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Analysis of Determinants of Birth Interval in
Four Disadvantaged Regions of Ethiopia

AABBSS  TTRRAACCTT  OObbjjeeccttiivvee::  Studying the dynamics of spacing of births is important for several reasons
including an understanding of completed family size. In this paper the length of birth interval be-
tween successive children that is called inter-birth interval in four disadvantaged regions of
Ethiopia was considered. To identify and analyze socioeconomic and demographic factors that
may have a significant influence on birth interval length in four disadvantaged regions of Ethiopia.
MMaatteerriiaall  aanndd  MMeetthhooddss::  The data for the study was obtained from Ethiopian Demography and
Health Survey data conducted in 2011. The data contains 3340 women aged from 15-49 years. The
Kaplan-Meier and Cox’s proportional hazards model were employed for the analysis of birth in-
terval data using SPSS 16 and STATA 11 software. The Kaplan Meier median length was used to
examine birth interval differentials by socio economic and demographic characteristics of women.
RReessuullttss::  The results indicated that almost in all birth intervals, educated women, rich women, or-
thodox, urban women, women belonging to Benishangul-gumuz region and women whose index
child has survived have longer birth interval lengths. The Cox regression analyses revealed that re-
gion, place of residence and survival status of the index child were consistently significant while
women educational level and wealth index were significant in some birth intervals. CCoonncclluussiioonn::
Almost in all birth intervals, educated women, rich women, orthodox, urban women, women be-
longing to Benishangul-gumuz region and women whose index child has survived have longer
birth interval lengths.

KKeeyy  WWoorrddss::  Birth intervals; disadvantaged regions; survival analysis; proportional hazards model

ÖÖZZEETT  AAmmaaçç::  Doğum aralığı dinamiklerinin çalışılması, tamamlanmış aile büyüklüğünü de içeren
birçok neden için önemlidir. Bu makalede birbirini izleyen çocuklar arasındaki doğum aralığının
uzunluğu Etiyopya’da ki dört dezavantajlı bölgede dikkate alınan doğum aralığı olarak ad-
landırılmıştır. Sosyoekonomik ve demografik faktörleri belirlemede ve analiz etmede Etiyopya’daki
dört dezavantajlı bölgede doğum aralığının anlamlı bir etkisi olabilir. GGeerreeçç  vvee  YYöönntteemmlleerr:: Çal-
ışmadaki veri seti, 2011’de yapılan Etiyopya Demografi ve Sağlık Çalışması’ndan elde edilmiştir.
Veri, 15-49 yaş aralığında 3340 kadını içermektedir. Doğum aralığı verisinin analizi için SPSS 16 ve
STATA 11 programları kullanılarak Kaplan-Meier ve Cox oransal hazard modeli kullanılmıştır.
Kaplan-Meier medyan süresi, kadınların sosyoekonomik ve demografik karakterlerine göre doğum
aralığındaki farklılıkları incelemek için kullanılmıştır. BBuullgguullaarr::  Sonuçlar, yaklaşık olarak tüm
doğum aralıklarında eğitimli kadınlar, zengin kadınlar, ortodoks, şehirde yaşayan kadınlar, Benis-
hangul-gumuz bölgesine mensup kadınlar ve çocukları sağ kalan kadınların doğum aralıklarından
daha uzun olduğunu belirtmektedir. Cox regresyon analiz sonuçları, kadınların eğitim düzeyinin ve
sağlık indekslerinin bazı doğum aralıklarında anlamlı olmasına rağmen bölgenin, indekslenen ço-
cukların sağkalım durumunun ve ikamet yerinin tutarlı olarak anlamlı olduğunu açığa çıkarmıştır.
SSoonnuuçç:: Yaklaşık olarak tüm doğum aralıkları, eğitimli kadınlar, zengin kadınlar, ortodoks, şehirde
yaşayan kadınlar, Benishangul-gumuz bölgesine mensup kadınlar ve çocukları sağ kalan kadınlar
daha uzun doğum aralıklarına sahiptir.

AAnnaahh  ttaarr  KKee  llii  mmee  lleerr:: Doğum aralıkları; dezavantajlı bölgeler; yaşam analizi; oransal hazard modeli
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birth interval, defined as the length of time
between two successive live births, indi-
cates the pace of childbearing. Information

on birth intervals provides insight into birth spac-
ing patterns, which have far-reaching impact on
both fertility and child mortality levels. The analy-
sis of birth intervals explicitly recognizes the dis-
tinct renewable nature of the fertility process. It
considers the progression from one birth to the
next during a woman’s reproductive life. This study
look at the socio-economic, proximate (biological)
and demographic factors associated with women’s
preferred birth intervals across four disadvantaged
regions of Ethiopia: namely Affar, Somali, Benis-
hangulGumuz and Gambela.

Research findings show also that births occur-
ring within 2 years are riskier and their intervals
are considered to be too short.1 Recent findings
show that intervals of 3 to 5 years are safer for both
mother and infant compared to ≤ 2 years.2-4 How-
ever, too long inter-birth intervals (>5 years) are
associated with increased risk of complications
such as preeclampsia because the mother loses pro-
tective effect from previous pregnancy.2 Poorly
spaced pregnancies have been documented world-
wide to result into unwanted maternal and child
health outcomes. 

