Ultrastructural features of high endothelial venules; a special form of multivesicular body or an endocrine granule?

Sevda F. MÜFTÜOGLU, Atilla DAGDEVİREN, Ülken ÖRS

Dept. of Histology-Embryology, Medical School of Hacettepe University, Ankara, TURKEY

High endothelial venules represent essential counterparts of lymphocyte recruitment. Ultrastructural features of the endothelial cells of these specialized vessels are of special interest. We observed and presented previously undefined organelles in the cytoplasm of rat high endothelial cells resembling multivesicular bodies or secretory granules, using zinc-iodide osmium tetroxide fixation/staining technique at electron microscopic level. [Turk J Med Res 1996; 14(1):5-9]

Key Words: High endothelial venules, Lymph node, Ultrastructure, Multivesicular bodies, Secretory granules

Leukocyte recruitment is essential for regulating immune functions and many inflammatory processes. During lymphocyte recirculation, high endothelial venules (HEVs) represent a primary site for lymphocyte migration to lymphoid organs and to connective tissues under certain inflammatory conditions. These structurally specialized vessels were first identified by Thome 1898 (1), named by Schulze 1925 (2), and recognized to be a selective site for lymphocyte migration by Gbwans 1959 (3). Though sometimes used as synonymously, HEVs are distinguished from the latter, by their histological features such as being rich in lymphocytes in their lumen, with the presence of migrating lymphocytes in their walls and especially being lined by taller (cuboidal) endothelial cells. Development and ultrastructure of these vessels is previously studied and well documented in several species (4-16). Today it is generally accepted that certain adhesion molecules regulate lymphocyte and other leukocytes migration through endothelium under certain circumstances by E-P-and L- Selectins, ICAM-1, ICAM-2, LFA-1, Mac-1, p150/95, VCAM-1, Cadherins, PECAM-1 and several MECA antibodies (17-24). In the recent years, experiments carried out using monoclonal antibodies to several adhesion molecules have answered some of the questions about this complex processes (25-29). Some of these studies were directed to HEVs (30-33).

During our examination the postnatal development of rat lymph nodes using Zinc Iodide-Osmium tetroxide (ZIO) technique with special regard to stromal elements (reticular cells and vasculature) we observed a previously undefined organelle in the endothelium of the HEVs and some capillaries which we believed to be representing a structure having a special function in these cells and regarding the importance of HEVs in lymphocyte migration we preferred to present this ultrastructural finding.

MATERIALS AND METHODS

Twenty-five adult Wistar rats at varying ages, weighing 150-200g were used to obtain tissue samples. Animals were sacrificed by decapitation under ether anesthesia and samples of lymph nodes were quickly removed. A group of specimens were immersed in the ZIO solution used by Niebauer et al. (1969) (34) and kept in the dark for 24 h in this solution at room temperature for fixation and staining as described previously (35). Then tissue samples were processed according to the routine electron microscopic embedding procedures, semi-thin (1 um thick) and thin (70 nm thick) sections were cut; examined and photographed at light (Olymmp BH2) and electron microscopes (Zeiss EM9-S2). Some other tissue samples were processed according to the routine electron microscopic procedures (prefixed with 1% gluteraldehyde in Sorensen buffer and postfixed with 2% osmium tetroxide) and examined serving as controls.

Received: Nov. 21, 1995 Accepted: Dec. 19,1995

Correspondence: Sevda F MUFTÜOGLU
Dept. of Histology-Embryology,
Medical School of Hacettepe University,
06100-Sıhhiye, Ankara-TURKEY
RESULTS

Fully developed typical HEVs were observed in the lymph nodes of the 4 weeks old rats. These vessels were easily distinguished by their tall endothelium which were usually ZIO positive and numerous migrating lymphocytes in their walls (Figure 1).

At electron microscopic level HEVs were observed to be lined by cuboidal endothelial cells which are rather rich in organelles. Surrounding these endothelial cells which rest on their basal lamina, there are several thin processes of ensheathing cells (Figure 2). Some of the endothelial cells appeared to be darker due to ZIO reaction while others did not. In addition to normal composition of organelles such as numerous granular endoplasmic reticulum cisternae, mitochondria, few lysosomes and Golgi complex. Some of these endothelial cells were observed to be containing special membrane bounded organelles resembling multivesicular bodies (MVBs) (Figure 2). These membrane bounded organelles contain varying size of ZIO positive droplets (Figure 3-inset).

At higher magnification these structures were seen to be containing droplets of varying shapes as well, though most of them were rounded (Figure 4a-b). Such structures were also observed in the endothelial lining of small capillaries or probably developing HEVs which were surrounded by huge pericytes (Figure 5).

Similar ultrastructural findings were determined in the routinely processed samples except in the identification of the above described membrane bounded organelles.

DISCUSSION

Having a special function for lymphocyte traffic, HEVs show distinct structural features and some functional assumptions were derived from these structural findings. With the development of monoclonal antibody techniques and immunohistochemistry, researchers
Figure 4a. High magnification of the cytoplasm of an endothelial cell is seen. Three MBV-like structures (=») containing varying sizes and shapes of ZIO positive droplets are distinguished.

Figure 4b. A similar structure (=») at the border (-») of adjacent endothelial cell. Lead citrate-uranyl acetate, x7800.

