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eneralized Additive Models (GAMs) was introduced by Hastie and
Tibshirani in 1986.1 They allow the linear relationships in multiple
regression to be examined in a wider class of nonlinear relation-

Flexible Logistic Models with
Correlated Variables

AABBSS  TTRRAACCTT  OObbjjeeccttiivvee::  The objective of this work is to examine the correlations among covariates
involved in logistic models. Strong correlations among explanatory variables can cause unstable re-
gression coefficients. Thus, a common problem occurred in multiple linear or logistic regression is
investigated by a flexible method. MMaatteerriiaall  aanndd  MMeetthhooddss::  Generalized additive models (GAMs) can
provide flexible nonparametric modeling of response by using the additive function of the predic-
tor variables. Due to the binary form of the response and the flexibility in additive models, gener-
alized additive logistic regression was used for estimation in this study. Various regression models
were developed using a different number of correlated predictor variables and a binary outcome in
order to evaluate and compare the model performance in terms of Akaike Information Criteria
(AIC). RReessuullttss::  The change in the basis made little difference to the AIC values at the same corre-
lation parameter. The models where smooth terms were represented by cubic regression splines
were more often tended to give smaller AIC values than the models where other splines were used.
CCoonncclluussiioonn::  Additive logistic regression with high correlated explanatory variables produced rea-
sonable results in terms of AIC for all sample sizes when the consistency was provided between
the structure of the explanatory variables with the response variable and correlation parameter.

KKeeyy  WWoorrddss::  Nonparametric; regression; correlation

ÖÖZZEETT  AAmmaaçç::  Bu çalışmada amaçlanan konu aralarında bağlantı olan açıklayıcı değişkenler içeren
lojistik regresyon modellerini incelemektir. Açıklayıcı değişkenler arasındaki güçlü ilişkiler reg-
resyon modeli katsayılarının güvenilmez olmasına neden olmaktadır. Bu yüzden, çoklu doğrusal ya
da lojistik regresyon modellerinde yaygın olan bu problem esnek bir metot yardımıyla incelenmi-
ştir. GGeerreeçç  vvee  YYöönntteemmlleerr::  Genelleştirilmiş Toplamsal Modeller (GAMs) bağımsız değişkenlerin top-
lamsal fonksiyonları yardımıyla yanıt değişkenini daha esnek bir şekilde modellemeye çalışan
parametrik olmayan bir yöntemdir. Yanıt değişkeninin ikili yapıda olması ve toplamsal modellerin
sağladığı esneklik nedeniyle bu çalışmada modelin tahminlemesi için Genelleştirilmiş Toplamsal
Lojistik Modeller (GALMs) kullanılmıştır. Farklı sayıda bağlantılı açıklayıcı değişkenler ve ikili
yanıt değişkeni kullanılarak çeşitli regresyon modelleri oluşturulmuştur ve bu modellerin perfor-
mansı Akaike Bilgi Kriteri (AIC) yardımıyla değerlendirilmiştir. BBuullgguullaarr::  Korelasyon parametre-
sinin aynı değerlerinde taban fonksiyonundaki değişim AIC değerinde çok fazla değişiklik
yaratmamıştır. Düzeltme terimlerinin kübik eğri fonksiyon olarak tanımlandığı modellerden elde
edilen AIC değerleri, düzeltme terimlerini oluşturmada kullanılan diğer eğrilerin oluşturduğu mo-
dellerden elde edilen AIC değerlerinden daha küçüktür. SSoonnuuçç::  Toplamsal lojistik regresyon mo-
deli, yüksek korelasyonlu açıklayıcı değişkenlerin ikili değerler alan yanıt değişkenini açıklamada
AIC ölçütüne göre iyi sonuçlar üretmiştir.
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ships between predictor variables and the response.
The use of GAM has considerably flexible effect in
statistical modeling. GAMs can be extended to the
logistic case as well. The generalized additive
model was studied for logistic cases by Casetti in
1972.2 Wrigley and Dunn (1986) showed the im-
portance of fitting of smooth functions to the de-
tection of nonlinearities. Unfortunately, the
method they describe may lead to false results
when there is more than nonlinearity present in
the data.3 Jones and Wrigley studied a more de-
tailed nature of the logistic, binary-response case
within the penalized least squares, cubic splines,
and iteratively reweighted least squares estimation
in 1995.4 This paper examines the relationship be-
tween the correlated predictor variables and the bi-
nary response within additive models and provides
an opportunity to see how additive logistic regres-
sion handles with correlated variables in the model.

METHODS

In this section we briefly explained the theoretical
part of the study. Firstly, additive models, some of
the regression splines, and additive logistic model
are explained in details.

