Limbal Kök Hücreler ve Klinik Önemleri

LIMBAL STEM CELLS AND THEIR CLINICAL SIGNIFICANCE

Özgür ŞANLI*, Murat DOĞRU**, Haluk ERTÜRK***

* Arş.Gör.Dr., Uludağ Üniversitesi Tip Fakültesi, Göz Hastalıkları AD,
** Yrd.Doç.Dr., Uludağ Üniversitesi Tip Fakültesi, Göz Hastalıkları AD,
*** Prof.Dr., Uludağ Üniversitesi Tip Fakültesi, Göz Hastalıkları AD, BURSA

Özet

Anahtar Kelimeler: Limbal kök hücre, Oküler yüzey, Amniyon zar transplantasyonu

Summary

This article focuses on the clinical and experimental evidence about the existence of limbal stem cells which are thought to play an important role in corneal regeneration. Limbal stem cell deficiency results in progressive invasion of the cornea by the conjunctival epithelium, superficial corneal neovascularization, epithelial basement membrane damage and chronic inflammatory cell infiltration in the cornea. The initial reported methods of ocular surface reconstruction included conjunctival transplantation and keratoepitheliotherapy. Limbal transplantation is probably the best current option for ocular surface reconstruction in patients with total corneal stem cell deficiency. It has been reported that auto or allograft transplantation and simultaneous amniotic membrane transplantation provides favourable results in unilateral limbal stem cell deficiency. Recently, it has been advocated that solitary amniotic membrane transplantation is an effective treatment modality in partial limbal stem cell deficiency.

Key Words: Limbal stem cell, Ocular surface, Amniotic membrane transplantation

Limbal Anatomi

Limbus, kornea-sklera bileskesinde yer alan, gri-kahverengi, yan trasparan 1-2 mm. genişliğinde bir geçiş zonudur. Anatomi yapısına hem kornea hem de sklera katkida bulunur. Korneal limbusunun derinliği yaklaşık 1 mm.’dir. Üstte ve altta daha geniş, temporal ve medialde daha dardır. Anatomi olarak limbus katları, yüzeyden derin doğru;

* konjunktiva epiteli,
* konjunktival stroma,
* Tepen kapsülü,
* episklera ve
* limbal korneaskleral stromadan oluşur.

Limbus yüzeyine doğru limbal kök hücreleri içeren, Vogt palisadları denen kahverengi radial uzantılar mevcuttur (Resim 1). Bu yapılar 1.5-2 mm. aralıklarla dizi olup, içerisinde kan damarları, lenfatikler ve sinirler yer alır. Palisadlar 0.5 mm. genişliğinde ve yaklaşık 4 mm. uzunlukdadır. Her 90 derecelik kadarda 32-36 adet bulunur. Alt limbusa daha belirginlerdir (1, 2).

Limbal epitel, 8-12 katlı nonstratifiye skuamoz epitelden oluşur. Üst katlar kornea epiteline benze- mekte beraber farklı olarak melanositler ve Langerhans hücrelerini içerir. Limbal bazal hücre- ler, korneanın epitel hücrelerinden daha az sitoplazma içeriğidir ve daha küboidal yapılıdırlar. E-
leksyon mikroskopisi ile yapılan çalışmalarla üç tip limbal bazal epitel kök hücresi tanımlanmıştır (3):

1) Son derece iyi diferansiyele ve büyük sitoplazmalı tip I hücreler,

2) Daha küçük, leksyon dens, minimal sitoplazmalı ve çok az organel içeren diferansiyol olmamış tip II hücreler,

3) Birinci ve ikinci tipler arasında yer alan geçiş formlarını içeren tip III kök hücreler.

Limbal bağ dokusu gevärek irregüler dağılımlı gösteren kollajen liflerinden oluşur. Korneal stromadan farklı olarak, melanosit, makrofaj, mast hücreleri, lenfositler, plazma hücreleri, kan damarları, lenfatikler ve miyelizine olmamış sirir lifleri içerir. Ön siller arterin episkleral dallarından damarlanır.

Limbusun fonksiyonları periferal korneanın beslenmesi ve aköz hümörün dışa akınma katkısı sağlanmaktadır.

