In tick attachment cases who admitted to the Emergency Department, the tick was removed by a physician in the ED using a forceps (54.2%) which was the most commonly used tool for tick removal. Laboratory parameters [aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), creatine phosphokinase (CK), white blood cell, neutrophil and platelet counts, prothrombin time (PT), activated partial thromboplastin time (aPTT) and the international normalized ratio (INR)] of the hospitalized patients who were suspected CCHF were statistically significantly different when compared to the ones who were not hospitalized.

Conclusion: In tick attachment cases who admitted to the ED, decreased levels of thrombocyte, leukocyte and neutrophil counts and increased levels of ALT, AST, LDH, CK, aPTT, PT and INR are significant for CCHF. An emergency department physician should be alert for these results.

Key Words: Ticks; emergency medicine; hemorrhagic fever virus, Crimean–Congo
Because the incidence of tick-borne diseases, especially Crimean-Congo Hemorrhagic Fever (CCHF) has been increasing in our country and worldwide, understanding tick and tick-borne diseases is becoming increasingly important. It is well recognized that ticks are the most important vectors of disease in Europe, and when compared to the other vectors, they play role in the transfer of a great number of pathogens.\(^1,2\)

The main diseases transmitted by ticks are rickettsiosis, typhus, tick-borne encephalitis, babesiosis, Lyme disease, borreliosis, ehrlichiosis, tularemia and viral hemorrhagic fever. In areas endemic with ticks, increasing the public awareness for these diseases is very important for public health.\(^3\) Since CCHF is a not a well known disease causing death in recent years in our country, it is recommended that people with cases of tick adhesion should seek medical attention. It is extremely important to understand the properties of tick-borne diseases and tick vectors to prevent disease transmission.

In this study, we aimed to emphasize the importance of an emergency approach to treat this disease and to stress the importance of identifying characteristics of patients who are admitted to the hospital for tick attachment and the importance of identifying patient demographics.

MATERIAL AND METHODS

This study was performed at the Emergency Department (ED) at the Uludag University Medical Faculty, and was approved by the Medical Research Ethics Committee (2009-8/33). In this prospective and observational study, we examined the characteristics of tick-borne diseases between April 2009 and May 2010. Three hundred and thirty-six patients who were over 18 years of age, complained of a tick-borne disease, and signed the informed consent form voluntarily participated in this study. Non-hospitalized patients were excluded from follow-up.

Patients complaining of the tick-borne disease were evaluated in the ED by the resident responsible for this study, and then treated with necessary interventions. Ticks were removed by a resident in the ED and the region of attachment was cleaned with antiseptic solutions. Patients were evaluated for tetanus prophylaxis, and if necessary, prophylaxis was administered.

Complete blood count (CBC), urea, creatinine, aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), prothrombin time (PT), activated partial thromboplastin time (aPTT) and the international normalized ratio (INR) were evaluated from venous blood samples obtained from the patients. Doxycycline (100 mg) twice daily for 3 days was prescribed to the patients with normal laboratory results, and the non-hospitalized patients with a recommendation to contact the Department of Infectious Diseases. The patients with pathologic results were consulted with the Infectious Diseases Department.

The information of the patients who participated in the study included: age, gender, date of birth, occupation, date of arrival, tick contact date, place the event occurred, tick’s attachment place on the body, method of removal, tick’s shape, presenting complaint and physical examination findings.

We compared the laboratory parameters (CBC, urea, creatinine, AST, ALT, LDH, CPK, PT, aPTT and INR) of hospitalized and non-hospitalized patients.

STATISTICAL ANALYSIS

SPSS 13.0 packet program was used for the statistical analysis. According to the specifications of variation in this study, descriptive statistics and frequency distributions were calculated. All data were expressed as the mean±standard deviation (SD), minimum-maximum value and median value. Categorical variables were compared with the Mann Whitney U test. A statistical significance of \(p<0.05\) was considered to be statistically significant.

RESULTS

The 336 patients enrolled in this study had a mean age of 43.85±13.88 years. Females comprised 49.1%
of the study population. Regarding the age distribution, the most common age range in patients presenting with a tick attachment was 30-39 years (28%) (Figure 1). According to the arrival month, July (33.0%) was the most common month for presentation and the others were August (32.4%) and September (21.7%) (Figure 2).