The World Health Organization (WHO) rec-
ommends an inter-birth interval length of at least
33 months between two live births in order to re-
duce the risk of adverse maternal and child health
outcomes. However, birth spacing practices in
many developing countries, including Ethiopia re-
main scantly addressed. According to EDHS
2011the median birth interval is 34 months in
Ethiopia which is slightly greater than reported in
2005 that is 33.3 months. Empirical evidence from
many different cultural settings has identified sev-
eral correlates of birth intervals including breast
feeding, contraceptive use, and maternal educa-
tion.5,6 However, to the investigators knowledge
there is limited evidence and there is no study con-
ducted so far to assess factors that determine birth
intervals among four disadvantaged regions of
Ethiopia. Therefore, analysis of factors that can in-
fluence birth interval among women will provide

regional planners useful information that could en-
courage optimal intervals.

METHODOLOGY

The study used the data collected in the Ethiopian
Demographic and Health Survey (EDHS) con-
ducted in 2011. The 2011 EDHS used a two-stage
stratified nationally representative sample of
households for the data collection. In the first stage,
the sample included 624 EAs, 187 in urban areas
and 437 in rural areas. In the second stage, a fixed
number of 30 households were selected for each
EA. Of all the selected 18,720 households, 5,610 are
in urban areas and 13,110 are in rural areas. In 2011
EDHS, a total of 17,385 eligible women were iden-
tified and interviews were completed for 16515
women, yielding a response rate of 95 percent. De-
tails of the reproductive history of women were
collected using the individual women’s question-
naire together with background information. The
study didn’t consider those women who had twin
or multiple births and women whose birth inter-
vals are less than 9 months are excluded from the
analysis. With these restrictions, the study has fi-
nally found 3340women for first birth interval that
had at least one live birth in four disadvantaged re-
gion of Ethiopia. Therefore the study has found
3340 women for first birth interval analysis. Ac-
cordingly, the study considers 2805, 2285 and 1864
women for second, third and fourth birth intervals
respectively.

SURVIVAL DATA ANALYSIS

THE SURVIVAL FUNCTION 

Let T be a random variable, which can take any
non-negative value, associated with the actual sur-
vival times, t (time of having birth). When the ran-
dom variable T has a probability distribution with
underlying probability density function f ( t ), the
distribution function (cumulative distribution
function) of T is given by:

(1)

Which represents the probability that a sub-
ject selected at random will have a survival time
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less than some stated value t. Then, the survival
function S ( t ) is defined as:

(2)

The survivor function can therefore be used to
represent the probability that an individual sur-
vives (without having birth) from the time origin
to sometime beyond t. The survival function is the
probability that an individual will survive at time
tor beyond t, and then relationship between the
probability density function f (t) and S (t) will be:

(3)    

THE HAZARD FUNCTION 

The hazard function is widely used to express the
risk or  hazard of experiencing the event (having
birth) at some time t, and is obtained from the
probability that an individual experiencing the
event at time t, conditional on he or she having sur-
vived (without having  birth) to that time. That is,
the function represents the instantaneous failure
rate for an individual surviving to time t. 

The hazard function h(t) is defined by:   

By applying the theory of conditional proba-
bility and the relationship in equation (3), the haz-
ard function can be expressed in terms of the
underlying probability density function and the
survivor function as follows.7

(5) 

The corresponding integrated or cumulative
hazard function H(t) is defined by:

(6)

Hence the survival function can be rewritten as

(7)

The hazard rate is not a probability, it is a
probability rate. Therefore it is possible that a haz-
ard rate can exceed one in the same fashion as a

density function f (t) may exceed one. Survival data
are summarized through estimates of the survival
and hazard function. The Kaplan-Meier, Nelson-
Aalen and Life Tables are the three commonly used
methods for estimating survival and hazard func-
tions.

KAPLAN-MEIER ESTIMATOR

The first step in the analysis of ungrouped censored
survival data is normally to obtain the Kaplan-
Meier estimate of the survivor function. The Ka-
plan-Meier estimator is the standard estimator of
the survival function (Collett, 2003). This estimator
is also known as the Product-Limit estimator of the
survivor function. Chakraborty et al. (1996) had
used Product Limit Survivorship Function to study
the differential pattern of birth intervals in
Bangladesh. This method is non-parametric or dis-
tribution-free since it does not require specific as-
sumption to be made about the underlying
distribution of the survival times. Suppose the data
consist of n survival times t1, t2……….tn i.e. time
since the previous birth of a child to that woman
and some of these observations are right-censored
times, i.e. for some of the tj, it is only know that in-
dividual j was still without  having births at time
tj. Let r be the number of distinct failure times, r ≤
n, and t(1)< t(2)<……<t(r) be the ordered failure
times. And assume that nj number of women just
prior to time tj exposed to the risk of having birth.
And dj is the number of women having births at
time tj.  

Then the Kaplan-Meier estimator of the sur-
vival function at time t is given by:

(8)

for t(k) ≤ t(k+1), k=1,2,…,r, with Ŝ(t)=1 for t < t(1).

The standard error of the Kaplan-Meier sur-
vival estimator which is also known as the Green-
wood’s formula (Collett, 2003) is given as:

(9)
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Limit estimator of the survivor function. Chakraborty et al. (1996) had used Product Limit 

Survivorship Function to study the differential pattern of birth intervals in Bangladesh. This 

method is non-parametric or distribution-free since it does not require specific assumption to be 

made about the underlying distribution of the survival times. Suppose the data consist of n 

survival times t1, t2……….tn i.e. time since the previous birth of a child to that woman and some 

of these observations are right-censored times, i.e. for some of the tj, it is only know that 

individual j was still without  having births at time tj. Let r be the number of distinct failure 

times, r � n, and t(1)< t(2)<……<t(r) be the ordered failure times. And assume that number of 

women just prior to time tj exposed to the risk of having birth.  And    is the number of women 

having births at time tj.   

Then the Kaplan-Meier estimator of the survival function at time t is given by: 

 

 

                         for t(k) � t(k+1) , k=1,2,…,r, with  (t)=1 for t < t(1). 

