Patients with hematological malignancies, especially ones with neutropenia, are at high risk for hospital acquired infections, including pneumonias.1-4 Since early 2000’s, Gram negative bacteria seem to be...
causing an increased number of infections with increased mortality in neutropenic patients.5-7 A current major problem is the increase in the proportion of patients diagnosed with hospital acquired infections due to multi-drug resistant (MDR) Gram negative bacteria, including mainly Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumonia.8-11 Colistin (also called polymyxin E), an historical bactericidal agent used since 1960’s for treatment of Gram negative infections and abandoned in 1980s because of its nephrotoxicity and neurotoxicity, is one of the few drugs that are still effective against these pathogens.12-14 When administered by intravenous route, penetration is poor to lung tissue; therefore nebulisation of it has been suggested to achieve adequate bactericidal concentrations at the alveolar levels.15-19 There are few observational, retrospective, uncontrolled small case series, including patients with malignancies, about use of combination of inhaled and intravenous colistin for management of hospital acquired pneumonia (HAP) caused by MDR Pseudomonas aeruginosa.12,14,19,20 Herein, we present a case with lymphoma developed neutropenia and subsequently HAP caused by MDR Pseudomonas aeruginosa, and treated successfully with combined colistin therapy.

CASE REPORT

A fifty-nine year old man was diagnosed with Mantle cell lymphoma (MCL) blastoid variant in stage IV (Ann Arbor staging system) with bone marrow infiltration in 2008 and received a Rituximab plus CHOP (Cyclophosphamide, Hydroxydaunorubicin; Oncovin, Prednisone) (RCHOP) chemotherapy protocol for six courses. Since he relapsed within 1.5 years, a salvage chemotherapy regimen was given, followed by high dose chemotherapy (CT) with peripheral stem cell rescue. After sixth months of autologous transplantation, the patient with no fully matched sibling donor for allogeneic transplantation relapsed again. While the transplantation centre was looking for an unrelated and haploidentical donor, we administered one course of an R-Hyper CVAD (Cyclophosphamide, Vincristine, Adriamycin, and Dexamethosone) regimen, followed by a high dose methotrexate and cytarabine regimen with fluconazole and valacyclovir prophylaxis. Although he received filgrastim at the end of CT, he developed severe neutropenia with fever, cough, hypotension, tachypnoea, hypoxaemia and bilateral rales in the lungs on 7th day of CT. Imipenem (4x500 mg/d) and vancomycin (2x1 g/d) were started empirically for febrile neutropenia, along with bronchodilator treatment. He was admitted to the intensive care unit (ICU) because of the deterioration in his clinical condition and required ventilatory support at the 14th day of the CT. One day after ICU admission, bone marrow regeneration occurred and the patient’s neutrophil count increased. Blood cultures revealed C. albicans; so caspofungin was added-on the therapy (Day 15). After one-week-of-caspofungin therapy, the patient was afebrile with improved ventilation status and imipenem and vancomycin were stopped (Day 21). At 30th day of CT, he was extubated and transferred to the hematology ward on day 40. Five days later, the patient developed diarrhea and sub-febrile fever together with neutropenia and thrombocytopenia. Because of his prolonged hospitalization and history of chemotherapy (received 45 days ago), the patient was accepted as immunocompromised. With pre-diagnosis of cytomegalovirus (CMV) infection, gancyclovir and filgrastim were started at dose of 2x350 mg and 0,5 mIU/kg/day, respectively. Gancyclovir therapy was stopped at 10th day of management (since CMV-PCR was negative). Neutropenia continued for about 10 days. Patient complained of cough and shortness of breath and exhibited fever, tachypnoea and hypoxaemia, as well as rales in the lungs (Day 53 of CT). Chest X-ray revealed infiltration areas in the upper lobe of the left lung, confirmed with computerized tomography as patchy form (Figure 1). Levofloxacin was started empirically at dose of 1x750 mg. Since sputum culture revealed MDR (resistant to all available antibiotics except for colistin) P. aeruginosa, levofloxacin was stopped and antimicrobial therapy consisting of intravenous colistin (3x100 mg/d) and meropenem (3x2 g/d) was started at 10th day of neutropenia (day 55 of CT). Caspo-
fungin was stopped (day 60 of CT). Despite treatment with intravenous colistin and meropenem for seven days, his condition failed to improve. Fiberoptic bronchoscopy was performed and bronchoalveolar lavage sample was obtained for quantitative culture. The same pathogen with the same susceptibility pattern was isolated at a concentration of 10^5 CFU/ml. Inhaled colistin (2x75 mg) was added-on the therapy (day 65 of CT). On the same day, patient’s neutrophil count has started to increase and he was no longer neutropenic (Table 1). Within two weeks, his clinical status improved with regression of pneumonia and concomitant neutrophil and thrombocyte count increase, reaching nearly normal levels (Figure 1). Combination therapy was stopped at day 15 without any complications and he was discharged.

DISCUSSION

Cancer patients receiving cytotoxic antineoplastic therapy sufficient to adversely affect myelopoiesis are at risk for hospital acquired infection; including HAP, urinary tract infections and bacteremia. Patients with profound prolonged neutropenia are at particularly high risk for serious pulmonary infections, as shown by Carlisle et al. as 5.5 per 100 neutropenic patients with cancer. The spectrum of potential pathogens known to cause pulmonary infections in immunocompromised individuals has grown as a result of intensified immunosuppression, prolonged patient survival, the emergence of antimicrobial-resistant pathogens, and improved diagnostic assays.

Pseudomonas aeruginosa, a nosocomial pathogen generally causing infections in ICU’s or immunocompromised patients, can lead to develop-

TABLE 1: Laboratory findings of the patient.

