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 cell counts are a very important type of white blood 
cells that orchestrates the immune response of the 
body. It is widely used as a clinical biomarker for 

HIV disease progression and eligibility criterion to start antiretroviral 
therapy of HIV/AIDS infected individuals. CD4 cell counts are a primary 
target of the human immune deficiency virus (HIV), because of its central 
role in controlling immune response. It is well known that higher CD4 
cell count typically signifies healthier immune system. CD4 cell counts 
vary over time across the study population due to a variety of demographic, 
environmental, immunological and genetic factors that probably persist 
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ABSTRACT Objective: The present paper demonstrates the applications of Accelerated Failure Time (AFT) 
model with gamma and inverse Gaussian frailty distributions to estimate the effect of prognostic factors on the 
survival of HIV/AIDS patients undergoing Antiretroviral Therapy (ART) in Delhi, India. Material and Methods:
The results of both these models have been compared to without frailty model. Akaike Information Criterion 
(AIC) and Bayesian Information criterion (BIC) have been used to select best model for HIV/AIDS data. Results:
The prognostic factors sex, mode of transmission, baseline hemoglobin and weight are found to be statistically 
significant (P-value <0.05) for HIV/AIDS patients on ART. Gamma shared frailty model with lognormal as base-
line distribution is found to be the best model for HIV/AIDS patients. The model also reflected there is strong 
evidence of high degree of heterogeneity in the HIV/AIDS patients. Conclusion: Therefore shared frailty model 
is an appropriate approach for analyzing the HIV/AIDS data than without frailty model. 
 
Key Words: AIDS; ART; Gamma shared frailty model; inverse Gaussian shared frailty model 
 
 
ÖZET Amaç: Mevcut makale Hindistan, Delhi'deki antiretroviral tedavi gören HIV/AIDS hastalarının 
sağkalımlarını etkileyen prognostik faktörleri tahmin etmek amacıyla gamma ve ters Gauss zayıflık dağılımlı 
hızlandırılmış başarısızlık zamanı (AFT) modelinin uygulanmasını göstermektedir. Gereç ve Yöntemler: Bu iki 
modelin sonuçları zayıflık modeli olmadan karşılaştırılmıştır. HIV/AIDS verileri için en iyi modeli seçmek için 
Akaike Bilgi Kriteri (AIC) ve Bayes Bilgi Kriteri (BIC) kullanılmıştır. Bulgular: Prognostik faktörler; cinsiyet, 
bulaşma biçimi, başlangıç hemoglobin ve ağırlık ART’deki HIV/AIDS hastalarında istatistiksel olarak anlamlı 
bulunmuştur (p<0,05). Temel dağılım olarak lognormalli Gamma paylaşımlı zayıflık modeli HIV/AIDS hastaları 
için en iyi model olarak bulunmuştur. Model ayrıca HIV/AIDS hastalarında yüksek derecede heterojenlik 
olduğunun güçlü kanıtını yansıtmaktadır. Sonuç: Bu nedenle HIV/AIDS verilerinin analizi için paylaşılan 
zayıflık modeli zayıflık modeli olmayan modelden daha uygun bir yaklaşımdır. 
 