 

The standard error of the Kaplan-Meier survival estimator which is also known as the 

Greenwood’s formula (Collett, 2003) is given as: 

 

        Se { (t)} (t)                                                                                       (9) 

Comparing Survival Distributions 
 
The Kaplan-Meier estimator of the survival and hazard functions is the basic quantity in 

describing the overall survival experience. Many types of survival curves can be shown, but the 

important point to note is that they all have the same basic properties. They are monotonic, non 

increasing functions equal to one at zero and zero as the time approaches infinity. Their rate of 

decline, of course, varies according to the risk of experiencing the event at time t but it is 

difficult to determine the essence of a failure pattern by simply looking at the survival curve. 
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Comparing Survival Distributions

The Kaplan-Meier estimator of the survival and
hazard functions is the basic quantity in describing
the overall survival experience. Many types of sur-
vival curves can be shown, but the important point
to note is that they all have the same basic proper-
ties. They are monotonic, non increasing functions
equal to one at zero and zero as the time ap-
proaches infinity. Their rate of decline, of course,
varies according to the risk of experiencing the
event at time t but it is difficult to determine the
essence of a failure pattern by simply looking at the
survival curve. Moreover, it is difficult to provide
useful information about how time to event distri-
butions differs among groups. Hence, it is fre-
quently of interest to compare the survival of one
group of study subjects with another. There are
several tests to compare survival functions between
two or among several groups. Most tests can be
computed from contingency tables for those at risk
at each event time.

The general form of the test statistic for the
comparison of survival functions between two
groups can be defined as follows:

(10)

Where: r is the number of rank-ordered fail-
ure times (event times).

wj is the weight for censor adjustment at time
t(j).

is the expected number of individuals 

who experience an event at time t(j) in group 1,

is the variance of the number

of event occurs at time t(j) in group 1,

d1j is the observed number of failure (event
occur)  at time t(j) in group 1,  

n1j is the number of individuals at risk of event
occur in the first group just before time t(j),  

n2j is the number of individuals at risk in the
second group just before time t(j), 

dj is the total number of events occurred at t(j),

nj is the total number of individuals  at  risk
before time t(j).               

Under the null hypothesis that the two sur-
vivorship functions are the same, and assuming
that the censoring experience is independent of
group, and that the total number of observed
events and the sum of the expected number of
events is large, Q follows a chi-square distribution
with one degree of freedom. 

LLoogg--rraannkk  tteesstt sometimes called the Mantel-
Haenszel test and Cox Mantel log-rank test is the
most frequently used test which is based on
weights equal to one, i.e. wj = 1.  The log-rank test
is a non-parametric test for comparing two or more
independent survival curves. Since it is a non-para-
metric test, no assumptions about the distributional
form of the data need to be made. For the compar-
ison of two groups of survival data the log rank test
statistic is given (Hosmer and Lemesho, 1989) by:                                   

(11)

The statistic QLR follows a chi-square distribu-
tion with one degree of freedom. It tests the extent
to which the observed survival times in the two
groups deviate from those expected under the null
hypothesis of no group differences.It is used to
compare Survival Distribution of various categories
of factors (Nathan, 1966). For the two groups, Hy-
potheses are given as

Ho : S1 (t) = S2 (t)

H1 : S1 (t)> S2 (t)

Khan and Raeside (1998) had used Log-Rank
Test to compare Survival Distribution across vari-
ous categories of factors for the determinants of
first and subsequent births in urban and rural areas
of Bangladesh.

BBrreessllooww’’ss  tteesstt (also known as Gehan’s gener-
alized Wilcoxon test) (Collett, 2003) is applicable
to data where there is progressive censoring. It is
more powerful than the log-rank test when the
hazard functions are not parallel and where there
is little censoring. 
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Moreover, it is difficult to provide useful information about how time to event distributions 

differs among groups. Hence, it is frequently of interest to compare the survival of one group of 

study subjects with another. There are several tests to compare survival functions between two or 

among several groups. Most tests can be computed from contingency tables for those at risk at 

each event time. 

The general form of the test statistic for the comparison of survival functions between two 

groups can be defined as follows: 
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It has low power when censoring is high. It
gives more weight to early failures. 

The Wilcoxon test statistic:

(12)

has a chi-square distribution with one degree of
freedom when the null hypothesis is true. This test
uses weights equal to the number of subjects at risk
at each survival time, i.e. wj = nj.

The log-rank test and Wilcoxon test can easily
be generalized to the comparison of more than two
groups. The statistic for g > 2 groups follows an ap-
proximate χ2 distribution with g−1 degrees of free-
dom (Collett, 2003).

THE COX PROPORTIONAL HAZARDS (PH) REGRESSION
MODEL

The Cox proportional hazards regression model,
also referred to as the Cox model or the relative risk
model, is a flexible tool for assessing the relation-
ship of multiple predictors to a right-censored,
time-to-event outcome, and has much in common
with linear and logistic models. Since the depend-
ent variables, length of birth intervals are time de-
pendent event, the proportional hazard regression
is made to the relative risk of covariates of having
birth among women in four disadvantaged regions
of Ethiopia   using 10 independent variables as pre-
dictors.

The model assumes that all women with same
covariates have identical risk of having birth over
the course of study but these may vary among the
groups with different covariates. The cases only
considered here are those women who already
have one child but have not given birth to a sec-
ond child until the survey time are treated as “cen-
sored” for the first birth interval because in
retrospective survey it is not possible to follow
them until they either have a birth or reach
menopause or even no longer to conceive, those
women who already have two children but not
given birth to a third child are censored for the sec-
ond birth interval. Similarly, women with only
three and four children but not given to the fourth

and fifth child on the survey date are considered as
“censored” cases for the third and fourth birth in-
tervals respectively.