ADDITIVE MODELS AND PENALIZED REGRESSION

Consider the additive model structure as given in
Eq. (1)

where fj are smooth functions and the εi are i.i.d
N(0,σ2) random variables. Yi is the response vari-
able. The additive model can be represented using
penalized regression splines and estimated by pe-
nalized least squares.5

Penalized regression fitting curve is more flex-
ible than classical least squares regression whereby
the relationship between response and explanatory
variables can be explained better. For the curve
construction, penalized regression model has an
extra term which is the penalty term:

(2)

where                               is penalty term with
smoothing parameter λ represents the rate of
change between residual error and local variation.6

Low levels of the smoothing parameter are formed
the regression curve more roughness and high lev-
els of them are formed the regression curve less
roughness. λ → ∞ leads to a straight line estimate
for f, while λ = 0 results in an un-penalized regres-
sion line estimate.5 Penalized regression defines the
f function as regression curve by minimizing the
Eq. (2).

SMOOTH FUNCTIONS

Smooth functions, are also known as splines, used
for explaining the response variable with explana-
tory variables. In the following sections, some com-
mon smooth functions are explained such as cubic
splines, thin plate splines, and thin plate shrinkage
splines.

Cubic Splines (CS)

CS can be described as basically a curve which is
constructed from sections of different cubic poly-
nomials. Consider an interval [a, b] which can be
defined as construction of [xi,xi+1] where any xi is
named as knots. A function f defined on [a, b] is a
cubic spline if two conditions are satisfied. These
conditions are

On each of the intervals [xi,xi+1], f must be a
cubic polynomial.

On each knots, f, its first and second deriva-
tives must be continuous on the whole of [a, b].

An example of cubic spline can be shown as
below

(3)

are constant which obtain the shape
of the spline. The disadvantage of this kind of
spline is that there are many parameters which
must be estimated.6

Thin Plate Splines (TPS)

TPS is introduced to geometric design by Duchon
in 1977.7 TPS is thought as the generalization of
smoothing splines to more than one dimension. In
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this type of smoothing splines, there are at least
two dimensional explanatory variables in data set. 

TPS provides some advantages to researchers
such as no obligatory for choosing knot positions
or basis functions and also TPS allows the re-
searcher some flexibility to select the order of de-
rivative used in the measure of function wiggliness.
As well as the advantages, it has heavy computa-
tional cost according the other type splines because
of the number of unknown parameters. Instead
thin plate regression splines are used based on the
idea of truncating the space of wiggly components
of the thin plate spline. They also avoid the prob-
lem of knot placement and are very cheap to com-
pute.5

Thin Plate Shrinkage Splines (TPSS)

TPSS is another type of smooth functions. It is used
when the dimension of the estimation problem is
so high. Model selection with GAMs, it would be
more convenient if smooth functions could be ze-
roed by adjustment of smoothing parameters.
There is two way to this adjustment

Adding an extra penalty 

Adding a small multiple of the identity ma-
trix to the penalty matrix

First one would open up the possibility of pe-
nalizing the smooth components of a function
more than the wiggly components. Otherwise, the
penalty shrinks all parameters to zero if its associ-
ated smoothing parameter is large enough by the
second way.

(4)

Here, I is identity matrix and ∈ is small multi-
ple constant. If ∈ is small enough, the identity part
of the penalty have almost no impact when a func-
tion is wiggly. It becomes close to completely
smooth, the identity component become important
and start shrinking the parameters towards zero.5

GENERALIZED ADDITIVE MODELS

GAMs were originally developed by Hastie and
Tibshrani to blend the properties of Generalized
Linear Models with additive models.8 GAMs are

more flexible than the other regression approaches
Consider the model where response variable fol-
lows any exponential family distribution as below

(5)

where Yi is response variable which is distributed as
any exponential family distribution, xi are explana-
tory variables, g is the link function and fi are
smooth functions of the model. 

GENERALIZED ADDITIVE LOGISTIC MODEL

Generalized Additive Logistic Model (GALM) can
be considered as a mixture of additive and logistic
models. In this model, the probability of possible
outcome of response variable which is explained by
smooth functions of explanatory variables. The ex-
pected value of binary response variable is 

to the explanatory variables in the re-
gression model with logit function as in Eq. (6):

(6)

The GALM replaces each linear term by a
smooth function form as in Eq. (7):

(7)

where fi’s are smooth functions. The GALM is a
specific example of a GAM. Hence, the expected
value of the response variable E(x) is related to an
additive function of the explanatory variables by a
link function of g in Eq. (5).8

