Çocuklarda Propofol ve Remifentanil İle Total İntravenöz Anestezi Uygulamanın Sevofluran ve Azot Protokots Anestezisi İle Karşılaştırılması

COMPARISON OF TOTAL INTRAVENOUS ANAESTHESIA USING REMIFENTANIL AND PROPOFOL WITH SEVOFLURANE AND NITROUS OXIDE ANAESTHESIA IN CHILDREN

Dr. Ahmet SOLAK,a Dr. Aybars TAVLAN,b Dr. Semra TUNCER,b Dr. Alper YOSUNKAYA,b Dr. Ruhije REİSLİ,b Dr. Selmin ÖKESLİb

Özel Belediye Hastanesi,
Anestizioloji ve Reanimasyon AD, Selçuk Üniversitesi Meram Tıp Fakültesi, KONYA

Özet
Amaç: Çalışmamızda çocuklarda kısa süreli girişimleerde, total intravenöz anestezi (TIVA) ile inhalasyon anestezisinin i-dame ve derlemne üzerine olan etkilerini karşılaştırmayı amaçladık.

Gereç ve Yöntemler: Etik kurul izni alınarak ASA I sınıfında 4-12 yaşları arasında 50 olgu çalışmaya alındı. Anestezi indüksiyonunda intravenöz 0.01 mg kg⁻¹ atropini takiben 1 μg kg⁻¹ remifentanil, 2 mg kg⁻¹ propofol ve 0.05 mg kg⁻¹ sütatüryum verildi. Olgu lar rasgele Grup I (n=25) (TIVA), Grup II (n=25) (İnhalasyon) olarak ayrıldı. Grup I’de anestezi idamesi 3 mg kg⁻¹ h⁻¹ propofol, 0.5 μg kg⁻¹ dak⁻¹ remifentanil ile sağlandı. Grup II’de anestezi idamesinde %2-5 sevofluran+50 N₂O+50 O₂ kullanıldı. Cerrahi öncesi 10 mg kg⁻¹ paracetamol suppozituar rektal olarak uygulandi. Operasyon süresince kan basıncı, kalp atım hızı (KAH) monitöre edildi. Derlemenin değerlendirilmesinde Aldret skorlaması kullanıldı. Ağrı POPS, ajitasyon ise 3 punto skorlama ile 10. ve 30. dakikada değerlendirildi.

Bulgular: Operasyon süresince KAH grup II’de yükseldi (p=0.001). Ektübasyon, derlemne zamanı, Aldret skorunun 8 ve üzerinde olma zamanı Grup II’de kayşıldı (p=0.004). Postoperatif ajitasyon ve ağrı skorları 10. dakika benzer, 30. dakikada grup II’de yükseldi (p=0.040). Postoperatif bulansı kısma insidansi Grup II’de yükseldi (p=0.010).

Sonuç: Pediyatrik yaş grubunlarında, kısa süreli operasyonlardaki TIVA’nın, inhalasyon anestezisine değeri bir alternatif olduğu kanısına varıldı.

Anahtar Kelimeler: Total intravenöz anestezi, remifentanil, sevofluran, pediyatrik anestezi

Türkiye Klinikleri J Anest Reanim 2004, 2:130-136

Geliş Tarihi/Received: 27.07.2004 Kabul Tarihi/Accepted: 12.01.2005

Yazışma Adresi/Correspondence: Dr. Aybars TAVLAN
Selçuk Üniversitesi Meram Tıp Fakültesi
Anestizioloji ve Reanimasyon AD, 42080, KONYA
atavlan@yahoo.com

Copyright © 2004 by Türkiye Klinikleri

Orijinal Araştırma / Original Research

Pediatriyak yaş grubundaki hastalarda anestezi indüksiyonu ve idamesinde sükklka inhalasyon anestezikleri kullanılır. Bunun nedeni, operasyon öncesi damar yolu açmadaki güçlükler ve inhalasyon anesteziklerinin yükse
dozlarda verildiğinde, azaltılarak veya kesilerek daha kolay kontrol edilebilirleridir.1