Let T denote failure time (having birth) and
X= (x1,x2,………,xm)� represent a vector of available
covariates. We are interested in modeling and de-
termining the relationship between T and X. 

For the PH model, the hazard function is:8

h (t, X, β) =ho(t).exp (X´β) (13)                                            

Where 

h (t, X, β) represents the hazard function at
time t with covariates XX= (x1,x2,…,xm)�

,,
h0(t) is an unspecified baseline hazard function

that characterizes how the hazard function
changes as a function of survival time (independent
of the covariates), 

β= (β1, β2,…,β m)� is a column vector of m re-
gression parameters,  

e(X´β) = Characterizes how the hazard function
changes as a function of subject covariates, 

t is the failure time (having birth).   

For two different individuals with covariates
X1= (x11,x12,…,x1m)� and X2= (x21,x22,…,x2m)�, the pro-
portion

(14)                                                                                                                                                                                                                                                            

called the hazards ratio (HR), is constant with re-
spect to time t. This defines the proportional haz-
ards property (i.e., the hazard functions for two
different levels of a covariate are proportional for
all values of t).As with linear and logistic regres-
sion modeling, the statistical goal of survival analy-
sis is to obtain some measure of effect that will
describe the relationship between a predictor vari-
able of interest and time to failure, after adjusting
for the other variables included in the model. 

The Cox model formula has the property that
if the Xi

�s are entirely zero, the formula reducesto
the baseline hazard function. This property of the
Cox model is the reason why ho(t) is called baseline
function. Another appealing property of the Cox
model is that, even though the baseline hazard part
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model is unspecified, it is still possible to estimate the �'s in the exponential parts of the model. So, it can 

equally be regarded as linear model which is a linear combination of the covariates of the logarithm 

transformation of the hazard ratio. It is given as: 

 

The quantity  is called the linear combination of the Cox proportional 

hazards model. 

The hazard function in the Cox model is called semi-parametric function since it does not explicitly 

describe the baseline hazard function, ho(t). The survival function of the proportional hazard model is 

estimated as: 
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Where  is the cumulative hazard function at time t for a subject with covariate x.Since we have 

assumed that survival time is absolutely continuous, the value of the cumulative hazard function is 

expressed as: 

                                                                               (17) 

Consequently, from the proportional hazards function, we obtained the survivor function given by: 

                                                                                (18) 

Where:  is the baseline cumulative hazard function and  is the baseline survival function.7 And 

estimation is made through maximum likelihood function.  



of the model is unspecified, it is still possible to es-
timate the β’s in the exponential parts of the model.
So, it can equally be regarded as linear model
which is a linear combination of the covariates of
the logarithm transformation of the hazard ratio.
It is given as:

(15)

The quantity  β´X = β1X1 + β2X2 + ... + βpXp

is called the linear combination of the Cox propor-
tional hazards model.

The hazard function in the Cox model is called
semi-parametric function since it does not explic-
itly describe the baseline hazard function, ho(t).
The survival function of the proportional hazard
model is estimated as:

(16)

Where H(t,X,β) is the cumulative hazard
function at time t for a subject with covariate
x.Since we have assumed that survival time is ab-
solutely continuous, the value of the cumulative
hazard function is expressed as:

(17)

Consequently, from the proportional hazards
function, we obtained the survivor function given
by:

(18)

Where: Ho(t) is the baseline cumulative haz-
ard function and So(t) is the baseline survival func-
tion.7 And estimation is made through maximum
likelihood function. 

RESULTS AND DISCUSSION

RESULTS

The study included 3340 women who had at least
one live birth during the five years preceding the
date of the survey; with 84.1% having second live
birth and 15.9% without having second live birth
(Table 1). Therefore the study has found 3340
women for first birth interval analysis. Accord-

ingly, the study considers 2805, 2285 and 1864
women for second, third and fourth birth intervals
respectively (Table 1). From a total of 2805, 2285
and 1864 women 82.2%, 81% and 77.7% were hav-
ing third, fourth and fifth live births and 17.8%,
19% and 22.32% were without having fourth, fifth
and sixth live births respectively (Table 1). Of the
total of 3340 women included 70.7% had no work,
81.9% live in rural part of the four disadvantaged
regions of Ethiopia (Table 1). Regarding mother’s
religion 14.6% were Orthodox, 61.3% Muslim,
20.6% Protestant and 3.6% were others (Table 1).
With regard to educational attainment, about 74%
of mothers and 60.6% of fathers had no education
while 22% of mothers and 27% of fathers had pri-
mary education and the remaining 4% mothers and
12.4% fathers had attained secondary and higher
education level (Table 1). Among 3340 live births
in first birth interval 54% were female and 20.2%
died as infant (before two years). About 59.0% of
the households were classified as poor, 10.8% of the
households were classified as middle income, while
30.2% were rich (Table 1). 

The mean and median duration of first birth
interval in four disadvantaged regions of Ethiopia
for surviving women were 28.364 and 26.000 re-
spectively (Table 2). Second birth interval is the
shortest among all birth intervals Length of second
birth interval is approximately 27 months. Mar-
ginal difference is observed in the length of first,
third and fourth birth interval length. The average
length of these birth intervals is one month more
than average length of second birth interval (Table
2). It means birth spacing behavior of the four dis-
advantaged regions of Ethiopian women is almost
same for different parities.

The graph of the estimate of overall Kaplan-
Meier survivor function (survival curve) Figure 1-
4, showed that the probability of mothers not
having successive birth is high at ninth months,
which relatively decreases as follow up time
(months after delivery of index child ) increases.