Limbal Kök Hücre Fizyolojisi

Korneal Kök Hücrelerinin Varlığına Dair Deneysel Veriler

Histolojik olarak, direkt kök hücrelerini gösterir kanıtlar yoktur. Varlıklar indirekt (deneyesel) çalıșmalara dayandırılmıştır. Davenger ve Everson, limbusa bulunan pigment hücrelerin santriptel olarak korneanın merkezine doğru yapanıkları gözlemleyerek yapanıkları bir çalıșmada; limbal epitel yeteneğin, korneal epitelin yenilenmesi sürecinde rol oynadıkları göstürüntü ortaya atı advocates antikorları kullanarak limbal bazal epitel hücreleri boyanmıştır. Bu boyanan alana perlimbal kornea

ve konjonktiva epitel hücrelerinin de dahil olduğu görülmuştur.

- H-3 timidin ile boyama yapıldığında yalnızca limbal bazal hücreler bu boyayı alarak uzun süre tutmuştur. Bu da uzun hücre sikluslarının var olduğunun ve dolayısıyla uzun bir ömürlerinin olmadığını göstergesi olmuştur.

- Kültür ortamında, limbal bazal epitel hücreleri, merkez korneanın alınanlara göre daha yüksektir ve proliferatif potansiyele sahiptir.

- Limbal bölgenin cerrahi olarak eksiz e-dilmiş kornea fenotipinde olmayan bir epitel tipinde iyileşme ile sonuçlanır.

- Limbal transplantasyon sonrasında kornea epiteline benzer bir epitel ile korneal epitel rejenerasyonu gerçekleşir.

- Santral korneal epitel defektleri limbal bazal epitel hücrelerinde mitoza sebep olur.

- Bir kök hücre fonksiyon bozukluğu olduğu düşünülen korneal intraepitelyal neoplasizler her zaman limbal epitelden köken alır.

Yine deneySEL bulgular işığında dolaşımdaki faktörlerin, limbal kök hücreleri ve terminal amplifiye hücreleri etkilediği sonucuna varılmıştır (5,7). Kök hücrelerinin terminal amplifiye hücrelerle farklılaşmasıdırı serum faktörlerinin etkili olduğu düşünülmektedir. Bunlar arasında: epidermal büyüme faktörü (EGF), alfa-fibroblast büyüme faktörü (α-FGF), betafibroblast büyüme faktörü (β-FGF), sinir büyüme faktörü (NGF), transforme edici büyüme faktörü-beta (TGF-β), retinoik asit ve ekstrasellüler kalsiyum bulunmaktadır.

Limbal Kök Hücrelerin Klinik Önemi

Limbal epitel bölgesinde kök hücreler veya stromaya hasar veren hastalıklar limbal kök hücre yetmezliğine sebep olabilirir (Tablo 1). Limbal kök hücre yetmezliğinde epifora, fotofobi, ve gürmede azalma meydana gelebilir. Reküran kornea erozyonu görülmeleri de nadir olduklarıdır (1,5). Dikkatli bir biyomikroskop muayenesi ile konjonktival forniklerin durumunu, Vogt Palisadlarındaki silinme, korneal neovaskülerizasyon ve konjonktivalizasyon gözden geçirilmelidir (Resim 2). Flöresein