Ancak günümüzde kültülatif etkisi önlayan yeni intravenöz anestezik ve analjeziklerin uygulamaya girmesi, bu ajanların farmakokinetiklerinin ve farmakodinamilerinin iyi tanımlanması, intravenöz kanalosyonu ağırlığa yapmayı olanak sağlayan topikal lokal anesteziklerin geliştirilmesi, pediatrik anestezide total intravenöz anesteziler (TIVA) uygulamalarının daha sık kullanılır hale getirilmiştir.2

İdeal intravenöz anestezik arayışının son ürünlerinden olan remifentanil, çok kısa etkili yeni bir μ opioid reseptör agonisti olup, kan ve doku esterazları tarafından hızla hidrolize edilir.2 Klirensinin diğer opioidlere göre çok hızlı olmasıyla da, anesteziden kurtulma daha hızlı gerçekleşir.3 Remifentanil, erişkinlerde hızlı indüksiyon ve uyarma sağladığı için, TIVA da yaygın olarak kullanılır. Buna karşın, çocuklarda TIVA ile ilgili klinik tecrübeler çok fazla değildir.4 Çalışmamızda, çocuklarda kısa süreli kulak burun boğazı (KBB) cerrahisi girişimlerinde, remifentanil ve propofol kullanılarak uygulanan TIVA ile sevofluran ve azoprotoksit kullanılarak yapılan inhalasyon anestezisinin hemodinami ve derlememe üzerine olan etkilerinin kararlaştırılması amaçlanıyor.

Gercek ve Yenmeler

Bu çalışma, fakülte etik kurul onayı ve çocukların ailelerindenizin alın misdıktan sonra, KBB servisinde tonsillektomi ve/veya adenoidektomi, adenoidektomi ve/veya tüm takılması, tonsillektomi ve/veya tüm takılması planlanan, yaşları 4-12 arası ve deşişen ASA I grubunda 50 olgu üzerinde çalışılmıştır. Sedatif ilaç kullanlan, santral sinir sistemi hastalığı bulunan, kullanıcılara ilacları karşısında allerji hikayesi olan olgular çalışma dışı tutuldu.

Çalışmaya dahil edilen olgular, randomize şekilde Grup I (n=25): TIVA ve Grup II (n=25): inhalasyon olarak ayrıldı. Operasyonдан 60 dakika önce tüm olguların her iki el sirti ve antekubital bölgelerine EMLA (Emla® Astra Zeneca) krem uygulanarak demografik (yaş, boy, cinsiyet, kilo) verileri kaydedildi. Premedikasyon amacyyla tüm olgulara operasyonda 45 dakika önce 0.5 mg kg⁻¹ midazolam 2.5 ml meyva suyu içinde oral yoldan verildi. Operasyon masasında intravenöz (iv) damar yolu açıldı ve 1/3 serum fizyolojik-dekstroz solüsyonu 6 ml kg⁻¹ h basıldı. Kalp atm hızı (KAH), sistolik arter basıncı (SAB), diastolik arter basıncı (DAB), oksijen saturasyonu (SpO₂) monitorize (Datex Engstrom CardioCap II CH-RS Finlandiya) edildi. Kontrol değerleri kaydedildi.

Grup I ve II’de anestezî induksiyonu iv yoldan 0.01 mg kg⁻¹ atropin uygulaması takiben, 30 saniyelik infüzyon hızıyla 1 μg kg⁻¹ remifentanil ve 2 mg kg⁻¹ propofol verilerek sağlandı. Her iki grupta endotrakeal entubasyon aynı anestezist tarafından 0.05 mg kg⁻¹ sisatrakuryum (Nimbex® Glaxo Wellcome) iv yoldan verildikten 2 dakika sonra yapıldı.

Anestezî idamesi Grup I’de 3 mg kg⁻¹ h bolus (Life Care Pump Model 4-USA) ve 0.5 μg kg⁻¹ dahlı remifentanil (Perfusor Compac-Braun-Almanya) infüzyonu ile, Grup II’de %2.5 sevofluran+ %50 N₂O + %50 O₂ ile sağlandı. Olgulara ventilasyon end tidal CO₂ parsiyel basıncı (PETCO₂) 35-40 mmHg (Criticare systems İNCPOET-II, USA) olanak çekilde normokapnik olarak süründü. Her iki grupta KAH ve SAB, DAB değerleri; induksiyon öncesi (kontrol), indüksiyon sonrası, insizyondan hemen sonra, insizyonun 5. 10. 20. dakikalardında ve operasyon bitiminde kaydedildi. Cerrahi başlamadan önce 10 mg kg⁻¹ parasetamol suppozituar (Paraxon S® Sanofi) rektal yoldan postoperatif analjezi amacıyla uygulandı.