The Log-rank test was performed to investi-
gate the significance of the observed difference in
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the Kaplan-Meier estimates of the survivor func-
tions among different categories of the covariates
(Table 3). There is significant variations in the fail-
ure time (occurrence of birth) of different cate-
gories for, educational level of woman, education
level of husband, wealth index, religion, survival
status of index child, place of residence, region for

all birth intervals (Table 3). There were also signif-
icant variations in the failure time (occurrence of
birth) of different categories for sex of index child
and exposure to mass media for fourth birth inter-
val (Table 3). It means significant variability exists
between birth intervals among various categories
of these factors. Sex of preceding child, access to
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Mean Median

95% Confidence Interval 95% Confidence Interval

Birth intervals Estimate Std. Er. Lower Bound Upper Bound Estimate Std. Er. Lower Bound Upper Bound

1st Birth interval 28.364 0.262 27.851 28.878 26.000 0.185 25.637 26.363

2nd Birth interval 26.722 0.232 26.267 28.178 26.000 0.217 25.575 26.425

3rd Birth interval 28.815 0.303 28.222 29.408 27.000 .297 26.418 27.582

4th Birth interval 28.335 0.329 27.691 28.980 26.000 0.299 25.414 26.586

TABLE 2: Mean and median for survival time of birth intervals and their 95% CI & SE.

FIGURE 1: The plot of the overall estimate of Kaplan-Meier survivor function
for women who were not having second live birth at different durations
(months) of first birth interval.

FIGURE 2: The plot of the overall estimate of Kaplan-Meier survivor function
for women who were not having third live birth at different durations (months)
of second birth interval.

FIGURE 3: The plot of the overall estimate of Kaplan-Meier survivor function
for women who were not having fourth live birth at different durations (months)
of third birth interval.

FIGURE 4: The plot of the overall estimate of Kaplan-Meier survivor function
for women who were not having fifth live birth at different durations (months)
of fourth birth interval.



mass media and work status of woman do not have
significant variation among their categories in first,
second and fourth birth intervals. But sex of index
child and exposure to mass media has significant
variations among their categories in fourth birth
interval (Table 3).

Cox Proportional Hazard Regression Model Results

Model adequacy

At this point we have a preliminary model and the
next step is to assess its fit and adherence to key as-
sumptions before we move to interpretation of the
results obtained. We start here first by checking
the overall goodness of fit using r-square and LR,
Score and Wald tests. We then proceed to check
the proportionality assumption for each covariate
included in the final model.

Overall goodness of fit

The value of        for each birth interval calculated as:

((-20017.810-(-19965.088))]

= 0.0311 for first birth interval.

((-16118.271-(-16081.0195))]

= 0.0262 for second birth interval.

((-12637.9325-(-12566.2095))]

=0.0608 for third birth interval.

((-9621.500-(-9592.308))] =

0.0308 for fourth birth interval.

Due to the presence of high censoring the
value of        is very low for all birth intervals.

From Table 4 we can see that the likelihood
ratio, Score and Wald test statistics are all signifi-
cant at the 1% level of significance for all birth in-
tervals. Thus, the fitted model is a good-fit for all
birth intervals.

Testing the Proportional Hazards Assumption

Two basic assumptions of the Cox model are log-
linearity and proportional hazards. Just like other
regression models, these assumptions need to be
examined. Since all covariates used in the final
model are categorical, there is no need of checking
linearity. The validity of Cox’s regression analysis
relies heavily on the assumption of proportionality
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First birth interval Second birth interval Third birth interval Fourth birth interval

Test Chi Square Df p value Chi Square Df p value Chi Square Df p value Chi Square Df p value

Likelihood Ratio 112.7480 6 <.0001 59.6424 4 <.0001 105.4590 5 <.0001 62.5731 5 <.0001

Score 108.2604 6 <.0001 56.4028 4  <.0001 102.0546 5   <.0001 61.6755 5 <.0001

Wald 107.6993 6  <.0001 56.0137 4   <.0001 100.6297 5   <.0001 61.1800  5 <.0001

TABLE 4: Results of Likelihood ratio, Score and Wald tests of fit of the final model.

Testing Global Null Hypothesis: BETA=0.

���

�

Religion 3 43.109 0.000 10.723 0.000 38.146 0.000 26.895 0.000 

Residence 1 17.827 0.000 22.616 0.000 8.948 0.003 8.154 0.004 

Sex of index child 1 3.641 0.056 0.106 .744 1.780 0.182 7.280 0.007 

Current Work status of 
mothers 

1 3.035 0.082 1.244 0.265 2.194 0.139 4.149 0.042 

Wealth index 2 8.071 0.018 19.696 0.000 21.208 0.000 39.130 0.000 

Media access 1 2.018 .155 .995 0.318 0.450 0.503 3.013 0.083 

Survival Status of index child 1 97.283 0.000 18.826 0.000 104.418 0.000 86.099 0.000 
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1st Birth interval 2nd Birth interval 3rd Birth interval 4th Birth interval

Covariates Df Chi-square p-value Chi-square p-value Chi-square p-value Chi- square p-value

Mother’s  educational level 2 52.045 0.000 33.812 0.000 50.786 0.000 17.864 0.000

Region 3 25.364 0.000 19.983 0.000 58.947 0.000 23.919 0.000

Father’s educational level 2 48.352 0.000 19.096 0.000 35.937 0.000 13.987 0.001

Religion 3 43.109 0.000 10.723 0.000 38.146 0.000 26.895 0.000

Residence 1 17.827 0.000 22.616 0.000 8.948 0.003 8.154 0.004

Sex of index child 1 3.641 0.056 0.106 .744 1.780 0.182 7.280 0.007

Current Work status of mothers 1 3.035 0.082 1.244 0.265 2.194 0.139 4.149 0.042

Wealth index 2 8.071 0.018 19.696 0.000 21.208 0.000 39.130 0.000

Media access 1 2.018 .155 .995 0.318 0.450 0.503 3.013 0.083

Survival Status of index child 1 97.283 0.000 18.826 0.000 104.418 0.000 86.099 0.000