Figure 5. A section through paracortex of a rat lymph node a capillary or a developing HEV with an erythrocyte in its lumen surrounded by an huge pericyte (P) is seen, similar organelles in the cytoplasm of the some (=»). Lead citrate-uranyl acetate, X2000.

have studied the adhesion molecules present on these cells and migrating lymphocytes. Many investigators ascribe special functions to the endothelial cells including those of the HEVs, for the regulation of this process such as expressing certain adhesion molecules or antigen presentation etc. Due to their ultrastructural appearances these cells can easily be considered as examples of metabolically active cell serving probably for this unique function. The presence of previously uncommented organelle within this endothelium leads us to think that this observation may reflect a special function of the HEV lining cells morphologically. These organelles resemble MVBs but completely different cells from them in their content of ZIO positive droplets. In several other ultrastructural studies on HEVs and also in our examinations using conventional electron microscopic techniques, presence of such an organelle is not observed and/or mentioned. In the classical histology textbooks MVBs were described as membrane bounded organelles containing many vesicles probably arising from of this organelle or a special type of secretory granule whose content should be determined immunohistochemically. As far as we know there is no specific monoclonal antibody for MVBs, thus this confirmation should be kept in mind. The ZIO technique used in the present study Turk J Mod Res 1996; 14(1)
was reintroduced in our previous report in detail (35). This interesting metalophilic technique probably served organelles described in the endothelial served organelles described in the endothelial cells. The significance of ZIO positivity remains to be clarified though few assumptions for this reaction is presented. To us, reaction seemingly arises from the pH of the cells or organelles in addition to expected positivity for the lipids. Though further immunohistochemical studies are certainly necessary to answer the question, we decided to present our findings to the interest of researchers of the field.

REFERENCES
1. Thome R. Endothelien als phagocytan (aus den lymphdrüs
sen von macacus cynomolgus). Archivies Mikroskopien
Anatomy. 1898; 52: 820-22.
2. Schulze W. Untersuchen Liber die vapillaren und postcapil-
laren venen lymphatischer organe. 2 Anatomy Entwi-
cklungsgesch 1925; 76: 421-22
3. Gowans JL. Recirculation of lymphocyte from blood to
lymph node in the rat. J Physiol. 1959; 146: 54.
4. Anderson J. Specialized structure and metabolic activities of
high endothelial venules in rat lymphatic tissues. Immunolo-
y. 1976; 31:455
5. Bailey RP, Weiss L. Light and electron microscopic studies of postcapillary venules in developing human fetal lymph
nodes. American J Anatomy. 1975; 143: 43-58
6. Belisle C, Saint-Marie G. Tridimensional study of the DC of
rat lymph node V: Postnatal development of DCU. Anatomical
7. Bieleteldt-Ohmann HC. Electron microscop study the para-
cortical postcapillary "High Endothelial Venules" in lymph
212: 455-74.
8. Eikelenboom P. Histogenesis of lymph nodes in rat and
rabbit. Anatomical Record. 1978; 190: 201-16.
9. Farr AG. Transvascular passage of lymphocytes in postca-
pillary venules in rat lymph nodes. Anatomical record 1974;
178: 354-56.
10. Hendriks HR., Eestermans IL. Disappearance and reap-
pearance of high endothelial venules and immigrating lympho-
cytes in lymph nodes deprived of afferent lymphatic ves-
sels: a possible regulatory role of macrophages in lymphocy-
11. Julita M. Leukocyte traffic to sites of inflammation. APMIS.
1992; 100: 287-93.
12. SchoefflGl. Migration of lymphocytes across the vascular
13. Van Deurs B, Röpke C. The postnata development of high
endothelial venules in lymph nodes of mice. Anatomical Re-
cord, 1974; 181:659-78.
14. Van Deurs B, Röpke C, Westergaard E. Permeability proper-
ties of the postcapillary high endothelial venules in lymph
nodes of the mouse. Laboratory Investigation. 1975; 32:
201-8.
15. Wagner CR, Vetto RM, Burger DR. The mechanism of anti-
gen presentation by endothelial cells. Immunobiology. 1984;
lymphocyte homing II. Membrane and cytoplasmic events
involved in lymphocyte adherence to specialized high endo-
thalial venules of lymph nodes. J Immunology. 1977; 119:
1603-10.
17. Butcher EC. Specificity of leukocyte endothelial interactions
and diapedesis: Physiologic and therapeutic implications of
an active decision process. Research in immunology. 1993;
144: 695-8.
18. Ayalon A, Sabanai H, Lampugnani MG, et al. Spatial and
temporal relationships between Catherina and PECAM-1
cell-cell junctions of human endothelial cells. J Cell Biology.
adhesion molecules in human monocyte adhesion to and
transmigration through endotheli cells in vitro. Atheroscle-
20. Adams DH, Shaw S. Leukocyte endothelial interactions and
regulation of leukocyte migration. Lancet. 1994; 343(8901):
831-6.
21. Granger DN, Kubes P. The microcirculation and inflam-
mation: modulation of leukocyte endothelial cell adhesion.
22. Shimizu Y, Newman W, Tanaka Y et al. Lymphocyte inter-
actions with endothelial cells. Immunology Today. 1992: 13:
106-112.
23. Roth GJ. Platelets and blood vessels: The adhesion event.