Anahtar Kelimeler: AIDS; ART; Gamma paylaşımlı zayıflık modeli; ters Gauss paylaşımlı zayıflık modeli 
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throughout the course of HIV infection.1 This 
variability can lead to increasing differences in 
immune systems, exposure to infection and also 
in the composition of the study populations. Pa-
tients with lower CD4 counts have lesser chance 
of survival. In survival analysis we ignore this 
heterogeneity and implicitly assume that all the 
patients under study have same risk of death if 
they have same values of covariates. By ignoring 
the presence of unobserved heterogeneity will 
produce incorrect estimates of parameter in sur-
vival analysis. These differences of risk in the 
population can be modeled by taking into ac-
count the unobserved heterogeneity or using a 
frailty model. A frailty is an unobservable ran-
dom effect shared by subjects within a subgroup, 
or in simply a frailty is an unobserved random 
proportionality factor that modifies the hazard 
function of an individual or related individual. It 
is recognized that individuals in the same family 
are more similar than the individuals in different 
families because they share similar genes and 
similar environment. Here we have used a shared 
frailty model to study the cluster variation (based 
on the ranges of CD4 cell counts) effect on the 
survival of HIV/AIDS patients, which cannot be 
explained by the covariates itself. The shared 
frailty model is a mixture model because the 
common risk in each cluster (the frailty) is as-
sumed to be random. The model assumes that all 
the event times in a cluster are independent giv-
en the frailty variables. In other words, it is a 
conditional independence model where the frail-
ty is common to all individuals in a cluster and 
therefore responsible for creating dependence be-
tween event times. This is the reason a shared 
frailty model can be expressed as a mixed (ran-
dom effects) model in survival analysis with 
group variation (frailty) and individual variation 
described by the hazard function.2 Thus frailty or 
random effect models try to account for correla-
tions within groups.  It is worth pointing out that 
applying the general Cox proportional hazard 
model or the accelerated failure time model di-
rectly to a cluster data set without considering 
the possible correlations in each cluster may lead 
to incorrect conclusions.3 

Vaupel et al. introduced the term frailty in 
order to account for unobserved heterogeneity, 
random effects and association in univariate sur-
vival model.4 Clayton discussed the application of 
the model to multivariate survival data (without 
using the notion “frailty”) in his seminal paper on 
chronic diseases incidence in families.5 Frailty 
models are extension of Cox proportional hazard 
model, in this model the hazard rate will not just 
be a function of covariates but also a function of 
frailties.6 Shared frailty model is extensively stud-
ied by many authors.7-9 

Zare and Moradi applied parametric shared 
frailty models to waiting time to first pregnancy 
and found that height, age at marriage and men-
struation regularity to be important predictors of 
waiting time to pregnancy.10 Mahmood et al. 
used a shared frailty model to identify important 
factors associated with length of birth intervals of 
Bangladeshi women.11 Govindarajulu et al. has 
applied the methodology to choose between frail-
ty and no- frailty models in assessing genetic var-
iability and found sex and birth year as signifi-
cant covariates.12 Dias et al. used a Cox propor-
tional hazard model with frailty to identify inde-
pendent predictors of hospital mortality in HIV 
associated hospitalizations in Portugal.13 Kong et 
al. applied a parametric frailty model to examine 
the relationship between explanatory variables 
and the survival outcomes that are subject to ar-
bitrary censoring, while accounting for the corre-
lation within clusters for HPV infection data.14 

Although there are several studies to esti-
mate the effect of prognostic factors on the sur-
vival of HIV/AIDS patients, but none has consid-
ered the longitudinal CD4 cell counts as cluster 
variable to the best of our knowledge, and this is 
the first investigation about the factors influenc-
ing survival of HIV/AIDS patients on ART by us-
ing Accelerated Failure Time (AFT) shared frailty 
model.    

In order to study the effect of ART on im-
provement in the longevity and quality of life, it 
is imperative to consider the ranges of CD4 cell 
counts as cluster variable i.e (cluster 1; <200 
cells/mm3, cluster 2; 201-350 cells/mm3, cluster 3; 
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351-500 cells/mm3, and cluster 4; >500 
cells/mm3). A Gamma shared frailty and an in-
verse Gaussian shared frailty model with baseline 
distributions as exponential, weibull, log normal 
and log-logistic have been applied to estimate the 
effect of prognostic factors on the  survival of 
HIV/AIDS patients on ART. The results of both 
these models have been compared to without 
frailty model. In order to compare the perfor-
mance of these models we have used Akaike In-
formation Criterion (AIC) and Bayesian Infor-
mation criterion (BIC).  

The remainder of this paper is organized as 
follows. In section 2, AFT shared frailty models 
are discussed, and in section 3 we have applied 
these models to HIV/AIDS data set. Finally the 
results and discussions are presented in section 4.   