Operasyon sırasında olguların hareket etmesi, terlemesi, KAH ve SAB’nın kontrol değerinin %30’u üzerinde artması yüzeyel anestezî bulguları olarak kabul edildi. Yüzeyel anestezî durumunda Grup I’de 0.5 μg kg⁻¹ ilave remifentanilin bolus olarak uygulanması, Grup II’de 3 solukta bir insizyonu ve operasyonu konsantrasyonunun %1 artırılması (maximum %5) planlanıdı. KAH’nın 70 atm/dk’nın altında düşmesi ve SAB’nın kontrol değerinin %30 altına olması derin anestezî kabul edildi. Derin anestezî durumunda Grup I’də remifentanil infüzyonunun, Grup II’de ise sevofluran konsantrasyonunun yari yarısı azaltılmalıdır.
ması, bradikardinin 0.01 mg kg\(^{-1}\) iv dozunda atropin, hipotansiyon ise hızlı sıvı replasmanıyla tedavi planlandı.

Her iki gruba da anestezikler cerrahi prosedürün tamamlanmasıyla kesildi. Hastalar dekşurarize edilmeldiler. Yeterli spontan solunum oluncay kadar (solunum hızı > 8/dakika, PETCO\(_2\) < 50 mmHg) %100 O\(_2\) ile manuel olarak ventil edildiler.

Cerrahi süresi (cilts insizyonundan cerrahinin bitimine kadar geçen süre), anestezia süresi (anestez-zi indüksiyonunun başlangıçından cerrahi bitimine kadar geçen süre), ektübasyon zamanı (anestezikler kesildikten sonra yutkunma refleksinin geri dönmesi, vital fonksiyonların stabil olması ve-spotan solunum hareketlerinin düzenli olması) kadar geçen zaman) ve derlenme zamanı (anestezikler kesildikten sonra emirleri yerine getirme ve anamlı hareketleri yapmaya başladığı zaman) olarak kaydedildi.

Postoperatif dönemde Aldret skorunun (Tablo 1) 8 ve/veya üzerinde olma zamanı not edildi.\(^5\) Ajitasyonun kontrolü Davis ve ark. kullandığı 3 puanlı skorlama sistemi ile (Tablo 2) postoperatif 10. ve 30. dakikada değerlendirildi.\(^6\) Ajitasyon skoru 3 ve üzerinde olan olgulara ilave olarak parasetamol suppozituar 10 mg kg\(^{-1}\) dozunda uygulandı. Postoperatif ağrının değerlendirilmesinde POPS (postoperative objecti ve pain scale) skorlaması kullanıldı (Tablo 3).\(^7\) Ölçümler postoperatif 10. ve 30. daki kada yapıldı. POPS skoru 2 ve üzerinde olan olgular kaydedildi.

Derlenme odasında tüm hastalar en az bir saat süreyle çalışmadan habersiz bir anestezist tarafından hipertansiyon, hipotansiyon, bulanti-kusma, bradikardi, taşkardi, titreme ve solunum depresyonu gibi olası komplikasyonlar yönünden takip edildi.

Çalışmadan elde edilen parametrik veriler gruplar arası Student’s t testi, grup içerisinde ise tekrarlı ölçümlede varyans analizi testi ile değerlendirildi. Kategorik veri verilerde chi-square (\(\chi^2\)) testi kullanıldı. Anlamlılık seviyesi p<0.05 olarak kabul edildi.

