A Clinical and Densitometric Study with Demineralized Bone Matrix and Collagraft™ Bone Graft Matrix

Demineralize kemik greftı ve Collagraft™ kemik grefť maternalı ile yapılan bir klinik ve densitometrik çalışma

Nejat Bora SAYAN*, Ümit Krymet AKAL**, Zafer Özgür PEKTAŞ***, Meltem ŞAHİN****, Ebru ACAR***

* Prof., University of Ankara, Faculty of Dentistry, Dept. of Oral and Maxillofacial Surgery,
** Ass. Prof., University of Ankara, Faculty of Dentistry, Dept. of Oral and Maxillofacial Surgery,
*** DDS, University of Ankara, Faculty of Dentistry, Dept. of Oral and Maxillofacial Surgery,
**** DDS, University of Ankara, Faculty of Dentistry, Dept. of Oral Diagnosis and Radiology, Ankara, TURKEY

Summary

Purpose: The purpose of this study is to demonstrate the clinical application of Collagraft™ strip bone graft matrix and demineralized bone matrix (DBM) in maxillofacial surgery and compare these two bone substitutes radiographically with densitometric analysis.

Materials and Methods: From 32 patients who was referred to Ankara University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Collagraft™ was applied to 12 patients with 14 bony defects, DBM was used in 10 patients with 10 bony defects and 10 patients served as the control group. Standard radiographic examination was performed preoperatively, on postoperative first week, first month and third month.

Results: The bone densitometric analysis was used on the radiographs and the data was evaluated statistically. Postoperative first month data of each three group are evaluated and there was a statistically significant difference between them.(p<0.005)

Conclusion: The total mean values for Collagraft™ and DBM groups were higher than the control group.

Key Words: Demineralized bone matrix, Bone graft matrix, Bone densitometric analysis.

T Klin J Dental Sci 2002, 8:134-139

Özet

Amaç: Bu çalışmanın amacı, Collagraft™ strip kemik matriksini ile demineralize kemik matriksii (DBM)’nin klinik uygulanabilirliğini ve densitometrik analizle ede edilen radyolojik sonuçlarını karşılaştırmaktır.

Bulgular: Radyografilerin densitometrik analizleri yapıldı ve sonuçlar istatistiksel olarak değerlendirildi. Her 3 grupun sonuçlarına göre postoperatif 1. ayda her üç grup arasındaki farklı istatistiksel olarak anlamlı bulundu. (p<0.05)

Sonuçlar: Densitometrik analiz sonrası toplam değerlendirme bakıldığında, Collagraft™ ve DBM gruplarının, kontrol grubuna göre daha yüksek sonuçlar verdiği görülüldü.

Anahtar Kelimeler: Demineralize kemik matriksi, Kemik grefți, Densitometrik kemik analizi

T Klin Diş Hek Bil 2002, 8:134-139

Reconstruction of craniofacial skeletal defects as a consequence of trauma, infection, pathologic conditions, developmental anomalies or oncologic resections, remains a challenge in maxillofacial surgery. In a small bony defect, the blood clot is replaced by immature bone and this replacement is completed by osteoblasts that differentiate from the endosteum or marrow spaces while healing of larger skeletal defects takes place from the periphery over a period of months. When a bony defect left to heal spontaneously, the rapid ingrowth of the connective tissue to the defect site could hinder the bone healing. To overcome this problem, a great number of graft materials have been developed and each year, more than 250.000 bone graft procedures are being performed by reconstructive surgeons to restore lost tissue (1). Other indications for bone grafting comprise the
augmentation of atrophic jaws, temporomandibular joint surgery, orthognathic surgery, sinus lifting and implantation, surgical management of maxillofacial fractures and closure of oro-nasal and oro-antral fistulas. Grafting of craniofacial bony defects can be accomplished by; autogenous bone, allogenic bone, xenogenic bone, lyophilized cartilage and by alloplastic bone substitutes (2-6). Within these groups, autogenous bone grafts remains the most effective grafting material because of its advantages. They are biocompatible, do not cause an immunological reaction, have a high revascularization rate, cost effective and provide the three elements, osteoconduction, osteoinduction and osteogenic cells for bone healing. Although autogenous bone remains the most effective material for bone grafting (7), these techniques subject patients to a second surgical site, which may increase morbidity (8-10%), complications and hospitalization (8). Further complications of autogenous grafting involves the greater risk for wound infection, blood loss, long lasting return to normal function, limited amount of harvested bone and unpredictable graft resorption. From this point of view, many alternative graft materials have been proposed to eliminate or decrease the possible complications or shortcomings associated with autogenous grafting. Collagraft™ Strip bone graft matrix and demineralized bone matrix (DBM) are two of these bone graft substitutes that have been developed to facilitate the grafting procedures in bony reconstruction.