APPLICATION

In the simulation study, four different scenarios are
designed. Four logistic regression models were fit-
ted using different combinations of smooth func-
tions such as TPS, TPSS and CS. In each case, AIC
is calculated for the fitted models. Thus, simulation
models are used to obtain information on the per-
formance of the models. First, a random sample of
50, 100, and 1000 observations are generated.
Within each sample, three correlated covariates
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and the response are simulated. Thus, the simulated
data sets consist of three correlated continuous
variables and one binary response variable. The re-
sponse variable is generated from binomial distri-
bution while correlated continuous variables are
generated from the standard normal distribution.
For each data set, the additive logistic regression
method is replicated for 1000 times. To illustrate
how different correlations could affect the estima-
tion, three different correlation coefficients are
considered as negligible, moderate and small in
each scenario. Indeed, the user is set to free to de-
fine a constant correlation between two variables
in the algorithm for forward studies.  However in
this study, the correlations are limited to ±0.90,
±0.60, and ±0.10. The performance of the fitted
models is compared in terms of AIC values. R Soft-
ware is used for analysis.

RESULTS

Akaike Information Criteria (AIC) was computed
for every different model. The results of additive
logistic model are tabulated in terms of AIC values
and sample sizes, as well as the correlations among
variables in Table 1. As seen in Table 1, the last six
columns refer to the smooth functions used in the
fitting of the binary response variable. The choice
of the basis functions for smooth terms given in
columns 4, 5, and 6 are TPS, TPSS and CS, respec-
tively. This means that the smooth terms in Model
1 represent the TPS, TPSS and CS for each predic-
tor respectively. The last three columns in Table 1
shows the modified smooth terms in Model 1
where TPS, TPSS and CS are used at the same time. 

The additive logistic model is first applied to
the model, y=0.5+3x1-5x2+6x3. Here, xi is generated
from standard normal distribution for i =1, 2. x1 and
x2 are correlated with correlation r = 0.10, 0.60,
0.90. Additionally, x3 is generated as x3 = x1 + N(0,1)
for all four models. In the model x2 has a negative
effect on y whereas x1 and x3 have positive effect on
y. According to the simulation results, AIC value
increases when the correlation parameter increases
for different combinations of the smooth functions
in Model 1 for all sample sizes. The smallest AIC
value is obtained as 10.4969 from a cubic splines fit

at r = 0.10 whereas the largest AIC is obtained as
15.6184 from a thin plate shrinkage splines fit at r
= 0.90 for sample size of 50. The similar results are
hold for sample sizes of 100 and 500 (Table 1).

In the second model, xi is also generated from
standard normal distribution for i =1, 2. x1 and x2

are correlated with correlation r = 0.10, 0.60, 0.90
as in the 1st scenario. Moreover, the model is set
that x1, x2, and x3 have all positive effect on y in the
model. Simulation results show that the smallest
AIC value is obtained as 19.025 from a cubic splines
fit at r = 0.90 whereas the largest AIC is obtained as
27.0261 from a thin plate splines fit at r = 0.10 for
sample size of 50 for the second model,
y=0.75+2x1+0.5x2+1.5x3. The similar results are
hold for sample size of 100. On the other hand, the
smallest AIC value is obtained as 249.9221 from a
combination of (CS, TPS, CS) of smooth terms fit
at r = 0.90 where the largest AIC is obtained as
294.6806 from a combination of (TP, TPSS, CS) of
smooth terms at r = 0.10 for sample size of 500. No-
tice that AIC value decreases when the correlation
parameter increases for all sample sizes (Table 1).

In the third model, xi is generated from stan-
dard normal distribution for i =1, 2 as in the 1st and
2nd scenarios. However, x1 and x2 are correlated with
correlation r = -0.10, -0.60, -0.90. Here, although x1,
x2, are correlated with negative r, the model is set
that x1, x2, and x3 have all positive effect on y.
Hence, the smallest AIC value is obtained as 22.5958
for a cubic splines fit at r = -0.10 where the largest
AIC value is obtained as 33.8512 from a thin plate
splines fit at r= -0.90 for sample size of 50 for the
third model, y=0.75+2x1+0.5x2+1.5x3. The similar re-
sults are hold for sample size of 100. On the other
hand, the smallest AIC value is obtained as 299.6301
from a combination of (CS, TPS, CS) of smooth
terms at r = -0.10 where the largest AIC is obtained
as 360.0575 from thin plate shrinkage splines fit at r
= -0.90 for sample size of 500. Thus, AIC value in-
creases when the correlation parameter increases in
absolute value for all sample sizes (Table 1).