<table>
<thead>
<tr>
<th>Tablo 1. Aldret derlenme skorlaması.(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonksiyon</td>
</tr>
<tr>
<td>Aktivite</td>
</tr>
<tr>
<td>- Bütün ekstremitelerini hareket ettirebilibyör</td>
</tr>
<tr>
<td>- İlk ekstremite hareketli</td>
</tr>
<tr>
<td>- Ekstremite hareketi yok</td>
</tr>
<tr>
<td>Solunum</td>
</tr>
<tr>
<td>- Solunum derinliği yeterli, öksürüebilitör</td>
</tr>
<tr>
<td>- Solunum hareketleri yüzeyel, dispneik</td>
</tr>
<tr>
<td>- Apne</td>
</tr>
<tr>
<td>Artefelye kan basınıç</td>
</tr>
<tr>
<td>- Normal değerlerinden sapma (\pm)%10 ya da daha az</td>
</tr>
<tr>
<td>- Normal değerlerinden sapma (\pm)%11-20</td>
</tr>
<tr>
<td>- Normal değerlerinden sapma (\pm)%21 ya da daha fazla</td>
</tr>
<tr>
<td>Bileş durumu</td>
</tr>
<tr>
<td>- Tamamen açık</td>
</tr>
<tr>
<td>- Verbal uyarlara cevap veriyör</td>
</tr>
<tr>
<td>- Verbal uyarlara reaksiyon yok</td>
</tr>
<tr>
<td>Cilt rengi</td>
</tr>
<tr>
<td>- Normal</td>
</tr>
<tr>
<td>- Soluk, gri, ikterik</td>
</tr>
<tr>
<td>- Siyanotik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablo 2. Davis’in ajitasyon skorlama skalası.(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uyku ve sakın</td>
</tr>
<tr>
<td>Uyku ve sakın</td>
</tr>
<tr>
<td>Orta derecede ajite, ağrılı fakat sakınlaştırebilibyör</td>
</tr>
<tr>
<td>Ağrılı, ajite ve kontrol edilemeyi</td>
</tr>
</tbody>
</table>

Bulgular

Olguların demografik verileri, anestezii ve operasyon sürelerini karşılaştırdığında gruplar arasında fark istatistiksel olarak anlamazdı (p>0.05) (Tablo 4).

Sistolik arter basınç ölçümünün gruplar arası karşılaştırılmasında istatistiksel anlamlı bir fark yoktu (p>0.05). Grup I ve II’de olguların kendi içinde SAB ölçümünün karşılaştırmasında ise indüksiyon sonrası ölçüm değerlerinde istatistikti olarak anlamli azalma gözlandi (p=0.001) (Grafik 1).
Diastolik arter basınç ölçümlerinin gruplar arası karşılaştırılmasında anestezi sonu ölçümünde grup II’de istatistiksel açıdan anlamlı azalma gözlemdi (p=0.010). DAB ölçümleri açısından gruplar kendi içerisinde karşılaştırıldığında indüksiyon sonu ölçümlerinde istatistiksel açıdan anlamlı azalma gözlemdi (p=0.001) (Grafik 2).

KAH açısından grup içi karşılaştırıldığunda Grup I’de istatistiksel açıdan anlamlı fark yoktu (p>0.05). Grup II’deki olgularda ise insizyon sonu tüm ölçümlerde anlamlı fark saptandı (p=0.001). KAH’nın gruplar arası karşılaştırılmasında, insizyon sonu ölçümlerinde indüksiyon itibaren başlayan ve anestezi sonu ölçümden kadar devam eden anlamlı fark vardı (p=0.001) (Grafik 3). Ölçülen oksijen saturasyonu değerleri gruplar arasında farklılık göstermemiştir (p>0.05).

Grup II’deki olguların ekstübasyon (p=0.001) ve derlenme (p=0.004) süreleri Grup I’e göre daha kısa bulundu. Postoperatif dönemde POSS ve ajitasyon skorlamaları değerlendirildiğinde 10. dakika skorları Grup I ve II de benzerken (p>0.05), Grup II’de postoperatif 30. dakika değerleri Grup I’e göre daha yüksektir bulundu (p=0.040). Postoperatif 30.dakikada Grup I’de 12 hastada (%48), Grup II’de 19 hastada (%76) ajitasyon skoru 3 ve yukarısır, POSS skoru 2 ve yukarısır olarak tespit edildi (p=0.040) (Tablo 5).

Postoperatif komplikasyonların karşılaştırılmasında bulantu kusma dışında gruplar arası istatistiksel fark anlamlı değişildi (p>0.05) (Tablo 6).