    MATERIAL AND METHODS  

AFT MODEL WITH SHARED FRAILTY FOR  

HIV/AIDS PATIENTS 

The AFT shared frailty model is an appropriate 
choice for multivariate clustered survival time 
data, especially when observations within a clus-
ter share a common unobservable frailty. It ex-
plicitly takes into account the possible correla-
tion among failure times.  

AFT models have been received much atten-
tion in recent years. Klein et al. considered a 
lognormal regression model with shared lognor-
mal frailty to account for dependence between 
the observed survival times.15 Pan proposed the 
AFT frailty model by assuming a frailty structure 
on the error term, which is called the AFT gam-
ma frailty model.16 Xu and Zhang developed a 
stable estimation procedure for semi parametric 
gamma frailty AFT model.17 Lambert et.al. used 
parametric AFT models with frailty effect to kid-
ney transplant survival data.18 

Suppose Yij(=log Tij) be the logarithm of the 
survival time of the jth HIV/AIDS patient  in the ith 
cluster, (j=1, 2,…ni, and i= 1,2…m), and Xij be the 
vector of covariates associated with this individual. 
Then the shared AFT frailty model is given by 

ijiijijij UXTY ∈++′+== σβµ)log(                   (1) 

where � is the vector of unknown regression 
coefficients  μ is the intercept parameter, σ is 
the scale parameter, the ∈ij ‘s are independent 

identically distributed random errors, and the 
Ui’s are the cluster specific random effects 
which are assumed to be i.i.d random variable 
with density function f (ui). Here we have as-

sumed that the shared frailty (random) effect 
Ui following gamma and inverse Gaussian dis-
tribution with mean zero and variance θ, as de-
fined in the density function in equation (2) 
and (3) respectively.   
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Where � >0, indicates presence of hetero-
geneity. So the large values of � reflect a great-
er degree of heterogeneity among groups and a 
stronger association within groups. The choice 
of gamma and inverse Gaussian distribution as 
frailty distributions are its mathematical con-
venience. In these models, frailty could be  
considered as an unobserved covariate that is 
additive on the log failure time scale and de-
scribe some reduced or increased event times 
for different clusters. All observations within a 
cluster share a common unobserved random 
effect.  

Now the conditional survivor function and 
hazard function for the jth individual of ith cluster 
has the form  
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ates Xij measured on the jth individual in the ith 
cluster. 

From equation (1), we have 
σ

βµ iijij
ij

UXt −′−−
=∈

log ,  

Then the conditional survivor function and 
hazard function can be written as 

)()/( 0 iijiij USutS ∈=                                        (4) 
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Here we have considered the error term ∈ij 
follows exponential, Weibull, lognormal and log-
logistic distributions.  

MAXIMUM LIKELIHOOD ESTIMATION 

Let m denote the number of clusters and ni de-

note the sample size within the ith cluster, if the 
censoring is assumed to be independent of sur-
vival, then the conditional likelihood (condition-
al on the random effects) for the observed data is 
given by 
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Where δij takes value 0, if jth HIV/AIDS pa-
tient’s survival time in the ith cluster is cen-
sored, and takes value 1, otherwise. Integrating 
out the unobserved frailties Ui, the marginal 
likelihood function for all clusters can be ex-
pressed as 
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Now the estimates of parameters can be ob-
tained by maximizing the likelihood function (7) 
with respect to σ, β and θ. Since the integration 
involved in equation (7) is analytically intracta-
ble, MCMC or Laplace approximation to the in-
tegral can be used to evaluate the exact log-
likelihood numerically. 

Results obtained from AFT shared frailty 
models can be summarized in the exponentiated 
form as time ratio (i.e TR(=exp(� )) unlike Cox 
model hazard ratio. Thus TR>1, indicates pro-

longed survival time and TR<1, associated with a 
decrease in survival time.  