In the fourth model, xi is generated from stan-
dard normal distribution for i =1, 2 as in the previ-
ous scenarios. However x1 and x2 are correlated
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with correlation r = -0.10, -0.60, -0.90 as in the 3rd

scenario. In the model, x1 has a negative effect on
y whereas x2 and x3 have both positive effect on y.
For the last model y=0.75-2x1+0.5x2+1.5x3, the
smallest AIC value is obtained as 31.9531 for a
cubic splines fit at r = -0.90 where the largest AIC
value is obtained as 45.2119 from a thin plate
shrinkage splines fit at r = -0.10 for sample size of

50. The similar results are hold for sample size of
100. On the other hand, the largest AIC value is ob-
tained as 484.1915 from a thin plate shrinkage
splines at r = -0.10 where the smallest AIC is ob-
tained as 426.9172 from thin plate splines fit at r =
-0.90 for sample size of 500. Notice that AIC value
decreases when the correlation parameter in ab-
solute value increases for all sample sizes (Table 1).

Correlation Thin Plate TPS CS CS

Sample Size Parameter Thin Plate Spline Shrinkage Spline Cubic Spline CS TPSS TPS

Model (n) (r) (TPS) (TPSS) (CS) TPSS TPS CS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 11.2335 11.0030 10.4969 10.8522 10.9521 10.5641

50 0.60 12.8581 13.0200 11.7904 12.4516 12.6395 12.1108

0.90 15.1172 15.6184 13.8236 14.6542 14.9314 14.4707

0.10 21.4117 21.8416 19.0117 20.3974 20.9324 20.1984

MODEL 1 100 0.60 26.0498 26.5989 22.8273 24.9518 25.3715 24.3468

0.90 30.5384 31.0657 26.9748 29.6248 29.6891 28.4794

with positive correlations 0.10 113.9904 114.6857 113.6364 114.0834 114.1791 114.0392

500 0.60 138.2460 139.2595 138.0487 138.4316 138.7142 138.5280

0.90 162.4402 164.0667 162.3754 162.9664 163.2637 163.1849

0.10 27.0261 26.6287 22.1714 25.4393 24.3779 22.7335

50 0.60 25.5721 25.0575 20.9916 24.1200 23.2024 21.6981

0.90 23.3861 22.7095 19.0250 21.7891 21.2184 19.5354

MODEL 2 0.10 59.4765 59.0896 55.3316 58.7004 58.1503 56.6435

100 0.60 55.8456 55.5017 51.7551 54.8000 54.4489 53.1756

with positive correlations 0.90 49.7524 49.2998 45.8214 48.8786 48.5386 46.9888

0.10 294.5731 294.6765 294.4920 294.6806 294.4890 294.4065

500 0.60 278.5673 278.6108 278.4344 278.6620 278.4174 278.3432

0.90 250.2094 250.1426 249.9449 250.1770 250.0325 249.9221

-0.10 27.4741 27.2363 22.5958 25.8970 25.0455 23.2643

50 -0.60 29.1396 28.8466 23.4083 27.6549 26.5452 24.4317

-0.90 33.8512 33.4914 27.3512 31.9290 31.4558 28.9870

MODEL 3 -0.10 60.2703 59.9601 56.3572 59.6121 58.9083 57.4580

100 -0.60 63.7203 63.3633 60.3737 63.2379 62.6634 61.5378

-0.90 73.2449 72.9077 70.0161 72.6721 72.4211 71.3603

with negative correlations -0.10 299.7593 299.8944 299.7432 299.9221 299.7305 299.6301

500 -0.60 318.6037 318.7693 318.5133 318.6938 318.4705 318.4499

-0.90 359.7732 360.0575 359.7934 359.9033 359.8187 359.7591

-0.10 45.1992 45.2119 36.8272 42.8986 42.4227 39.2779

50 -0.60 42.9330 42.9295 35.1892 41.0284 40.3572 37.3828

-0.90 38.6097 38.6206 31.9531 36.8773 36.5866 33.7497

MODEL 4 -0.10 96.8138 97.0306 96.2252 96.9587 96.5721 96.3271

100 -0.60 94.5108 94.5462 93.0483 94.0511 93.9939 93.6507

-0.90 85.2246 84.9196 82.5565 84.7648 84.3686 83.5335

with negative correlations -0.10 483.6293 484.1915 483.9036 483.9441 483.7461 483.8251

500 -0.60 467.8540 468.3894 468.0983 468.1639 467.9549 468.0820

-0.90 426.9172 427.3187 427.0826 427.1735 426.9890 427.0860

TABLE 1: Akaike information criteria results of the simulation study.
 