Tartışma

Kısa süreli cerrahi girişimlerde hangi anestezi yöntem seçilirse seçilisin, uygulamada cerrahi stresin yeterli şekilde baskılanması, hemodinamik stabilite, çabuk derlenme ve postoperatif ıstenmeyen yan etkileri sebebi olmaması esas alınır.6 Pediatrik anestezide kısa süreli operasyonlarda TIVA’ya yönelik ilgi, propofolün

Tablo 3. POPS (postoperative objective pain scala) skorlaması.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kan basıncı</td>
<td>%10 Preoperatif ↓</td>
<td>%10-20 Preoperatif ↓</td>
<td>%20-30 Preoperatif ↓</td>
</tr>
<tr>
<td>Ağlama</td>
<td>Ağlamıyor</td>
<td>Ağlıyor ama sahiplenilebiliriyor</td>
<td>Ağlıyor ve sahiplenilemeyen</td>
</tr>
<tr>
<td>Hareket</td>
<td>Yoku</td>
<td>Huzursuz</td>
<td>Kivranyor</td>
</tr>
<tr>
<td>Anksiyete</td>
<td>Sakin uyuyor</td>
<td>Orta</td>
<td>Histerik</td>
</tr>
<tr>
<td>Pozisyon</td>
<td>Özel pozisyon yok</td>
<td>Hafif ağrı (lokalize edemiyi)</td>
<td>Orta ağrı, söz ile veya işaretle lokalize edebilir</td>
</tr>
</tbody>
</table>

Tablo 4. Hastaların demografik verileri, anestezi ve operasyon süreleri (Ort±SD)

<table>
<thead>
<tr>
<th></th>
<th>Grup I (n=25)</th>
<th>Grup II (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinsiyet (E/K)</td>
<td>12/13</td>
<td>13/12</td>
</tr>
<tr>
<td>Yaş (yıl)</td>
<td>7.68±2.44</td>
<td>7.00±2.48</td>
</tr>
<tr>
<td>Ağırlık (kg)</td>
<td>27.80±7.51</td>
<td>24.36±7.36</td>
</tr>
<tr>
<td>Boy (cm)</td>
<td>130.24±15.26</td>
<td>122.56±25.98</td>
</tr>
<tr>
<td>Anestezi süresi (dk)</td>
<td>43.6±7.97</td>
<td>39.6±6.60</td>
</tr>
<tr>
<td>Operasyon süresi (dk)</td>
<td>32.8±5.61</td>
<td>32.2±7.78</td>
</tr>
</tbody>
</table>

Grafik 1. Grupların operasyon süresince SAB değerleri.

1=kontrol, 2=indüksiyon sonu, 3=insizyon sonu, 4=insizyondan 5 dak sonra, 5=insizyondan 10 dak sonra, 6=insizyondan 20 dak sonra, 7=anestezi sonu. Veriler ortalama ± SD olarak verilmiştir. # p<0.05; kontrol değere göre grup içi karşılaştırınma
Arter basıncındaki bu düşüş, propofolün periferik vasküler rezistansı düşürücü etkisinden kaynaklanmaktadır. Scher iki ayrı çalışmasında, propofol ile yapılan indüksiyonun sonunda, SAB'da %8 ve %15 oranında düşme olduğunu bildirmiştir. Aynı şekilde Rieglar ve arkadaşları SAB'daki düşüşün %20 oranında olduğunu bildirmişlerdir. Remifentanile bağlı kalp hızı ve kan basıncındaki düşme eğilimi diğer opoidlere benzer. Remifentanil 2 μg kg⁻¹ dozlar kadar, sistemik kan basıncı ve kalp hızı da çok az değişikliğe neden olur. 5 μg kg⁻¹ ve altında dozlarla uyugalarda histamin salınınma yol açmaz ve periferik rezistans üzerinde önemli bir etkiye yol açmıştır.

Anestezi indüksiyonu sonrası gördüğümüz DAB'ndaki düşüş nedenlerinde, SAB'ndaki düşüş nedenleriyle aynı olduğu kanaatindayız. Propofol ile kısa süreli anestezinin indüksiyon ve idamının dönemleridirliği bir çalışmada, Rieglar ve arkadaşları DAB'da %14 oranında düşme olduğu.