Tablo 1. Limbal kök hücre yorulması/yetmezliği yapan oküller yüzey hastalıkları

<table>
<thead>
<tr>
<th>Konjenital hastalıklar:</th>
<th>İlaç birikimi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konjenital eritrodermi</td>
<td>Alun</td>
</tr>
<tr>
<td>Aniridi</td>
<td>Bakır</td>
</tr>
<tr>
<td>Metabolik hastalıklar:</td>
<td>Fenotiazinler</td>
</tr>
<tr>
<td>Güt</td>
<td>Sistemik kemoterapi (FK-506,MMC)</td>
</tr>
<tr>
<td>Wilson hastalığı</td>
<td>Hipersensitivite reaksiyonları:</td>
</tr>
<tr>
<td>Vitamin-A eksikliği</td>
<td>Flikenli keratin</td>
</tr>
<tr>
<td>Gaucher hastalığı</td>
<td>Vernal keratokonjunktivit</td>
</tr>
<tr>
<td>Juvenil ksantogranülom</td>
<td>Staffilokok hipsersensitivitesine bağlı marjinal infiltratlar</td>
</tr>
<tr>
<td>Amiloidoz</td>
<td>Stevens-johnson sendromu</td>
</tr>
<tr>
<td>Porfiri</td>
<td>Toksik epidermal nekrozis</td>
</tr>
<tr>
<td>Enfeksiyonlar:</td>
<td>İlaca bağlı psödopenfigoid</td>
</tr>
<tr>
<td>Bakteriyel limbal ülser ve infiltratlar</td>
<td>Kollajen vasküler hastalıklar:</td>
</tr>
<tr>
<td>Trahom</td>
<td>Romatoid artrit</td>
</tr>
<tr>
<td>Limbal virüs enfeksiyonları</td>
<td>Otoimmun hastalıklar:</td>
</tr>
<tr>
<td>- herpes simplexks</td>
<td>Mooren ülseri</td>
</tr>
<tr>
<td>- varisella</td>
<td>Oküler sikatrisyal penfigoid</td>
</tr>
<tr>
<td>- molluscum contagiosum</td>
<td>Kimyasal ve termal yanıklar</td>
</tr>
<tr>
<td>- vaccinia</td>
<td>Radyasyon</td>
</tr>
</tbody>
</table>

İatrojenik

boyama ile konjonktivalizasyon sınırları belirlenmeye çalışılması (Resim 3), floresein parçalama zamanı ve Schirmer testi ile gözyaşının durumunu, impresyon sitolojisi ile konjonktival epitel ve goblet hücrelerine ait değişimler de değerlendirilmelidir. Histopatolojik olarak limbal kök hücre yetmezliğinde korneanın konjonktiva epitel hücreleri tarafından ilerleyici zarda invazyonu, yüzeyel vaskülerizasyon, kornea epiteli bazal membran hasarı ve kronik enfamatur hücre infiltrasyonu görülür (8). Bu histopatolojik bulgular limbal kök hücre yetmezliği olan korneaların neden konvansiyonel keratoplastiye iyi aday olmadıklarını da açıklayabilmektedir (9).

Dua ve Tsai gibi yazarlar unilateral limbal kök hücre yetmezliği olup otograf limbal transplantasyon uyguladıkları olgularda diğer gözlerde kronik enfiamasyon, epitel defekt veya korneal vaskülerizasyon gibi komplikasyonlara rastlamanmışlardır (20, 24). Dua sadece bir olguda yoğun lubrikan tedaviye cevap veren filamenter keratit gelişğini bildirmiştir. Dua otograf limbal transplantasyon uygulayıp 18 ay takip ettiği 6 olgunun 5’inde görmede artma ve takip süresince oküler yüzey stabilizasyonu sağlandığını rapor etmektedir (20). Daya ve arkadaşları HLA uyumu ile ayrıca limbal doku alımı, otograf limbal transplantasyon uyguladıkları 8 olguda 26 aylık takip süresi boyunca oküler yüzeyin stabil kaldığını, donör ve alıcılar arasında hibrib komplikasyona rastlamadığını rapor etmişlerdir (25). Limbal doku transplantasyonu bir diğer yöntemi ise limbal dokunun HLA uyumunun olmayan kavдалarından alınmasıdır (26, 27). Allojenik limbal transplantasyonlarda rejeksiyonu önlemek için uzun süreli FK-506 veya Siklosporin-A gibi immünosupresan ajanların kullanımını söz konusudur (20, 26-28). İmmünosupresyon rağmen keratolimbal alloğerlerde başarının 1. yilda %75, 3.yilda %50’ye düştüğü bildirilmiştir. Tsubota ve arkadaşları kavдалarından limbal transplantasyonu gerçekleştirerekleri 39 olgunun 43 gözünde 3 yıllık takip sonunda %51 başarı rapor etmeptlerler (29).