 
 

      Model 
 
         (1) 

 
Sample 

Size 
(n) 
(2) 

 
Correlation 
Parameter 

(r) 
(3) 

 
Thin Plate 

Spline 
(TPS) 

(4) 

Thin Plate 
Shrinkage 

Spline 
(TPSS) 

(5) 

 
Cubic 
Spline 
(CS) 
(6) 

 
TPS 
CS 

TPSS 
(7) 

 
CS 

TPSS 
TPS 
(8) 

 
CS 

TPS 
CS 
(9) 

0.10 11.2335 11.0030 10.4969 10.8522 10.9521 10.5641 

0.60 12.8581 13.0200 11.7904 12.4516 12.6395 12.1108 

 
50 

0.90 15.1172 15.6184 13.8236 14.6542 14.9314 14.4707 

0.10 21.4117 21.8416 19.0117 20.3974 20.9324 20.1984 

0.60 26.0498 26.5989 22.8273 24.9518 25.3715 24.3468 

 
100 

0.90 30.5384 31.0657 26.9748 29.6248 29.6891 28.4794 

0.10 113.9904 114.6857 113.6364 114.0834 114.1791 114.0392 

0.60 138.2460 139.2595 138.0487 138.4316 138.7142 138.5280 

 
 
 
 
 

MODEL 1 

 
with positive correlations 

 
 

 
500 

0.90 162.4402 164.0667 162.3754 162.9664 163.2637 163.1849 

0.10 27.0261 26.6287 22.1714 25.4393 24.3779 22.7335 

0.60 25.5721 25.0575 20.9916 24.1200 23.2024 21.6981 

 
50 

0.90 23.3861 22.7095 19.0250 21.7891 21.2184 19.5354 

0.10 59.4765 59.0896 55.3316 58.7004 58.1503 56.6435 

0.60 55.8456 55.5017 51.7551 54.8000 54.4489 53.1756 

 
100 

0.90 49.7524 49.2998 45.8214 48.8786 48.5386 46.9888 

0.10 294.5731 294.6765 294.4920 294.6806 294.4890 294.4065 

0.60 278.5673 278.6108 278.4344 278.6620 278.4174 278.3432 

 
 
 
 
 

MODEL 2 

 
with positive correlations 

 
 

 
500 

0.90 250.2094 250.1426 249.9449 250.1770 250.0325 249.9221 

-0.10 27.4741 27.2363 22.5958 25.8970 25.0455 23.2643 

-0.60 29.1396 28.8466 23.4083 27.6549 26.5452 24.4317 

 
50 

-0.90 33.8512 33.4914 27.3512 31.9290 31.4558 28.9870 

-0.10 60.2703 59.9601 56.3572 59.6121 58.9083 57.4580 

-0.60 63.7203 63.3633 60.3737 63.2379 62.6634 61.5378 

 
100 

-0.90 73.2449 72.9077 70.0161 72.6721 72.4211 71.3603 

-0.10 299.7593 299.8944 299.7432 299.9221 299.7305 299.6301 

-0.60 318.6037 318.7693 318.5133 318.6938 318.4705 318.4499 

 
 
 
 
 

MODEL 3 

 
with negative correlations 

  
500 

-0.90 359.7732 360.0575 359.7934 359.9033 359.8187 359.7591 

-0.10 45.1992 45.2119 36.8272 42.8986 42.4227 39.2779 

-0.60 42.9330 42.9295 35.1892 41.0284 40.3572 37.3828 

 
50 

-0.90 38.6097 38.6206 31.9531 36.8773 36.5866 33.7497 

-0.10 96.8138 97.0306 96.2252 96.9587 96.5721 96.3271 

-0.60 94.5108 94.5462 93.0483 94.0511 93.9939 93.6507 

 
100 

-0.90 85.2246 84.9196 82.5565 84.7648 84.3686 83.5335 

-0.10 483.6293 484.1915 483.9036 483.9441 483.7461 483.8251 

-0.60 467.8540 468.3894 468.0983 468.1639 467.9549 468.0820 

 
 
 
 
 

MODEL 4 

 
with negative correlations 

  
500 

-0.90 426.9172 427.3187 427.0826 427.1735 426.9890 427.0860 

�

 

 
 

      Model 
 
         (1) 

 
Sample 

Size 
(n) 
(2) 

 
Correlation 
Parameter 

(r) 
(3) 

 
Thin Plate 

Spline 
(TPS) 

(4) 

Thin Plate 
Shrinkage 

Spline 
(TPSS) 

(5) 

 
Cubic 
Spline 
(CS) 
(6) 

 
TPS 
CS 

TPSS 
(7) 

 
CS 

TPSS 
TPS 
(8) 

 
CS 

TPS 
CS 
(9) 