TABLE 3: Results of log-rank test of equality of survival distribution for the different categorical covariates
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Birth intervals Covariates DF Parameter estimates Standard Error Chi-square p value Hazard Ratio

1st birth interval REGION 1 0.10283       0.13326        0.5955        0.4403       1.108

SVST 1 -0.19537              0.34685 0.3173        0.5733       0.823

MOEDC 1 -0.56846       0.28901        3.8688        0.0492       0.566

RESIDENCE 1 -0.51452       0.40328        1.6278        0.2020       0.598

RELIGION 1 -0.31275       0.20230        2.3900        0.1221       0.731

WEALTH 1 -0.01834       0.17903        0.0105        0.9184       0.982

REGION*log(time) -0.04381       0.04096        1.1438        0.2848       0.957

SVST*log(time) 1 -0.00203       0.10820        0.0004        0.9850       0.998

MOEDC*log(time) 1 0.10211       0.08818        1.3410        0.2469       1.108

RELIGION*log(time) 1 0.10359       0.06195        2.7965        0.0945       1.109

RESIDENCE*log(time) 1 0.11224       0.12268        0.8371        0.3602       1.119

WEALTH* log(time) 1 -0.02179       0.05500        0.1570        0.6919       0.978

2nd birth interval SVST 1 0.19008       0.41174        0.2131        0.6443       1.209

REGION 1 -0.11073       0.15433        0.5148        0.4731       0.895

MOEDC 1 0.47753       0.38452        1.5423        0.2143       1.612

RESIDENCE 1 -0.35232       0.48862        0.5199        0.4709       0.703

SVST*log(time) 1 -0.12243       0.12917        0.8983        0.3432       0.885

MOEDC*log(time) 1 -0.21554       0.12015        3.2182        0.0728       0.806

REGION*log(time) 1 0.03807       0.04834        0.6201        0.4310       1.039

RESIDENCE*log(time) 1 0.05006       0.15182        0.1087        0.7416       1.051

3rd birth interval SVST 1 -0.86233       0.43145        3.9947        0.0456       0.422

REGION 1 -0.01749       0.16486        0.0113        0.9155       0.983

MOEDC 1 -0.34188       0.50200        0.4638        0.4958       0.710

RESIDENCE 1 0.21926       0.52471        0.1746        0.6760       1.245

WEALTH 1 -0.22079       0.23187        0.9067        0.3410       0.802

SVST*log(time) 1 0.15980       0.13739        1.3529        0.2448       1.173

MOEDC*log(time) 1 -0.00570       0.15553        0.0013        0.9708       0.994

REGION*log(time) 1 0.00565       0.05145        0.0121        0.9125       1.006

RESIDENCE*log(time) 1 -0.10059       0.16280        0.3818        0.5366       0.904

WEALTH* log(time) 1 0.04561       0.07209        0.4003        0.5269       1.047

4th birth interval SVST 1 -0.83871       0.50178        2.7938        0.0946       0.432

RESIDENCE 1 -0.73828       0.64008        1.3304        0.2487       0.478

REGION 1 -0.02895       0.18388        0.0248        0.8749       0.971

WEALTH 1 0.28892       0.25167        1.3180        0.2510       1.335

SEX 1 0.18118       0.40143        0.2037        0.6517       1.199

SVST*log(time) 1 0.18113       0.16063        1.2715        0.2595       1.199

REGION*log(time) 1 0.00565       0.05820        0.0094        0.9227       1.006

RESIDENCE*log(time) 1 0.15828       0.19785        0.6400        0.4237       1.171

WEALTH* log(time) 1 -0.13380       0.07894        2.8727        0.0901       0.875

SEX* log(time) 1 -0.10146       0.12679        0.6403        0.4236       0.904

Linear Hypotheses Testing Results for each birth intervals

Label Wald  Chi-Square DF p value

test_proportionality 1st Birth interval 8.0076              6 0.2375

2nd Birth interval 2.2296      4          0.6936

3rd Birth interval 5.9920            5 0.3070

4th Birth interval 5.2162               5 0.3901

TABLE 5: Result of test of proportionality assumption for each covariate in the preliminary final model.



of the hazard rates of individuals with distinct val-
ues of a covariate. If the proportionality assump-
tion holds the lowest smoothing curve should be
approximately horizontal line around zero and the
distribution of residuals over time is random, with
no particular trend with time. Alternatively, we
can run a model with each covariate (individually)
by introducing a time-dependent interaction term
for that covariate. If the proportional hazards as-
sumption is valid for the covariate, the time-de-
pendent interaction term should not be significant.
The following table display the SAS output of test
of proportionality assumption.

From Table 5, we can see the Wald chi-square
values and the corresponding p-values for each co-
variate in all birth intervals. Since the p-values for
each interaction of covariate with logarithm of
time are greater than 0.05, the proportionality as-
sumption is satisfied. The global fit test also shows
that the Wald chi-square test statistic is not signif-
icant which indicates that the proportional hazards
assumption is not violated.

DISCUSSION OF THE RESULTS

The study assessed duration of birth interval and
examined the demographic and socioeconomic de-
terminants of birth interval in four disadvantaged
regions of Ethiopia. The effects of the various co-
variates on transition to 1st up to 5th births are
shown in Table 6.This table provide the final model
results based on the determinants of length of birth
interval.