MODEL COMPARISON 

In order to compare gamma shared frailty and in-
verse Gaussian shared frailty model with different 
baseline distributions, we have used Akaike Infor-
mation Criterion (AIC)19 and Bayesian Information 
Criterion (BIC). The AIC provides an attractive ba-
sis for model selection and is defined as 

AIC= -2*Log-likelihood +2(p+k) 

where p is the number of covariates in the model, 
k=1 for exponential and k=2 for weibull and 
lognormal models. The model with smaller AIC 
is termed as better model. The AIC penalizes the 
number of parameters less strongly than the 
BIC20 and it is defined as 

BIC= -2*Log-likelihood + p.log(n) 

where p represents  the number of covariates in the 
model and n represents the number data points. 
The main advantage of the BIC approximation is 
that it includes the BIC penalty for the number of 
parameters being estimated. The model with small-
est BIC values is chosen as the best model.  

    APPLICATIONS TO HIV/AIDS DATA 

We have considered 1259 adult (>18 years age) 
HIV/AIDS patients who were undergoing An-
tiretroviral Therapy in the ART centre of Dr. 
Ram Manohar Lohia Hospital, New Delhi, India, 
during the period April 2004 to November 2009, 
and were followed up through the ART routine 
register records till December 2010. The event of 
interest was time to death. Out of 1259 patients 
198 patients died by the end of the study. The 
baseline information such as age, sex, last availa-
ble CD4 count, mode of transmission (MOT), 
weight and hemoglobin were collected. These 
variables were entered into the model as categor-
ical variables - Sex (male/female), MOT (sexu-
al/Blood+IDU/Unknown) and continuous varia-
bles- Age, Hemoglobin and Weight. The category 
‘sexual’ of the covariate MOT included both Ho-
mosexual and Heterosexual transmissions. The 
ranges CD4 cell counts used as cluster variable i.e 
(<200 cells/mm3, 201-350 cells/mm3, 351-500 
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cells/mm3, and >500 cells/mm3) and the clusters 
having 21.4%, 32.0%, 24.8% and 21.8% patients 
respectively. Patients who were alive at the end 
of the study period, were treated as right cen-
sored. The “survival” and “frailtypack” package of 
R software version 3.0.2 has been used to per-
form the statistical analyses. In all cases, p < 0.05 
is defined as the statistical significant.  

The descriptive statistics are given in Table 
1. Out of 1259 patients, 67.6% were males and 
32.4% were females. The predominant mode of 
HIV transmission was sexual route, which in-
cludes both homo and hetro sexual transmission, 
64% were sexually transmitted patients, 9.7% pa-
tents were transmitted by blood and injecting 
drug use, for remaining 26.3% patients mode of 
transmission was not known. The mean age at 
diagnosis was 34.24(± 8.24) years whereas the 
mean weight at the time of enrolment was 50.10 
(±10.5) kg.  In order to investigate the effect of 
covariates on the time to death of HIV/AIDS pa-
tients on ART, we first did a univariate analysis 
by fitting separate model for each covariate. Co-
variates that were found to be significant in the 
univariate analysis were included in multivaria-
ble analysis. We performed multivariable surviv-
al analysis by assuming exponential, weibull, 
lognormal and loglogistic distributions for base-
line hazard functions; and the gamma and in-
verse Gaussian frailty distributions.  

 

TABLE 1: Descriptive characteristic of  
HIV/AIDS patients on ART. 

Variables Category (Code) N=1259 Percent 

Sex Male (0) 851 67.6 

 Female (1) 408 32.4 

MOT Sexual (1) 806 64.0 

 Blood+ IDU (2) 122 9.7 

 Unknown(3) 331 26.3 

CD4+ cell 
counts 

<200 (1) 236 21.4 

 201-350 (2) 352 32.0 

 351-500 (3) 273 24.8 

 >500 (4) 240 21.8 

Status Alive (0) 1061 84.3 

 Death (1) 198 15.7 

Hemoglobin     10.97±1.87    Mean± SD 

Weight 50.10±10.5     Mean± SD 

Age (in years) 34.24±8.24   Mean± SD 

TABLE 2: AIC and BIC values of the  
parametric AFT shared frailty models. 