The purpose of this study is to demonstrate the clinical application of Collagraft™ Strip bone graft matrix and demineralized bone matrix (DBM) in maxillofacial surgery and compare these two bone substitutes radiographically with densitometric analysis.

Material and Methods
The study involves thirty-two patients that were referred to Ankara University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery from the Department of Oral Diagnosis and Radiology for the management of various degenerative, inflammatory and cystic lesions. After the surgical enucleation of these lesions, Collagraft™ was applied to twelve patients with fourteen bony defects, DBM was used in ten patients with ten bony defects while another ten patients served as the control group. Standard radiographic examination was performed preoperatively, on postoperative first week, first month and third month for each patient. The periapikal radiographs were obtained using Kodak Ultraspeed-D films (Figure 1,2). For standardization of parallel techniques, Rinn XCP (extension cone paralleling) was used for each patient. The X-ray tube was Heliodent Dentotime with an electronic timer at 15 mA,70 kvp and 0.4 sec. exposure time. Panoramic machine was Trophy, 10 mA,75 kvp and 12 sec. exposure time. The parallel and panoramic films were developed

Figure 1A. Clinical appearance of intraluminal ameloblastoma in the left mandibular bicuspidal region.

Figure 1B. Radiographic view of the lesion.
by using a Durr Dental DL-24 automatic developing machine with Hacettepe solution.

The bone densitometric analysis was used on the radiographs and the data was evaluated statistically with Friedman, Wilcoxon signed Ranks and Kruskal-Wallis tests.

Results

Preoperative, postoperative 1. week, 1.month and 3. month results of densitometric analysis concerning Collagraft™, DBM and control groups were compared in each three separate group, and between these groups (Table 1).

When the data concerning Collagraft™ group is compared between itself, the difference between, preoperative, postoperative 1.week, 1.month and 3. month's results was found statistically significant (p<0.05). When preoperative score was excluded this difference was not statistically significant (p>0.05) and this shows the osteoconductive and osteoinductive effect of Collagraft™ with an enhancement in the postoperative bony regeneration when compared with preoperative period.

When DBM group is compared with the same method, the difference between preoperative, postoperative 1. week, 1. month and 3. month's scores was found statistically significant (p<0.05). The difference was mainly because of data obtained on 1. month. The results also revealed the osteoinductive, osteoconductive and regenerative properties of DBM when compared with preoperative period with the highest score on postoperative 1. month (p<0.05).

The results concerning postoperative 1. month data of each three group are evaluated and there was a statistically significant difference between them (p< 0.05). The difference was a result of the control group.

Finally, when Collagraft™ and DBM groups were compared with control group, the total mean values for two bone substitutes were found higher than the control group with a slight increase in DBM although the difference was not statistically significant (p>0.05).
Figure 2C. Application of Collagraft™ Strip Bone Graft Matrix to bony defect.

Figure 2D. Radiographic appearance after application of Collagraft™ Strip Bone Graft Matrix to the defect (postop. 3. month).

Table 1. Pre-operative, post-operative 1. week, 1.month and 3. month results of densitometric analysis concerning Collagraft, DBM and control groups

<table>
<thead>
<tr>
<th></th>
<th>preoperative</th>
<th>1. week</th>
<th>1. month</th>
<th>3. month</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagraft</td>
<td>0.97821</td>
<td>0.97350</td>
<td>1.13914</td>
<td>1.1336</td>
<td>1.0822</td>
</tr>
<tr>
<td>DBM</td>
<td>1.04840</td>
<td>1.01750</td>
<td>1.20890</td>
<td>1.11070</td>
<td>1.1124</td>
</tr>
<tr>
<td>Control</td>
<td>1.01230</td>
<td>0.81260</td>
<td>0.82980</td>
<td>0.91960</td>
<td>0.8540</td>
</tr>
</tbody>
</table>