0.10 11.2335 11.0030 10.4969 10.8522 10.9521 10.5641 

0.60 12.8581 13.0200 11.7904 12.4516 12.6395 12.1108 

 
50 

0.90 15.1172 15.6184 13.8236 14.6542 14.9314 14.4707 

0.10 21.4117 21.8416 19.0117 20.3974 20.9324 20.1984 

0.60 26.0498 26.5989 22.8273 24.9518 25.3715 24.3468 

 
100 

0.90 30.5384 31.0657 26.9748 29.6248 29.6891 28.4794 

0.10 113.9904 114.6857 113.6364 114.0834 114.1791 114.0392 

0.60 138.2460 139.2595 138.0487 138.4316 138.7142 138.5280 

 
 
 
 
 

MODEL 1 

 
with positive correlations 

 
 

 
500 

0.90 162.4402 164.0667 162.3754 162.9664 163.2637 163.1849 

0.10 27.0261 26.6287 22.1714 25.4393 24.3779 22.7335 

0.60 25.5721 25.0575 20.9916 24.1200 23.2024 21.6981 

 
50 

0.90 23.3861 22.7095 19.0250 21.7891 21.2184 19.5354 

0.10 59.4765 59.0896 55.3316 58.7004 58.1503 56.6435 

0.60 55.8456 55.5017 51.7551 54.8000 54.4489 53.1756 

 
100 

0.90 49.7524 49.2998 45.8214 48.8786 48.5386 46.9888 

0.10 294.5731 294.6765 294.4920 294.6806 294.4890 294.4065 

0.60 278.5673 278.6108 278.4344 278.6620 278.4174 278.3432 

 
 
 
 
 

MODEL 2 

 
with positive correlations 

 
 

 
500 

0.90 250.2094 250.1426 249.9449 250.1770 250.0325 249.9221 

-0.10 27.4741 27.2363 22.5958 25.8970 25.0455 23.2643 

-0.60 29.1396 28.8466 23.4083 27.6549 26.5452 24.4317 

 
50 

-0.90 33.8512 33.4914 27.3512 31.9290 31.4558 28.9870 

-0.10 60.2703 59.9601 56.3572 59.6121 58.9083 57.4580 

-0.60 63.7203 63.3633 60.3737 63.2379 62.6634 61.5378 

 
100 

-0.90 73.2449 72.9077 70.0161 72.6721 72.4211 71.3603 

-0.10 299.7593 299.8944 299.7432 299.9221 299.7305 299.6301 

-0.60 318.6037 318.7693 318.5133 318.6938 318.4705 318.4499 

 
 
 
 
 

MODEL 3 

 
with negative correlations 

  
500 

-0.90 359.7732 360.0575 359.7934 359.9033 359.8187 359.7591 

-0.10 45.1992 45.2119 36.8272 42.8986 42.4227 39.2779 

-0.60 42.9330 42.9295 35.1892 41.0284 40.3572 37.3828 

 
50 

-0.90 38.6097 38.6206 31.9531 36.8773 36.5866 33.7497 

-0.10 96.8138 97.0306 96.2252 96.9587 96.5721 96.3271 

-0.60 94.5108 94.5462 93.0483 94.0511 93.9939 93.6507 

 
100 

-0.90 85.2246 84.9196 82.5565 84.7648 84.3686 83.5335 

-0.10 483.6293 484.1915 483.9036 483.9441 483.7461 483.8251 

-0.60 467.8540 468.3894 468.0983 468.1639 467.9549 468.0820 

 
 
 
 
 

MODEL 4 

 
with negative correlations 

  
500 

-0.90 426.9172 427.3187 427.0826 427.1735 426.9890 427.0860 

�

 

 
 

      Model 
 
         (1) 

 
Sample 

Size 
(n) 
(2) 

 
Correlation 
Parameter 

(r) 
(3) 

 
Thin Plate 

Spline 
(TPS) 

(4) 

Thin Plate 
Shrinkage 

Spline 
(TPSS) 

(5) 

 
Cubic 
Spline 
(CS) 
(6) 

 
TPS 
CS 

TPSS 
(7) 

 
CS 

TPSS 
TPS 
(8) 

 
CS 

TPS 
CS 
(9) 

0.10 11.2335 11.0030 10.4969 10.8522 10.9521 10.5641 

0.60 12.8581 13.0200 11.7904 12.4516 12.6395 12.1108 

 
50 

0.90 15.1172 15.6184 13.8236 14.6542 14.9314 14.4707 

0.10 21.4117 21.8416 19.0117 20.3974 20.9324 20.1984 

0.60 26.0498 26.5989 22.8273 24.9518 25.3715 24.3468 

 
100 

0.90 30.5384 31.0657 26.9748 29.6248 29.6891 28.4794 

0.10 113.9904 114.6857 113.6364 114.0834 114.1791 114.0392 

0.60 138.2460 139.2595 138.0487 138.4316 138.7142 138.5280 

 
 