From the final model (Table 6), the significant
determinants of first birth interval are region, place
of residence, religion, wealth, mothers’ educational
level and survival status of index child.  Second
birth interval is significantly determined by region,
place of residence, mothers’ educational level and
survival status of index child. In the determination
of third birth interval region, place of residence,
wealth, mothers’ educational level and survival sta-
tus of index child has played significant role. While
in the determination of fourth birth interval re-
gion, place of residence, sex of index child, wealth
and survival status of index child contribute signif-
icantly.

In all birth orders the socio demographic fac-
tor (region) has influence in the length of all birth
intervals (Table 6). The hazard ratios of having sec-
ond birth(second child) for mothers of Benis-
hangul-gumuz region and Ethiopia-somali region
as compared to mothers of Affar region were
1.163(95% CI: 1.050, 1.289) and 1.120(95% CI:
1.000,1.254)respectively. This means mothers of
Benishangul-gumuz and Ethiopia-somali had
16.3% and 12% more likely to have second birth
than mothers of Affar region respectively (Table 6). 

The hazard ratios of having third birth (third
child) for mothers of Ethiopia-somali region as
compared to mothers of Affar region was
1.158(95% CI:1.031, 1.301). This means mothers of
Ethiopia-somali region mothers had 15.8% more
likely to have third birth than mothers of Affar re-
gion. Mothers of Ethiopia-somali region as com-
pared to mothers of Affar region had 12%, 15.8%,
33.2% and 12.9% more likely to have their second,
third, fourth and fifth birth than mothers of Affar
region respectively. This indicates that Ethiopia-
somali region mothers had short birth interval
(Table 6). 

In this study education of women has shown
positively related to birth spacing. The effect of ed-
ucation is significant in all models except for fourth
birth interval (Table 6). Women’s education has
important significant effect on risk of having suc-
cessive birth. It is observed that women with sec-
ondary and higher educational background had
32.7% ,38.8% and 35.7% less chance of having sec-
ond birth (second child),third birth(third child)
and fourth birth(fourth child) than non educated
women respectively .From first to third birth in-
tervals, the likelihood of having births decreases
with the increasing level of education of women.
The spacing between births after first birth among
educated women indicates the intention to limit
total children ever born. This finding is consistent
with that educated women always had longer birth
interval than non-educated women.9

Wealth index has shown consistent positive
effect on birth spacing except for second birth in-
terval. The estimated relative risks (hazard ratios)
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Covariates B SE Wald Df Sig. Exp(B) 95.0% CI for Exp(B)