P=0.01

Discussion

As a general clinical acceptance, an ideal bone substitute should be biocompatible, have good mechanical properties and show osteoinductive or at least osteoconductive capacities (9). Production of new bone through osteoconductive healing permits bone graft substitutes to provide a suitable matrix for cells to infiltrate and populate (10). Herein, bone graft substitute acts as a scaffold for bone ingrowth and is supposed to be replaced by
bone (9). Osteoinduction was first described by Urist and his colleagues in 1965 when they revealed the development of bone ossicles subsequent to the implantation of acid-demineralized bone into extraskeletal sites (11). Bone graft substitutes may enhance the healing response through osteoinduction in which mesenchymal cells are stimulated by bioactive molecules to differentiate into bone-forming cells (10).

A number of various bone substitutes have been used for many years for the reconstruction of craniofacial defects. Allogenic bone grafts or banked bone substitutes mainly consist of freeze-dried, freeze-dried (lyophilized), demineralized, decalcified, deproteinized, fresh-frozen bone and dehydrated bone with solvents while a wide range of materials have been introduced as alloplastic bone substitutes. Tricalcium phosphate ceramics, hydroxyapatite, HTR (Hard Tissue Replacement), cement, polyethylene and porous polymethylmethacrylate are frequently used materials for the reconstruction of craniofacial bony defects. Autogenous bone grafts have osteogenic and osteoinductive potential while the allografts heal with a combined process of osteoinduction, osteoconduction and resorption and alloplastic grafts heal with osteoconduction (12-15). Despite the current bone graft alternatives that are available in different forms and patterns, many studies are still being held to achieve an ideal graft material.

Collagraft™ Strip Bone Graft Matrix is a composite of suspended fibrillar collagen and a porous calcium phosphate ceramic. The fibrillar collagen is highly purified collagen obtained from bovine dermis and is ninety-five percent type I collagen with small amounts (5%) of type III collagen. The porous calcium phosphate ceramic consists of granules composed of approximately sixty-five percent hydroxyapatite and thirty-five percent tricalcium phosphate. The granules have a pore volume of approximately seventy percent and range in diameter from 0.5 to 1.0 mm. Porous hydroxyapatite and tricalcium phosphate ceramics have demonstrated osteoconductive properties and purified xenographic collagen is also an affective osteoconductive substance that, being purely organic, is rapidly remodeled. Collagraft™ is available as sterile strips that are rehydrated just prior to use. The osteoinductive effect of Collagraf™ was also reported when combined with the patient's own bone marrow (16-18).

Demineralized bone matrix (DBM) is formed by acid extraction of bone, which leaves noncollagenous proteins, bone growth factors and collagen in continuity in a composite. Currently, DBM is available freeze-dried and is processed from cortical or corticocancellous bone as a powder, as crushed granules and as chips. The enhanced osteoinductive capability of DBM is afforded most notably by bone morphogenetic proteins (BMP), although the amount of BMP within demineralized grafts is far lower than in recombinant studies. DBM is processed from human bone that incorporates a permeation treatment that doesn't expose tissue to ethylene oxide or gamma radiation, which may protect more of the BMP. Although DBM offers no structural strength, it has proved useful in facilitating the development of bone that is comparable in mechanical strength to autograft (9, 10, 19, 20).

Besides the individual researches concerning the results and clinical applications of these two graft materials, a comparative clinical or radiographical study is not available to our knowledge. The results of this study reveals an enhancement for bone healing using allogenic and alloplastic bone grafts with their osteoinductive and osteoconductive properties and they help to overcome the disadvantages associated with autogenous grafts. Nevertheless, the choice and the pattern of bone grafting should be considered according to individual factors for each case.

REFERENCES

Yazıma Adresi: Dr.Ümit Kymet AKAL
Ankara University, Faculty of Dentistry
Dep of Oral and Maxillofacial Surgery
06500 Beşevler, ANKARA-TURKEY
umakal68@mynet.com

*This study was presented as an oral presentation in 15th International Conference on Oral and Maxillofacial Surgery, Durban, South Africa, 19-24 May 2001