We determined where the tick attached in each patient, and the results showed that 49.1% were acquired from urban areas 16.6% were acquired in a field, 8.6% were from a forest, 7.4% were acquired in a park and 3.3% were from animal shelters. The remaining 15.5% were acquired in other places. The site of tick attachment was the lower extremities in 27.4%, upper extremities in 16.4% and abdomen 14.6% of the patients (Figure 3). Of the patients with ticks on their body, 65.5% visited the ED and 19% of them brought the tick with them after removing the tick by themselves. Sixteen percent of the patients gave a tick bite history. For removing ticks, forceps were used in 54.2% of patients, a punch biopsy was performed in 6.8%, a rope method was used in 2.7% of patients and the remaining 36.3% of patients used other methods to remove the tick (e.g., patients and their relatives used tweezers or a needle).

In our study, 30 patients had other complaints in addition to tick attachments. These complaints were classified as fatigue (3.2% of cases), fever (2.6%), abdominal pain (1.4%), nausea and vomiting (1.1%), joint pain (1.1%), flu-like symptoms (1.1%), bleeding (0.9%), headache (0.9%), rash (0.9%), diarrhea (0.6%), myalgia (0.3%) and other symptoms (3.5%). Seven of 30 patients were hospitalized and 23 patients were non-hospitalized with further recommendations. Nine patients had positive physical examination findings, including subfebrile fever in five patients, hypotension in four patients, rash in three patients and epistaxis in two patients.

Comparison of laboratory test results between hospitalized and non-hospitalized patients revealed that AST, ALT, LDH, CK, WBC, neutrophil, platelet, PT, aPTT and INR values were statistically significantly different between these two groups (p <0.05) (Table 1). During this study in our hospital, six patients had a presumed diagnosis of CCHF–rickettsial infection and one patient was referred to the State Hospital for treatment. The remaining 329 patients were prescribed doxycycline and discharged with the recommendations to consult the Infectious Diseases Department. Laboratory parameters in 7 patients with a presumed diagnosis of CCHF included leukopenia (82.6%) in 6 patients, thrombocytopenia (71.4%) in 5 patients and 1 patient had a low hemoglobin level (14.2%).
DISCUSSION

Ticks can transmit a variety of viruses, bacteria or parasites that can cause serious infections or diseases in humans and animals. One of these diseases is CCHF. CCHF threatens public health and can lead to epidemics and carries a risk of high fatality (10-50%). In Africa, Asia, Western Europe and the Middle East, CCHF is known as a fatal viral infection. In our country, after a medical staff member died in 2002, research was initiated to help recognize this disease for the first time. Written and visual media has reported on tick adhesions and deaths. Thus, in a society with serious concerns regarding this issue, the population has developed an awareness of ticks and tick-borne diseases. In addition, the cases admitting to Emergency Services increased.

In the literature, there have been various studies based on demographic characteristics of patients with tick-borne diseases. The mean age of the patients ranged between 6.7 and 46.5 years in these studies. Because the patients in the pediatric age group were observed by the Children’s Emergency Service, they were not included in this study. The average age of patients was 43.85±13.88 years (min: 18 years, max: 79 years) and most applicants were 30-39 years old (28%), which is consistent with the reported findings. When the sex distribution of patients with tick-borne disease is considered, different ratios were observed in men and women. Although some studies suggest that males and females were equally affected, other studies revealed that there was a higher incidence in men. For example, a study from Sri Lanka determined that there was a high incidence in women. Our study indicated that 49.1% of cases were women and 50.9% of cases were men.