Baseline  
distributions 

 
Frailty distributions 

 
AIC 

 
BIC 

Exponential 
Gamma 1260.926  1300.957  

Inverse Gaussian 1261.312  1301.344 

Weibull 
Gamma 1262.819 1307.855  

Inverse Gaussian 1263.207  1308.242 

Lognormal 
Gamma 1191.105 1236.141 

Inverse Gaussian 1194.307 1237.454 

Log-logistic 
Gamma 1248.60 1338.66 

Inverse Gaussian 1243.007 1336.120  

 

 

The AIC and BIC values of the different par-
ametric AFT models with gamma and inverse 
Gaussian shared frailty models are shown in Ta-
ble 2. The AIC and BIC values of lognormal base-
line distribution with gamma frailty model are 
found to be minimum among all other considered 
models, indicating that it is the most efficient 
model to describe the HIV/AIDS dataset using 
various parametric frailty models.  

Table results of only gamma and inverse 
Gaussian shared frailty model with lognormal 
baseline distribution has been given in Table 3, 
which was found to be best model for 
HIV/AIDS patient data. The estimated values, 
standard error, time ratio, estimated parame-
ters of baseline distributions and frailty vari-
ance (�2) are presented in the table 3. The 
lognormal with gamma shared model shows 
that the prognostic factors sex, MOT, baseline 
hemoglobin and weight are statistically signifi-
cant (P-value <0.05) for HIV/AIDS patients on 
ART, whereas age is not found to be a signifi-
cant factor for HIV/AIDS patients. Female pa-
tients had longer survival by a factor of 3.04 
than their male counterpart (TR>1). An in-
crease in survival time is associated with per 
unit increase in hemoglobin. Patients with 
sexual mode of transmission are found to have 
lesser survival than those with Blood + IDU 
mode of transmission (TR<1). An increase in 
weight (in kg) leads to increase in life expec-
tancy.  
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The estimates obtained by inverse Gaussian 
shared frailty model are very close to the results 
obtained by the gamma shared frailty models, in-
dicating robustness of the analysis with respect to 
the choice of the baseline hazard function. The 
value of shape parameter in the lognormal- 
gamma shared frailty model is (γ=0.680), which is 
less than unity indicating that the shape of haz-
ard function is unimodal.  

The results of both the models indicates that 
there exist significant heterogeneity (�2 ) in the 
population in terms of their CD4 cell count, even 
though each patients share the same value of the 
covariate. For comparison purpose we have also 
applied the lognormal AFT model without frailty. 
These results are shown in the same table 3, the 
factors that are found to be significant in frailty 
model are also found to be significant in without 
frailty model.  The variability (heterogeneity) in 
the population of clusters (in terms of ranges of 
CD4 cell counts) estimated by lognormal with 
gamma shared frailty is 2.06.  The Kendall’s tau 
(τ) is higher for higher values of (�2 ) which 
measures the association within the clusters. The 
estimated τ=0.507 shows that there is strong de-
pendence within the clusters for lognormal 
gamma frailty model. From the Cox-Snell residu-
al plot in Figure 1, we can ascertain that all the 

AFT models are fitted well to the data. However, 
the plot is more close to the line in case of 
lognormal model; supporting the claim that 
lognormal model is the best fit.     

    DISCUSSION 

This paper focuses on Accelerated failure time 
shared parametric frailty models, which implies 
parametric specification of the baseline hazard 
and the distribution of the frailty. Here we have 
considered four clusters based on the ranges of 
CD4 cell counts of HIV/AIDS patients on ART 
for potential dependence in the random quanti-
ties corresponding to each failure time which is 
induced by frailty. Gamma shared frailty and an 
inverse Gaussian shared frailty model with base-
line distribution as exponential, weibull and log 
normal have been applied to estimate the effect 
of prognostic factors on the survival of HIV/AIDS 
patients on ART. The results of both of these 
models have also been compared to without frail-
ty model.  

