The role of radiotherapy (RT) for the differentiated thyroid cancer (DTC) still remains controversial although it has been used in patients with DTC in case of postoperative residual disease, local recurrence, or when cancer is refractory to radioiodine treatment. Approximately 5% of sarcomas develop after therapeutic or accidental irradiation. In osteosarcomas, three-phase bone scintigraphy is often used to evaluate the primary lesion and to search for bone metastases. In this paper, we present a radiation induced osteosarcoma of the clavicle and scapula in a DTC patient in whom three-phase bone scan and I-131 radioiodine scan are used for diagnosis.

CASE REPORT

A 67-year-old woman previously diagnosed as DTC was transferred to our clinic with swelling, pain, and stiffness of the left supraclavicular region and
left shoulder. Fourteen years ago, she underwent thyroidectomy and left modified neck dissection. After surgery, she had radioiodine treatment with 150 mCi I-131. She was administered RT to thyroid region and left cervical area (5000 cGy on 25 fraction) due to extrathyroidal soft tissue invasion of the DTC and lymph node metastases with capsular invasion in the left inferior jugular chain. Patient was lost from follow up and did not use thyroid hormone pills properly. The serum TSH level was 56 uIU/mL (normal range 0.34-5.6 uIU/mL), thyroglobulin 229 ng/mL (normal range 1.15-35 ng/mL) and antithyroglobulin <20 IU/mL (normal range 2.2-4.9 IU/mL). The PA chest X-ray revealed an increase in density with expansion, lysis and sclerosis in the left clavicle and medial region of the left scapula (Figure 1). Three phase bone scan was performed after the administration of 20 mCi Tc-99m methylene diphosphonate (MDP). In the planar anterior imaging, the early arterial flow phase revealed increased perfusion and blood pool phase revealed intense radiopharmaceutical uptake in the left clavicle, upper edge of the left scapula, left supraclavicular region and left shoulder (Figure 2). Anterior and posterior whole-body bone imaging showed intense radiopharmaceutical uptake within the expansive mass in the region of the left clavicle, upper edge of the left scapula and left shoulder (Figure 3). Anterior I-131 whole body imaging three days after the administration 10 mCi I-131 showed increased uptake in thyroid region without any uptake compatible with metastases (Figure 4). Histopathology of the left clavicle revealed osteosarcoma.

FIGURE 1: The PA chest x-ray revealed an increase in density with expansion, lysis and sclerosis in the left clavicle and medial region of the left scapula.

DISCUSSION

The role of RT in the treatment of DTC is controversial. RT is indicated in DTC following initial thyroidectomy when the surgical specimen demonstrates a positive margin, invasion of normal tissues, a metastatic lymph node > 2 cm, or nodal metastases with extensive extracapsular tumor extension. Several series also noted that older patients (> 40 years of age) with multiple positive lymph nodes or extrathyroidal extension had better locoregional control when radiotherapy was added to treatment regimen.1,4,5

Bone scan in osteosarcoma is useful for delineating the extent of the primary lesion and for early detection of local recurrence and metastatic disease. Bone scan in patients with osteosarcoma typically reveals a well defined region of intense radiopharmaceutical uptake.
Radiation-induced sarcomas are uncommon, occurring in approximately 0.035% of all patients receiving radiotherapy. A relationship was found between I-131 administration and occurrence of bone and soft tissue, colorectal, and salivary gland cancers.

As for osteosarcomas, Huvos et al estimated that approximately 5% of sarcomas developed after therapeutic or accidental irradiation. Cahan et al defined the criteria for post-radiation bone sarcoma as follows: (a) histological or radiological proof that there was no previous tumour in the involved bone; (b) development of sarcoma in an irradiated area; (c) a sufficiently long interval between irradiation and the development of sarcoma; and (d) histological proof of sarcoma.

These criteria were modified by Arlen et al for post-irradiation sarcoma of the bone, “the tumours developed in bone not known to have a primary malignant osteoblastic lesion when the radiotherapy was given.” Our case fulfills these criteria. The majority of these tumors have been found in the skull, scapula, sternum, ribs, and pelvis. This distribution reflects the frequency of use of radiotherapy for retinoblastoma, nasopharyngeal carcinoma, Hodgkin lymphoma, and for breast, uterine, and cervical carcinoma.

In our knowledge, osteosarcoma is rare condition in patient that undergone RT for DTC metastases. Three phase bone scintigraphy is beneficial for determination of bone lesions while I-131 is beneficial for distinguishing between the bone metastases of DTC and a primary bone lesion.

REFERENCES