Grafik 2. Grupların operasyon süresince DAB değerleri.
1 kontrol, 2 indüksiyon sonu, 3 insizyon sonu, 4 insizyondan 5 dak sonra, 5 insizyondan 10 dak sonra, 6 insizyon dan 20 dak sonra, 7 anestezi sonu.
Veriler ortalaması ± SD olarak verilmiştir.
* p<0.05; Gruplar arası karılarıştırma
p<0.05; Kontrol değere göre grup içi karılarıştırma

1 kontrol, 2 indüksiyon sonu, 3 insizyon sonu, 4 insizyon dan 5 dak sonra, 5 insizyon dan 10 dak sonra, 6 insizyon dan 20 dak sonra, 7 anestezi sonu.
Veriler ortalaması ± SD olarak verilmiştir.
* p<0.05; Gruplar arası karılarıştırma
p<0.05; Kontrol değere göre grup içi karılarıştırma

Tablo 5. Grupların derlenme verileri (Ort±SD).

<table>
<thead>
<tr>
<th>Ölçüm Zamanı</th>
<th>Grup I (n=25)</th>
<th>Grup II (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekstübsiyon zamanı (dk)</td>
<td>5.08±1.04*</td>
<td>1.24±1.01</td>
</tr>
<tr>
<td>Derlenme zamanı (dk)</td>
<td>6.32±1.18*</td>
<td>5.12±1.59</td>
</tr>
<tr>
<td>Aldret 8 ve üzeri (dk)</td>
<td>6.48±1.33*</td>
<td>5.16±1.77</td>
</tr>
<tr>
<td>POCS 10. dak</td>
<td>0.36±0.56</td>
<td>0.4±0.5</td>
</tr>
<tr>
<td>POCS 30. dak</td>
<td>1.48±0.51*</td>
<td>1.76±0.44</td>
</tr>
<tr>
<td>Davis skoru 10. dak</td>
<td>1.04±0.2</td>
<td>1.06±0.0</td>
</tr>
<tr>
<td>Davis skoru 30. dak</td>
<td>2.48±0.51*</td>
<td>2.76±0.44</td>
</tr>
</tbody>
</table>

*Gruplar arası verilerin istatistiksel karılarıştırması (p<0.05)

Tablo 6. Gruplarda gözlenen komplikasyonların dağılımı (n).

<table>
<thead>
<tr>
<th>Komplikasyon</th>
<th>Grup I (n=25)</th>
<th>Grup II (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradikardi</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Taşıkardi</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hipotansiyon</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hipertansiyon</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bulantu kusma</td>
<td>1*</td>
<td>8</td>
</tr>
<tr>
<td>Titreme</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Solunum depresyon</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Gruplar arası verilerin istatistiksel karılarıştırması (p<0.05).
günü belirtilirlerken,13 Schaar yaptığı iki ayrı çalışmada bu oranların %6 ve %8.7 olduğunu bildirmiştir.12 Çalışılmazda SAB ve DAB’inda görülen döşmeler benzer çalışmalarında olduğu gibi tedavi gerektirmemiştir.9,14,15 Her iki grupta da DAB değişiklikleri anestezi sonu yapılan ölçüme kadar benzer şekilde seyretmesine rağmen, anestezi sonu ölçümden inhalaşyon grubunda, TİVA grubuna göre daha düşük seyretmiştir. Bu sonuç azotprotoksitin ve/veya sevofluranın miyokard üzerindeki olumuz etkilerine ve özellikle artan kontrastasyonlarda periferik vasküler tonusun depresesi olmalarına bağlı olabilir.16

Çalışılmazda KAH, TİVA grubunda kontrol ölçümden anestezi sonrası ölçüme kadar anlamlı değişikliğe uğramadı ve stabil seyretti. Inhalaşyon grubundaki olgularda ise insizyon sonrası tüm ölçümlerde kontrol değerlerine göre anlamlı bir yükselme gösterdi. Bu durum, her ne kadar sevofluranın, kalp atım hızı üzerine desfluran ve isoﬂurdanın yaptığı kadar arttırcı etkisini olması da, azotprotoksitin sempatik stimülasyon etkisi ile birlikte kullanılmış olmasıyla bağlı olabileceğini düşündürmektedir.14

Çalışılmazda, hiçbir olguda bradikardiye rastlanmamış olmamız, indüksiyon başlangıcında atropin kullanılmamızı bağlı olabilir.17