 
 
 

MODEL 1 

 
with positive correlations 

 
 

 
500 

0.90 162.4402 164.0667 162.3754 162.9664 163.2637 163.1849 

0.10 27.0261 26.6287 22.1714 25.4393 24.3779 22.7335 

0.60 25.5721 25.0575 20.9916 24.1200 23.2024 21.6981 

 
50 

0.90 23.3861 22.7095 19.0250 21.7891 21.2184 19.5354 

0.10 59.4765 59.0896 55.3316 58.7004 58.1503 56.6435 

0.60 55.8456 55.5017 51.7551 54.8000 54.4489 53.1756 

 
100 

0.90 49.7524 49.2998 45.8214 48.8786 48.5386 46.9888 

0.10 294.5731 294.6765 294.4920 294.6806 294.4890 294.4065 

0.60 278.5673 278.6108 278.4344 278.6620 278.4174 278.3432 

 
 
 
 
 

MODEL 2 

 
with positive correlations 

 
 

 
500 

0.90 250.2094 250.1426 249.9449 250.1770 250.0325 249.9221 

-0.10 27.4741 27.2363 22.5958 25.8970 25.0455 23.2643 

-0.60 29.1396 28.8466 23.4083 27.6549 26.5452 24.4317 

 
50 

-0.90 33.8512 33.4914 27.3512 31.9290 31.4558 28.9870 

-0.10 60.2703 59.9601 56.3572 59.6121 58.9083 57.4580 

-0.60 63.7203 63.3633 60.3737 63.2379 62.6634 61.5378 

 
100 

-0.90 73.2449 72.9077 70.0161 72.6721 72.4211 71.3603 

-0.10 299.7593 299.8944 299.7432 299.9221 299.7305 299.6301 

-0.60 318.6037 318.7693 318.5133 318.6938 318.4705 318.4499 

 
 
 
 
 

MODEL 3 

 
with negative correlations 

  
500 

-0.90 359.7732 360.0575 359.7934 359.9033 359.8187 359.7591 

-0.10 45.1992 45.2119 36.8272 42.8986 42.4227 39.2779 

-0.60 42.9330 42.9295 35.1892 41.0284 40.3572 37.3828 

 
50 

-0.90 38.6097 38.6206 31.9531 36.8773 36.5866 33.7497 

-0.10 96.8138 97.0306 96.2252 96.9587 96.5721 96.3271 

-0.60 94.5108 94.5462 93.0483 94.0511 93.9939 93.6507 

 
100 

-0.90 85.2246 84.9196 82.5565 84.7648 84.3686 83.5335 

-0.10 483.6293 484.1915 483.9036 483.9441 483.7461 483.8251 

-0.60 467.8540 468.3894 468.0983 468.1639 467.9549 468.0820 

 
 
 
 
 

MODEL 4 

 
with negative correlations 

  
500 

-0.90 426.9172 427.3187 427.0826 427.1735 426.9890 427.0860 

�

 

 
 

      Model 
 
         (1) 

 
Sample 

Size 
(n) 
(2) 

 
Correlation 
Parameter 

(r) 
(3) 

 
Thin Plate 

Spline 
(TPS) 

(4) 

Thin Plate 
Shrinkage 

Spline 
(TPSS) 

(5) 

 
Cubic 
Spline 
(CS) 
(6) 

 
TPS 
CS 

TPSS 
(7) 

 
CS 

TPSS 
TPS 
(8) 

 
CS 

TPS 
CS 
(9) 

0.10 11.2335 11.0030 10.4969 10.8522 10.9521 10.5641 

0.60 12.8581 13.0200 11.7904 12.4516 12.6395 12.1108 

 
50 

0.90 15.1172 15.6184 13.8236 14.6542 14.9314 14.4707 

0.10 21.4117 21.8416 19.0117 20.3974 20.9324 20.1984 

0.60 26.0498 26.5989 22.8273 24.9518 25.3715 24.3468 

 
100 

0.90 30.5384 31.0657 26.9748 29.6248 29.6891 28.4794 

0.10 113.9904 114.6857 113.6364 114.0834 114.1791 114.0392 

0.60 138.2460 139.2595 138.0487 138.4316 138.7142 138.5280 

 
 
 
 
 

MODEL 1 

 
with positive correlations 

 
 