Some occupations, such as forestry, farm work and animal husbandry may be classified as risk factors for tick attachment and tick-borne diseases. Additionally, activities such as gardening, picnicking, hiking, fishing and hunting can increase the risk for tick attachment and tick-borne diseases. However, in recent years, tick attachment is not just a problem for people living in rural areas; it is also a problem for people living in big cities. The risk of tick attachment depends upon several parameters including the prevalence of a tick species, their abundance, and their preferences towards humans as hosts. Al et al. reported that 82.05% of patients were living in rural areas, handled animals

<table>
<thead>
<tr>
<th>Biochemical Parameters</th>
<th>Hospitalized patients (n=7)</th>
<th>Non-hospitalized patients (n=329)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (IU/L)</td>
<td>71 (24-3580)</td>
<td>20 (10-68)</td>
<td><0.001*</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>35 (14-1383)</td>
<td>18 (10-123)</td>
<td>0.019*</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>406 (199-3624)</td>
<td>198 (17-435)</td>
<td>0.001*</td>
</tr>
<tr>
<td>CK (IU/L)</td>
<td>617 (34-1526)</td>
<td>102 (9-1305)</td>
<td>0.019*</td>
</tr>
<tr>
<td>WBC (K/mm³)</td>
<td>3070 (730-5540)</td>
<td>7240 (1240-15200)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Neu (K/mm³)</td>
<td>1580 (254-3840)</td>
<td>4020 (1440-12700)</td>
<td><0.001*</td>
</tr>
<tr>
<td>RBC (K/mm³)</td>
<td>4.84 (1.72-5.24)</td>
<td>4.71 (3.14-6.55)</td>
<td>0.368</td>
</tr>
<tr>
<td>Hgb (g/dl)</td>
<td>12.7 (2.82-15.40)</td>
<td>13.8 (7.82-18.7)</td>
<td>0.143</td>
</tr>
<tr>
<td>Hdt (%)</td>
<td>37.9 (9.46-47)</td>
<td>40.5 (26.8-55.1)</td>
<td>0.114</td>
</tr>
<tr>
<td>Pt (K/mm³)</td>
<td>107000 (8780-255000)</td>
<td>257000 (31000-2930000)</td>
<td><0.001*</td>
</tr>
<tr>
<td>PT (sec)</td>
<td>11.7 (10-19.7)</td>
<td>11 (8.55-18.9)</td>
<td>0.038*</td>
</tr>
<tr>
<td>aPTT (sec)</td>
<td>25 (23.2-40.6)</td>
<td>23.4 (10.4-48.7)</td>
<td>0.018*</td>
</tr>
<tr>
<td>NR</td>
<td>1.12 (0.97-2.12)</td>
<td>0.99 (0.3-11.2)</td>
<td>0.004*</td>
</tr>
</tbody>
</table>

AST: Aspartate aminotransferase; ALT: Alanine transaminase; LDH: Lactate dehydrogenase; CK: Creatine phosphokinase; PT: Prothrombin time; aPTT: Activated partial thromboplastin time; INR: International normalization ratio; WBC: Beyac blood cells; Neu: Neutrophil; RBC: Red blood cells; Hgb: Hemoglobin; Hct: Hematocrit; PLT: Platelet; IU: International unit; K: Concentration, *p<0.05.
or visited rural areas in the last two weeks. Other studies also reported that patients with tick attachment, admitted to the hospital, were living in villages or rural areas. In our study, 49.1% of the patients with tick attachment were living in urban areas and the remainder of cases (50.1%) acquired ticks from picnic areas, farms, forests and animal shelters; these rates are close to those reported in the literature.

In our country, several studies have evaluated patients who live in different geographic regions and admitted to the hospital for tick attachments. The results showed that the tick settled on various places on the body. There are several studies investigating tick attachments according to body parts. Gunduz et al. determined that tick bites were present on the leg, foot, abdomen and groin region in 67 patients. Al et al. found that the most common regions were the head, neck, legs and thighs. Additionally, in the other studies, Taskesen et al. showed that the most common region was the leg (37%) and the body (21%). Sümer found that the leg (34.52%) and the body (11.9%), were the most common regions for tick attachment and Kandis et al. showed the leg (23.2%) as the most common region for tick attachment. It is important to know the most common locations for tick attachments to prevent them. It is said that because 20% of ticks were attached to the body in a location where they cannot be visualized by the patient, in order to detect tick attachments in endemic areas, it is necessary to examine the entire body surface.

In our study, we found tick attachments on the lower extremities (27.4%), upper extremities (16.4%) and abdomen (14.6%). We believe that the reason for the common observations of ticks on these parts of the body is because it is easy for the tick to attach to the host while he/she is close to the ground. It is especially easy for the tick to attach to uncovered parts of the host’s body.

