully parametric binormal ROC method. The difference between the
binormal ROC method and other methods decreased as the sample size increased. Kernel methods also
yielded better performances that that of log-concave density based methods. Especially in small and moder-
ate samples, rectangular and Epanechnikov kernel methods yielded better performance than the other kernel
methods; but this difference disappeared in big sample sizes. Again, smooth log-concave density estimate
gave better results that the log-concave density estimate based method.

For the Scenario-5 where data generated from lognormal distribution, the full parametric binormal ROC
estimation method gave the best results according to the other methods. This can be the result of that the dis-
tribution of both groups were symmetric. The results for the full parametric binormal model in this situation
was similar to its performance in Scenario-1. It was surprising that the ROC estimation methods based on
kernel or log-concave density gave their worst results among all the scenarios. It is seen that the perform-
ances of the methods except the binormal model did not affected much from the increase in sample size.

It was not surprising that all the methods gave better results as the sample size increased for all scenar-
ios. However, the impact of the sample size was more pronounced for the full parametric binormal method
and the methods based on log-concave density and smooth log-concave density estimates. The impact of the
sample size was smaller when the data of both were highly right-skewed.

I CONCLUSION

Full parametric binormal ROC curve estimation method gave its best performance in two situations, where
the biomarker values of both diseased and non-diseased populations follow normal distribution and where
the biomarker values of two populations follow lognormal distribution, differing greatly from the other
methods. The results of the present study showed that the binormal method performed well in symmetric but
non-normal distribution, too. The ROC curve estimation methods based on kernel estimates gave their best
performances when the biomarker values of non-diseased group are normal but the biomarker values of the
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diseased group are right-skewed, with a notable difference from other methods. The performances of the
other methods examined in the study did not exceed the performance of the binormal method in moderately
skewed data, but surpassed it in highly skewed data.
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