<table>
<thead>
<tr>
<th></th>
<th>1st day of CT</th>
<th>7th day of CT</th>
<th>15th day of CT</th>
<th>40th day of CT</th>
<th>45th day of CT</th>
<th>55th day of CT</th>
<th>65th day of CT</th>
<th>80th day of CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, g/dL</td>
<td>11.1</td>
<td>8.92</td>
<td>7.52</td>
<td>9.5</td>
<td>9.05</td>
<td>7.87</td>
<td>8.77</td>
<td>12.5</td>
</tr>
<tr>
<td>White Blood Cell, /µL</td>
<td>6150</td>
<td>1680</td>
<td>6130</td>
<td>9550</td>
<td>2380</td>
<td>1000</td>
<td>3620</td>
<td>5750</td>
</tr>
<tr>
<td>Neutrophil, /µL</td>
<td>4970</td>
<td>630</td>
<td>5520</td>
<td>6650</td>
<td>2380</td>
<td>610</td>
<td>2340</td>
<td>2000</td>
</tr>
<tr>
<td>Platelet, /µL</td>
<td>136000</td>
<td>32000</td>
<td>31800</td>
<td>146000</td>
<td>74500</td>
<td>14800</td>
<td>21600</td>
<td>77500</td>
</tr>
<tr>
<td>Liver Function Tests</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Renal Function Tests</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CRP, mg/dL</td>
<td>2.8</td>
<td>71.67</td>
<td>284</td>
<td>111.56</td>
<td>282</td>
<td>280</td>
<td>116</td>
<td>8.14</td>
</tr>
</tbody>
</table>

CT: Chemotherapy.
ment of HAP especially in patients with prolonged neutropenia and mechanical ventilation. At year 2014, the major challenge is the growing resistance in Gram-positive and Gram-negative pathogens (known as 'ESKAPE', including P. aeruginosa) causing infections in hospitals and community. D’Agata et al. suggested that prevalence of MDR P. aeruginosa has increased from 1% to 16% over a 9 year period. A multicentre surveillance study from Turkey reported that resistance rates of Pseudomonas aeruginosa were 18% for piperacillin/tazobactam, 30% for imipenem, and 23% for amikacin.

Colistin, a polymyxin antibiotic, has been available for management of Gram-negative bacteria infections since 1959; however it was removed from use in the past because of its serious side effects, like nephrotoxicity. With the emergence of MDR Gram-negative bacteria, it has been reconsidered as salvage therapy. Since colistin is a cationic detergent damaging bacterial cytoplasmic membrane, it is more active in infections due to MDR bacteria. But its polycationic/hydrophilic structure limits its penetration to lung tissue; therefore aerosolized form has been evaluated for generating high drug concentrations at site of infection without increasing the risks of systemic toxicity and resistance against colistin. Aerosolized colistin has been found to be successful in the treatment of MDR Pseudomonas related pneumonia in cystic fibrosis patients. Clinical data for patients without cystic fibrosis are derived from uncontrolled small case series, as well as retrospective and non-randomized studies. Kwa et al. successfully used inhaled colistin therapy in patients with MDR Pseudomonas and Acinetobacter-related pneumonia, resulting in success rates of 57.1% and 87.5%, respectively. In one of the largest studies (including 165 patients) Lu et al. demonstrated that nebulized colistin was effective to treat HAP caused by MDR P. Aeruginosa and A. baumannii with low risk of resistance development. The authors also noted that it did not increase the risk of renal failure, although repeated nebulization was found to induce systemic accumulation. Recently, Tumbarello et al. also indicated that in 208 critically ill patients with HAP caused by MDR Gram negative organisms, aerosolized colistin as adjunct to intravenous form could significantly improve clinical cure rates and shorten the duration of mechanical ventilation, as compared with intravenous colistin monotherapy alone. These studies were conflicting with earlier studies showing no significant differences with combination therapy; however they were criticized to have small number of patients leading to power limitations. Efficacy of colistin can be enhanced with the use of another antibiotic, such as rifampicin or carbapenems. Pintado et al. reported that colistin use is effective in MDR Gram negative bacteraemia, with a response rate of 71.7%, when used in combination with aminoglycosides.

Our patient with MCL relapsed after autologous stem cell transplantation. His prognosis was poor and he was being prepared for allogeneic transplantation. We applied the R-Hyper-CVAD chemotherapy protocol, with favourable results in relapsed and refractory patients (Wang et al.). Unfortunately our patient developed neutropenia twice, 7 and 45 days after CT. No explanation can be made as a cause of second neutropenia; however we can speculate that it was related to prolonged Caspofungin use for 45 days, since his blood count improved after discontinuation of it. Neutropenia caused by caspofungin was reported as frequent as 1.9% by product monograph. Febrile neutropenia guidelines recommends intravenous colistin use in patients with MDR Gram-negative bacteraemia, but routine use of inhaled colistin is not advised probably due to limited data without randomized controlled trials. With known synergistic antibiotic activity, we started intravenous colistin and meropenem for hospital acquired pneumonia caused by MDR P. aeruginosa, despite presence of meropenem resistance. Since his clinical condition did not improve under this regimen, inhaled colistin was added-on as adjunct therapy leading to clinical cure and discharge within 2 weeks. However the patient was no more neutropenic by the start of nebulised therapy. Therefore this clinical improvement can be ei-
ther due to additional inhaled colistin use or to increased neutrophil count.

In conclusion, immunocompromised patients have high risk for pneumonia, which can be due to MDR Gram-negative bacteria. Only two new antibiotics have been approved by US Food and Drug Administration for management of these pathogens in the last 5 years. Aerosolized colistin therapy concomitant with the intravenous form can be safely used for successful treatment of HAP caused by these pathogens in patients with hematological malignancies.

REFERENCES