1st birth interval REGION(Affar) 0.151 0.052 19.037 3 0.000

Ben-gumuz 0.114 0.058 8.388 1 0.004 1.163 1.050 1.289

Ethio-Somali -0.062 0.065 3.863 1 0.049 1.120 1.000 1.254

Gambella 0.905 1 0.342 0.940 0.827 1.068

RELIGION(Orthodox) 13.469 3 0.004

Muslim 0.236 0.065 13.205 1 0.000 1.266 1.115 1.437

Protestant 0.177 0.072 5.953 1 0.015 1.193 1.035 1.376

Other 0.142 0.112 1.620 1 0.203 1.153 0.926 1.434

MOEDC(No edu) 27.074 2 0.000

Primary -0.211 0.050 17.817 1 0.000 0.810 0.734 0.893

Secondary& higher -0.396 0.113 12.240 1 0.000 0.673 0.539 0.840

WEALTH(poor) 12.981 2 0.002

Medium -0.095 0.064 2.191 1 0.139 0.910 0.802 1.031

Rich -0.175 0.050 12.330 1 0.000 0.839 0.761 0.926

SVST(Dead) -0.191 0.048 15.925 1 0.000 0.826 0.752 0.908

RESIDENCE(Rural) -0.129 0.055 5.493 1 0.019 0.879 0.789 0.979

2nd birth interval REGION(Affar) 17.489 3 0.001

Ben-gumuz -0.093 0.057 2.693 1 0.101 0.911 0.815 1.018

Ethio-Somali 0.147 0.059 6.141 1 0.013 1.158 1.031 1.301

Gambella -0.066 0.062 1.128 1 0.288 0.936 0.828 1.058

MOEDC(No edu) 10.602 2 0.005

Primary -0.099 0.061 2.647 1 0.104 0.906 0.804 1.020

Secondary& higher -0.491 0.163 9.092 1 0.003 0.612 0.444 0.842

SVST(Dead) -0.196 0.050 15.496 1 0.000 0.822 0.746 0.906

RESIDENCE(Rural) -0.224 0.063 12.668 1 0.000 0.800 0.707 0.904

3rd birth interval REGION(Affar) 45.771 3 0.000

Ben-gumuz -0.083 0.064 1.667 1 0.197 0.921 0.812 1.044

Ethio-Somali 0.287 0.065 19.495 1 0.000 1.332 1.173 1.513

Gambella -0.149 0.071 4.410 1 0.036 0.861 0.749 0.990

MOEDC(No edu) 19.241 2 0.000

Primary -0.299 0.073 16.806 1 0.000 0.742 0.643 0.856

Secondary& higher -0.441 0.230 3.674 1 0.055 0.643 0.410 1.010

WEALTH(poor) 6.403 2 0.041

Medium -0.062 0.075 0.693 1 0.405 0.940 0.811 1.088

Rich -0.151 0.060 6.351 1 0.012 0.860 0.764 0.967

SVST(Dead) -0.366 0.057 40.665 1 0.000 0.693 0.620 0.776

RESIDENCE(Rural) -0.155 0.067 5.287 1 0.021 0.857 0.751 0.977

4th birth interval REGION(Affar) 17.451 3 0.001

Ben-gumuz -0.143 0.073 3.868 1 0.049 0.867 0.751 1.000

Ethio-Somali 0.121 0.073 2.790 1 0.095 1.129 0.979 1.301

Gambella -0.154 0.079 3.788 1 0.052 0.857 0.733 1.001

SVST(Dead) -0.279 0.066 17.722 1 0.000 0.756 0.664 0.861

WEALTH(poor) 12.046 0.002

Medium -0.113 0.084 1.783 0.182 0.893 0.757 1.054

Rich -0.235 0.069 11.695 0.001 0.790 0.691 0.904

RESIDENCE(Rural) -0.261 0.082 10.204 1 0.001 0.770 0.656 0.904

SEX(female) -0.140 0.053 7.004 1 0.008 0.870 0.784 0.964

TABLE 6: Parameter estimates of the final model.



of having second, fourth and fifth births for rich
women as compared to poor women are.839 (95%
CI: .761, .926), .860(95% CI: .764, .967) and .790
(95% CI: .691, .904) respectively (Table 6). This
means rich women were 16.1%, %, 14% and 21%
less likely to have second, fourth and fifth births
respectively than poor women. Apart from parity
two women belonging to rich wealth index had
longer birth interval as compared to those belong-
ing to poor categories of wealth index. This find-
ing is consistent with.10

Survival status of the index child is consis-
tently significant in each birth intervals. The esti-
mated relative risks (hazard ratios) of having
second, third, fourth and fifth births for women
whose index child survive  as compared to women
whose index child did not survive are .826 (95% CI:
.752-.908), .822 (95% CI: .746-.906), .693 (95% CI:
.620-.776) and .756 (95% CI: .664-.861) respec-
tively (Table 6).  This means women whose index
child survive were 17.4%, 17.8%, 30.7% and 24.4%
less likely to have second, third, fourth and fifth
births respectively than women whose index child
did not survive. This finding is consistent with pre-
vious research in Ghana and Kenya about the ef-
fects of the status of the index child on the risk of
subsequent births.11 Based on this, women with
child loss experience are less likely to use contra-
ception and more likely to discontinue if they are
already using contraception. The reason behind
this is that couples want make deliberate efforts to
bear another child in the hope of replacing the lost
one.

In all birth orders the socio demographic fac-
tor place of residence has influence in the length
of birth interval (Table 6). The estimated relative
risks (hazard ratios) of having second, third, fourth
and fifth birth for urban women as compared to
rural women are .879 (95% CI: .789-.979),
.800(95% CI: .707-.904), .857 (95% CI: .751-.977)
and .770 (95% CI: .656-.904) respectively.  This in-
dicates that women who are lived in urban area
were 12.1%, 20%, 14.3% and 23% less likely to
have second, third, fourth and fifth birth respec-
tively than the women in rural area. The 95% con-

fidence intervals also suggests that the risks of hav-
ing second, third, fourth and fifth births for urban
women could be as low as .789 and as high as.979,
as low as .707 and as high as .904, as low as .751 and
as high as .977, as low as.656 and as high as .904 re-
spectively. Hence, urban mothers had birth inter-
val for a relatively-longer duration than the rural
Mothers did in first to fourth birth intervals. The
reason may be the lack of educational facilities,
working status and for lack of consciousness. This
finding is consistent with.3,12

CONCLUSION

This study was intended to identify socio-economic
and demographic determinants of birth interval in
four disadvantaged regions of Ethiopia based on
2011 EDHS data. Ten covariates were selected for
the study and 10 uni-variable Cox Proportional
Hazards regression Model were developed for each
birth interval to assess the relation between length
of birth interval and the selected variables. Based
on the results, the multi-variable Cox Proportional
Hazards regression Model of length of birth inter-
val was employed for each birth interval to select
the most important determinants of birth interval. 

The Kaplan-Meier survival estimate results
showed that the probability of women not having
successive birth is high in the ninth months, which
relatively decreases as follow up time (months after
delivery of index child ) increases. The probabilities
of not having second, third, fourth and fifth live
births at ninth months were 98.92%, 98.97%,
98.95% and 98.5%respectively. The probability of
not having second, third, fourth and fifth live
births at 36 months were 20.15%, 19.51%, 22.80%
and 24.88% respectively in four disadvantaged re-
gions of Ethiopia . The mean and median duration
of first birth interval in four disadvantaged regions
of Ethiopia for surviving women were 28.364 and
26.000 respectively. Second birth interval is the
shortest among all birth intervals Length of second
birth interval is approximately 27 months. Mar-
ginal difference is observed in the length of first,
third and fourth birth interval length. The average
length of these birth intervals is one month more
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than average length of second birth interval.

The Kaplan Meier median length was used to
examine birth interval differentials by socio eco-
nomic and demographic characteristics of women.
The results indicated that almost in all birth inter-
vals, educated women, rich women, orthodox,
urban women, women belonging to Benishangul-
gumuz region and women whose index child has
survived have longer birth interval lengths

We recommend the following based on our
findings:

Government should motivate couples to in-
crease the birth interval length in case of death of
preceding child and also strengthen health pro-

grams. It is necessary for the maternal and child
health. If long birth interval is promoted in case of
death of preceding child, it will cause decline in
fertility. 

Women should be assisted with the devel-
opment and implementation of comprehensive
family planning programs that have effective out-
reach services and are accessible geographically, so-
cially and financially.

Birth interval length is shorter than three
years for all order births. There is need of effective
policy for promotion of long birth space (at least 4
to 5 years) between two consecutive children. Lady
health visitors can be used for this purpose. 
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