In the examination of cases to determine the intensity of tick attachments in Turkey, the most frequent attachments were reported in August. However, studies in Turkey showed the increase in activities of vector ticks due to the temperature. Furthermore, the disease shows seasonal features and has generally been reported during June-September in the Black Sea region and during April-August. Kartı et al. described that most patients visited the hospital in May and August. Al et al. reported that the ratio was highest (69.23%) in June and July. On the other hand, Arıkan et al., Kandis et al., and Sümer reported that the tick attachment ratio was the highest in May and August. In our study, patients presenting with tick attachments were most common in July (33.0%) and August (32.4%), as reported in the literature.

Removal of ticks must be performed as soon as possible and by a physician. Al et al. reported that 64.1% of ticks were removed in a hospital by a doctor and 35.9% of the ticks were removed by the patient or their relatives. According to Kandis et al., 552 patients (86.1%) were admitted to the hospital with tick attachments and ticks were removed by a physician in the ED. Yardan et al. also determined that 25.1% of patients with tick attachments had their ticks removed by a doctor working in an ED. In our study, we discovered that in the majority of cases with tick attachments, the ticks were removed in a health facility unit or were removed by the patient himself or by a relative. Two hundred and twenty-two patients (65.5%) participating in this study were admitted to the hospital with a tick on their body and the tick was removed at the ED by the physician working in the ED.

Today, the most recommended method for tick removal is mechanical removal. Ticks cannot be removed with bare hands. Patients with suspected non-removable ticks should have their tick removed with an excisional biopsy to preserve the purity of the tick, and the remaining tissue should be removed. After removing the tick, the area should be cleaned with a disinfectant. The best method for removing the tick is use of blunt forceps. Celebi et al. used forceps to remove ticks in 70% of cases and used the tickmatic in 30% of cases. In our study, 54.2% of cases in the ED used forceps to remove the ticks. In the other cases (36.3%), tweezers or needles were used by the patient or a relative, to remove the tick.
CCHF disease transmitted by vector ticks is usually characterized by fever and bleeding and leads to severe clinical pathology in humans, and sometimes to death. The disease includes fever, widespread pain in the body, nausea, vomiting, abdominal pain, diarrhea, bleeding and bruising. Additionally, intra-abdominal bleeding, abdominal pain and acute abdomen syndrome may occur.\(^\text{27,28}\)

In the study by Al et al., except for one case, none of the 39 cases were associated with tick attachments.\(^\text{13}\) Patients admitted to the hospital with complaints such as fatigue, abdominal pain and subfebrile fever were not connected with a tick-bite and therefore they were not hospitalized. Six patients with pathologic physical examinations and laboratory findings, who also had more than one complaint, were treated in our hospital. One patient had been hospitalized in the state hospital infectious diseases clinic. Nine patients in this study had pathologic evidence on physical examination. The results indicated subfebrile fever in five patients, hypotension in four patients, rash in three patients and epistaxis in two patients. However, in two patients with a hyperemic rash caused by the tick’s attachment, there were no laboratory findings suggestive on CCHF - Rickettsia disease; these patients were not hospitalized.

Increased levels of AST, ALT, LDH and CK and low platelets and white blood cell counts are important in patients with tick attachment and for tick-transmitted diseases in terms of biochemical tests.\(^\text{28}\) In CCHF cases, leukopenia, thrombocytopenia, AST, ALT, LDH, PT and aPTT increases are noted in various publications.\(^\text{28,29,30}\) In our study, when we compared biochemical parameters of the hospitalized and non-hospitalized patients, AST, ALT, LDH, CK, WBC, neutrophils, platelets, PT, aPTT and INR values were significantly higher in the hospitalized patients. Seven of the patients with a presumed diagnosis of CCHF were hospitalized and test results confirmed a diagnosis of CCHF in 3 patients. All patients were discharged and only 3 of these patients had a definitive diagnosis of CCHF as a result of further investigations.

REFERENCES

18. Sümeyr A. [The evaluation of the patients who were admitted to the emergency department of Kaş State Hospital because of tick biting]. Kafkas Univ Vet Fak Derg 2010;16(1):49-53.