Her iki grubun denleme verileri karşılaştırıldığında; denleme zamanı ve ekstübaşyon zamanının inhalaşyon grubunda, TİVA grubuna oranla daha kısa bulunması, sevofluranın düşük kan-gaz erirlik katsayısından dolayı, hızlı indüksiyon ve uyanma sağlayıcı özelliklerinden kaynaklanmaktadır.3,18 Iki grupta da, ekstübaşyon ve denleme zamanlarının bu kadar kısa olması, sevofluran ve azotprotoksitin kanda kötünevriğinin düşük, remifentanil ile propofolin de yarın ömürlerinin kısa olmasına bağlı edildiği düşünüldürmektedir.18

Pediatrik hastalarda postoperatif analjezi amacıyla yenidöında bile etkin ve güvenilir olan parasetamol, en çok tercih edilen ajandır. 10-15 mg kg⁻¹ maksimum 60 mg kg⁻¹ gün doza kullanılabılır. Rektal yolla uygulanabilir olması da, diğer bir avantajdır.19 Birde tüm hastalarımıza cerrahi insizyondan önce, 10 mg kg⁻¹ doza parasetamol suppozituar uyguladık. Postoperatif erken dönemde tüm olgularda ek analjezik ihtiyacı oldu. Bu durum, azotprotoksitin kısa süresinde dolayı postoperatif dönemde analjeziye yeterli katkı olmamasına ve remifentanilin süratle sücütan elime olmasına bağlıydı.3

Grup II’de postoperatif POPS ve ajitasyon skoru değerleri 30. dakikada Grup I’de göre daha yüksek bulundu. Grundman ve ark. postoperatif dönemde ajitasyon insidansını inhalaşyon grubunda %80, TİVA grubunda %44 olarak bulmuşlardır.9

Çalışımazda postoperatif dönemdeki ajitasyon insidansının yüksek olması hızlı uyanma ve yetersiz analjezi ile ilgili olabilir. Bu konuda yapılan benzer çalışmalara sonuçlarının uyumlu olduğu.17,20

Cerrahi tipi, yaş, cinsiyet, anestezik ilaçlar ve premedikasyon postoperatif bulanı,- kusa (POBK)’da etkili olabilecek genel faktörlerdir (21). Adenoidektomi ve tonsilletektomi geçirilen çocuklarda postoperatif dönemde bulanti kusma insidansının %40-70’lere ulaştığı bildiren birçok çalışma mevcuttur.18,21 Komplikasyonuzsız tonsilektomi operasyonlarında görülen kanama miktarı genellikle, hesaplanan kan volümünün %5-10’dür. Bu kayıp mideye direne olur. Mide duvarının gerilmesi ise barsak hareketlerini yavaşılatarak veya direkt kusma merkezini stimüle ederek postoperatif dönemde bulanti kusmaya neden olur.21 Azot protoksi ve halofenli anestezikler, alt özofajal tonusu azaltarak, maske ile ventilasyon sırasında mideye gaz girişi arttırmak ve gastrik motiliteyi azaltmak yoluyla POBK siklığında artışa neden olur.22 Çalışımızdaki bulanti ve kusma insidansının özellikle TİVA grubunda, inhalaşyon grubuna oranla daha düşüktü.20

Çalışımazda inhalaşyon grubunda bir hasta da gözlenen titreme tedaviye gerek kalmadan yaklaşık 5 dakika içinde kendilğinden kayboldu.

TİVA uygulamalarında yüksek dozda opioid analjezik kullanımlarına bağlı ortaya çıkan en ciddi problemlerden birisi de, postoperatif solunum depressiondur. Remifentanilin koşullara duyarlı yaralanma ömrü zaman içinde sabit ve tasarım, diğer opioidlerde infüzyon süresi uzadıkça, eliminasyon yaralanma ömrü uzamaktadır. Remifentanil süre
uzadıkça birikme korkusu olmadan verilebilir. Bu
da hastalarda postoperatif dönemde geç ayılma
riskini azaltır. Çalışmamızda postoperatif solu-
umum depresyonu her iki grupta da görülmemiş.
Remifentanil ile yapılan TIVA’nın balans anestezi-
si ile karşılaştırıldığı bir çalışmada, infüzyyonun
sonlandırılmasından kısa süre sonra etki ortadan
kalktığı için, postoperatif solunum depresyonuna
rastlanmadığı bildirilmiştir.