 
500 

0.90 162.4402 164.0667 162.3754 162.9664 163.2637 163.1849 

0.10 27.0261 26.6287 22.1714 25.4393 24.3779 22.7335 

0.60 25.5721 25.0575 20.9916 24.1200 23.2024 21.6981 

 
50 

0.90 23.3861 22.7095 19.0250 21.7891 21.2184 19.5354 

0.10 59.4765 59.0896 55.3316 58.7004 58.1503 56.6435 

0.60 55.8456 55.5017 51.7551 54.8000 54.4489 53.1756 

 
100 

0.90 49.7524 49.2998 45.8214 48.8786 48.5386 46.9888 

0.10 294.5731 294.6765 294.4920 294.6806 294.4890 294.4065 

0.60 278.5673 278.6108 278.4344 278.6620 278.4174 278.3432 

 
 
 
 
 

MODEL 2 

 
with positive correlations 

 
 

 
500 

0.90 250.2094 250.1426 249.9449 250.1770 250.0325 249.9221 

-0.10 27.4741 27.2363 22.5958 25.8970 25.0455 23.2643 

-0.60 29.1396 28.8466 23.4083 27.6549 26.5452 24.4317 

 
50 

-0.90 33.8512 33.4914 27.3512 31.9290 31.4558 28.9870 

-0.10 60.2703 59.9601 56.3572 59.6121 58.9083 57.4580 

-0.60 63.7203 63.3633 60.3737 63.2379 62.6634 61.5378 

 
100 

-0.90 73.2449 72.9077 70.0161 72.6721 72.4211 71.3603 

-0.10 299.7593 299.8944 299.7432 299.9221 299.7305 299.6301 

-0.60 318.6037 318.7693 318.5133 318.6938 318.4705 318.4499 

 
 
 
 
 

MODEL 3 

 
with negative correlations 

  
500 

-0.90 359.7732 360.0575 359.7934 359.9033 359.8187 359.7591 

-0.10 45.1992 45.2119 36.8272 42.8986 42.4227 39.2779 

-0.60 42.9330 42.9295 35.1892 41.0284 40.3572 37.3828 

 
50 

-0.90 38.6097 38.6206 31.9531 36.8773 36.5866 33.7497 

-0.10 96.8138 97.0306 96.2252 96.9587 96.5721 96.3271 

-0.60 94.5108 94.5462 93.0483 94.0511 93.9939 93.6507 

 
100 

-0.90 85.2246 84.9196 82.5565 84.7648 84.3686 83.5335 

-0.10 483.6293 484.1915 483.9036 483.9441 483.7461 483.8251 

-0.60 467.8540 468.3894 468.0983 468.1639 467.9549 468.0820 

 
 
 
 
 

MODEL 4 

 
with negative correlations 

  
500 

-0.90 426.9172 427.3187 427.0826 427.1735 426.9890 427.0860 

�



Betül KAN KILINÇ et al. FLEXIBLE LOGISTIC MODELS WITH CORRELATED VARIABLES

Turkiye Klinikleri J Biostat 2015;7(2)

95

CONCLUSION

Correlated data occur very frequently biostatistics.
In this study, generalized additive logistic regres-
sion is used to examine the relationship between
the correlated explanatory variables and a binary
response. This method uses the smooth functions
that provide flexibility to the relationship between
the variables in the model. For this aim, a binary
response variable and some explanatory variables
are generated for different sample sizes and corre-
lation parameters. Simulation study is conducted to
examine the effect of the correlations between
variables in additive logistic regression. The basis
used to represent the smooth terms is varied from
thin plate regression splines, thin plate shrinkage
splines, cubic regression splines, and some combi-
nations of them.

In general, the change in the basis makes little
difference to the AIC values at the same correla-
tion parameter. However, the models where
smooth terms are represented by cubic regression
splines are more often tend to give smaller AIC val-
ues than the models where other splines are used.
Additionally, when correlation parameter r in-
creases AIC values also increase because of the neg-

ative structure of the explanatory variables with
the response in the first model. However when
correlation parameter r increases AIC values de-
crease due to the positive structure of the explana-
tory variables with the response in the second
model. In the third model, when the absolute of
correlation parameter increases AIC values also in-
crease because of the positive structure of the ex-
planatory variables with the response. In the last
model, when the absolute correlation parameter r
increases AIC values decrease due to the negative
structure of the explanatory variables with the re-
sponse. As a conclusion of this study, additive lo-
gistic regression with high correlated explanatory
variables produces better results in terms of AIC for
all sample sizes when the consistency is provided
between the structure of the explanatory variables
with the response variable and correlation param-
eter. Finally, additive logistic regression when
specifically the highly correlated variables are in
the data could serve a useful tool for statistical
modeling.
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