The prognostic factors viz. sex, MOT, base-
line hemoglobin and baseline weight are found to 
be statistically significant (P< 0.05) by both 
gamma and inverse Gaussian shared parametric 
AFT Model. Most of the previous studies have 
suggested that the age is a significant prognostic 

TABLE 3: AFT Model with Shared Frailty for HIV/AIDS patients on ART. 
 Lognormal (No frailty) Lognormal (Gamma) Lognormal (Inverse Gaussian) 

Parameters � TR Std.error � TR Std.error � TR Std.error 

Age -0.017 0.983 0.014 -0.002 0.998 0.011 -0.002 0.998 0.011 

Sex 1.842 6.309 0.322*** 1.112 3.040 0.245*** 1.113 3.040 0.245*** 

MOT          

Sexual Ref 1  Ref 1  Ref 1  

Blood+IDU -0.509 0.601 0.352 -0.722 0.486 0.276*** -0.724 0.485 0.276*** 

Unknown 1.418 4.128 0.431** 1.379 3.971 0.340*** 1.378 3.967 0.340*** 

Hemoglobin 0.400 1.491 0.069*** 0.225 1.252 0.051*** 0.225 1.252 0.050*** 

Weight 0.097 1.101 0.015*** 0.054 1.055 0.011*** 0.054 1.055 0.011*** 

Intercept -2.219------------------------------------------ 2.324 1.488 

λ 2.69----------------------------------------- 0.206 0.332 

γ 0.446----------------------------------------- 0.680 0.680 

Frailty (�2) _----------------------------------------- 2.06*** 4.32*** 

Kendall’s τ  0.507 0.089 

TR: Time Ratio, λ= Scale, γ=Shape, *indicates significance at the 5% level, ** at 1% level and *** at 0.1% level. 
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factor.21,22 As age increases the survival time of 
HIV/AIDS patient decreases. Old age is associated 
with high risk of disease progression but in our 
analysis age is not found to be a significant prog-
nostic factor. Also females are observed to have 
better survival than their male counterpart. As 
reported previously female had higher life expec-
tancies than male.23-26 

Another important result of our study is that 
patients with sexual (hetro or homo) mode of 
transmission have worst survival than patients 
with blood and intravenous drug user mode of 
transmission. However, Remafedi et al.27 have 
shown that there are no significant differences 
between deceased and other subjects in relation 
to mode of transmission. Baseline hemoglobin is 
found to be a significant factor for HIV/AIDS pa-
tients, and thus it can be used as a simple and 
practical tool for initial risk assessment in the ab-
sence of CD4 cell count and viral load, as is iden-
tified in earlier studies by Johannessen et al. in 
Tanzania and Mocroft et al. in Europe.28,29 Pa-
tient’s weight is positively associated with sur-
vival, this is corroborating to the findings of oth-

er studies that patients improved clinically with 
regard to weight and hemoglobin.21,23 

Nevertheless, in all cases the estimates of the 
frailty variance for all the models reflects that 
there is strong evidence of high degree of hetero-
geneity in the HIV/AIDS patients. The Kendall’s 
tau also supports the strong association within the 
clusters. Therefore shared frailty model is an ap-
propriate approach for analyzing the HIV/AIDS 
data than without frailty model. This is consistent 
to the findings of previous studies.12,30 

From the AIC and BIC values we can con-
clude that the gamma shared frailty model with 
lognormal as baseline distribution is the best 
model for HIV/AIDS patients data. Hence, a sur-
vival model needs to be chosen arbitrarily to fit 
event times, the baseline hazard function as well 
as the frailty distribution should be compared 
and the most appropriate model should be select-
ed for appropriate inference. Mixture of methods 
involving both quantitative and qualitative ap-
proaches could be employed for further under-
standing of the unmeasured variables. It will be 
very much helpful for treatment provider to fo-

FIGURE 1: Cumulative hazard plot of Cox-Snell residual for AFT models. 
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cus on important prognostic factors for which in-
terventions could be developed or existing ones 
enhanced to improve patient management and 
care. 

There are some limitations to our study; first, 
we have assumed that only positive association 
within the cluster, which is not always possible. 
Second, the unobserved risk factors to be same 

within a cluster, which is not reasonable. The 
study uses data of only one ART centre, so the 
finding of our study may be generalized at na-
tional level with utmost care. This can be further 
analyzed by using a correlated frailty model.  
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