Sonuç olarak; pediatrik yaş grubunda kısa sü-
reli cerrahi girişimlerde, hemodinamik bilanço ve
derlemeye yönünden, remifentanil-propofol kullan-
lanarak yapılan TIVA’nın, sevofluran-azotprotoksit
kullanılan uygulanan inhalasyon anestezisine
değerli bir alternatif olabileceğini kanısına varıldı.

Teşekkür
Bu çalışmamın istatistiksel değerlendirmesini yapan
Uz. Dr. Fatih Kara’ya teşekkür ederiz.

KAYNAKLAR

1. Esener Z. Bebeklerde Anestez. Anestez Dergisi 1993;1:
 49-54.
2. Glass PSA, Hardman D, Kamiyama Y. Preliminary phar-
 macokinetics and pharmacodynamics of an ultra-short act-
 ing opioid: Remifentanil (GI87084B). Anesth Analg 1993;
 77:1031-40.
3. Glass PSA, Gan TJ, Howell S. A review of the pharma-
 cokinetics and pharmacodynamics of remifentanil. Anesth
 Analg 1999;89 (suppl):7-14.
4. Morton NS. Total intravenous anaesthesia (TIVA) in
 pediatrics: advantages and disadvantages. Paediatric An-
 aesthesia 1998;8:189-94.
5. Aldrete JA, Krunik D. A postanesthetic recovery score.
6. Davis PJ, Todd IC, Mcgowan F, Latta K. Recovery charac-
 teristics of desflurane versus halothane for main-
 tenance of anesthesia in pediatric ambulatory patients.
7. Broadman LM, Rice LJ, Hannallah RS. Testing the validi-
 ty of an objective pain scale for infants and children.
8. Kataria B, Epstein R, Bailey A. A comparison of sevoflu-
 ran to halothane in pediatric surgical patients: result of a
 multicentre internation study. Pediatric Anesthesia 1995;
 6:283-92.
 anaesthesia with propofol and remifentanil in paediatric
 patients: a comparison with a desflurane-nitrous oxide
10. Sebel PS, Lowdon JD. Propofol. A new intravenous anes-
11. Claeyas MA, Gepts E, Camu F. Haemodynamic changes
 during anaesthesia induced and maintained with propofol
12. Schehr H. Disopivran zur Einleitung und Unterhaltung von
13. Riegler R, Neumark J, Spiss CK, Draxler V. Brief anes-
 thesia with propofol. Anesthesiology Reanim 1987;4:
 207-11.
14. Lodes U. Total intravenous anaesthesia (TIVA) and bal-
 anced anesthesia with short-acting anesthetics for ENT
 surgery in children Anesthesiology Reanim 1999;24:13-8
 (Abstract).
15. Bayhan N, Güzeldemir ME, Önder S. Küçük cerrahi gir-
 şimlerde anestezı idüksiyon ve idamesinde propofol.
 Türk Anest ve Rean Cem Mecmuası 1989;17:202-5.
16. Ebert TJ, Harkin CP, Muzi M. Cardiovascular responses
17. Reves JG. The entry of remifentanil in to the clinical
 practice and the topics on education. Anesth Analg 1999;
 89:4-6.
18. Ebert TJ, Cardiovascular and Autonomic Effects of Se-
19. Uyar M. Pediatrik hastalarda ağrı tedavi yöntemleri. Galen-
 nos 1997;1:38-42.
20. Tramer M, Moore A, Mcquay H. Meta - analytic of pro-
 phylactic antiemetic efficacy for postoperative nausea and
 vomiting: porpofol anaesthesia vomiting nitrous oxide tole-
 ral i. v. anaesthesia with propofol. Br J Anaesth 1997;78:
 256-9.
21. Hovorka J, Kortiilla K, Erkola O. Gastric aspiration at the
 end of anaesthesia does not decrease postoperative nausea
22. Weir PM, Munro HM, Reynolds PI. Propofol infusion and
 the incidence of emesis in pediatric outpatient strabismus
23. Hughes MA, Jacobs JR, Glass PSA. Context-sensitive half-
 time in multicompartment pharmacokinetic models
 for intravenous anesthesia. Anesthesiology 1992;76:334-
 41.