Son zamanlarda kısmi veya tam limbal kök hücre yetmezliğinde amniyon zar transplantasyonu faydalı olduğu bildirilmiştir. Tseng ve arkadaşları “total limbal yetmezlik” tanısı alıp amniyotik zar ve otograf limbal doku transplantasyon uyguladıkları 21 gözün 3’ünde (%14) tedaviye cevap veren erken dönem limbal rejeksiyon, gözlerin %79’unda en az iki Landolt satırı görmede artış rapor etmişlerdir (30). Özdemir ve arkadaşları total limbal yetmezliği olan 36 hastanın 38 gözine otograf veya allogreff limbal transplantasyon, ek olarak da 6 göz ayni seansta amniyotik membran transplantasyonu uygulamışlardır.

Bu çalışmalar, ortalama 11.8 aylık takip süresi sonrasında olguların %65.9’unda korneal vaskülerizasyon ve kesafetin gerilediği veya kaybolduğunu, %59.5’unda görmede en az iki Snellen satırı artış olduğuunu, donör ve alte gözlerde herhangi bir komplikasyona rastlamadıklarını bildirmiştirler (31). Tseng’in çalışma grubundan Anderson limbal yetmezliği 300 dereceye yaklaşan kısmi limbal yetmezliği olan olgularda ise sadece amniyotik zar transplantasyonunun oküler yüzey stabilizasyonunu sağlamada yeterli olduğunu, bu etkinin amniyon zarının geride kalan limbal kök hücreleri desteklemesi veya popülasyon art machining sebebi olmasına bağlamaktadır (32). Limbal kök hücre yetmezliğinde kornea ülseri de klinik tabloya eşlik edyorsa amniyotik membran, ortama bazal membranda sağlayarak yara verini kapatmak üzere ülser kenarlarından gelen epitel hücrelerinin ömrünü uzatır, göz ve yastımlarını yardımcı olur (33). Amniyotik zarın stromal kısımları ise içerdığı büyük faktörleri, anjiogenezis ve enzim inhibitörleri sayesinde başta transformın growth faktör-beta (TGF-β) olmak üzere matriks metalloproteinazları baskılardır, keratositlerin miyofibroblastlara dönüşmesini ve ülser zemininde daha fazla enfimatum hücre toplanmasını engeller (34, 35). Yara iyileşmesine yönelik bu olumlu etkiler, limbal kök hücrelerine destek verecek daha sağlıklı bir stromal yatağın kazanılması yardımcı olur. Son zamanlarda yapılan deneyler ve klinik çalışmalar amniyon zar bazı üzerinde kütüne edilen otolog limbal kornea epitel hücrelerinin transplantasyonu sonrasında oküler yüzeyi uzun süreli stabilizasyonu ve iyileşme sağladığı, sonuçların umut verici olduğunu göstermektedir (36, 37). Bir diğer heyecan verici gelişmeyse fribin kültür ortamda özellikler otolog limbal kök hücrelerin total limbal yetmezliği olan olgulara transplante edildiğinde 27 aylık takip sonrasında bile oküler yüzeye stabilizasyon sağlanması olmuştur (38). Literatürde yapılmış çalışmalar, farklı nedenlere bağlı limbal kök hücre yetmezliklerinde tekrarlayan veya kalıcı kornea epitel defektlerinin iyileştirilmesinde, enfimason ve vaskülerizasyonu baskılanarak bu gözlerin keratoplastiye daha uygun hale getirilmesinde limbal transplantasyonun faydali ve etkili olduğunu telkin etmektedir. Dikkatle seçilmiş total limbal yetmezliği olan olgularda birlikte amniyotik membran uygulanması, limbal transplantasyon ile alnacak cevbin daha etkili olabileceğini düşünülmektedir. Limbal kök hücre

Özgür ŞANLI ve Ark.
yetmezliklerinde klinik tabloya eşlik eden sistemik otoimmün veya Stevens-Johnson sendromu gibi ciddi hastalıkların olabileceğini, kapak ve fornik sorunları veya kuru göz gibi limbal ve / veya amniyotik membran transplantasyonu başarısını olumsuz etkileyebilecek durumların görülebileceği ve bu sorunlara da tizilikle yaklaşılması gerektiğini bir kez daha hatırlatmak istiyoruz.

KAYNAKLER

34. Tseng SCG, Li DQ, Ma X. Suppression of TGF-β1,2,3 and TGF-β II receptor expression and myofibroblast differentiation in human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 1999; 179:325-35.