Peripheral Dentinogenic Ghost Cell Tumor: Evaluation of Clinical, Histopathologic and Radiological Findings: Case Report

Periferal Dentinojenik Hayalet Hücreli Tumor: Klinik, Histopatolojik ve Radyolojik Bulguların Değerlendirilmesi

ABSTRACT The dentinogenic ghost cell tumor is a rare solid variant of the calcifying odontogenic cyst. A 77-year-old man presented with a gingival mass on the alveolar crest mucosa of canine to first premolar of the right mandibular region. After clinical and radiological examination, the pre-diagnosis was peripheral ossifying fibroma. An incisional biopsy was performed, and the specimen was submitted for histopathologic evaluation. The lesion was characterized histopathologically by ameloblastoma-like odontogenic epithelial proliferation, presence of ghost cells and dentinoid material. It was finally diagnosed as peripheral dentinogenic ghost cell tumor after excision with a margin of sound bone. In this report, a rare new case is described and the relevant literature is briefly reviewed.

Key Words: Odontogenic tumors; odontogenic cyst, calcifying; tomography

Anahtar Kelimeler: Odontojenik tümörler; odontojenik kist, kireçlenici; tomografi

S}ince Gorlin and his colleagues described the calcifying odontogenic cyst (COC), numerous additional reports dealing with this unusual odontogenic lesion have appeared in the literature.1-12 In 1971, the World Health Organization described the COC as a non-neoplastic cystic lesion; nevertheless, they classified it under the category of benign tumors related to the odontogenic apparatus.1 COCs account only for 1% to 2% of all odontogenic tumors, and only 2% to 14% of all COCs are solid tumors.13 It has been proposed that COC sometimes grows to have a neoplastic potential. The histological variations led some authors to regard the lesion as a neoplasm to be qualified by several descriptive terms. These include cal-

Filiz NAMDAR PEKİNER,a Bedrettin Cem ŞENER,b Birsay GÜMRÜ,a Vakur OLGAÇ,c M. Oğuz BORAHANa

Departments of
aOral Radiology,
bOral and Maxillofacial Surgery,
mMarmara University Faculty of Dentistry,
cDepartment of Oncologic Cytology and Tumor Pathology,
İstanbul University, Institute of Oncology, İstanbul

Geliş Tarihi/Received: 28.02.2011
Kabul Tarihi/Accepted: 07.12.2011

Yazışma Adresi/Correspondence:
Filiz NAMDAR PEKİNER
Marmara University Faculty of Dentistry,
Department of Radiology, İstanbul,
TÜRKİYE/TURKEY
fpekiner@yahoo.com

doi: 10.5336/medsci.2011-23317
Copyright © 2013 by Türkiye Klinikleri
cifying ghost cell odontogenic tumor, cystic calcifying odontogenic tumor, dentinogenic ghost cell tumor, dentinoblastoma, ameloblastic dentinoma, etc.1,5,14

Praetorious et al.4 were the ones who first classified COC into cystic and neoplastic (solid) types, referring to the cystic type of COC as type 1 and the solid type as type 2 in their study with 16 patients. They further classified the cystic type (type1) into the subtypes A, B and C. A denoting a simple cyst, B an odontome-producing cyst, and C a cyst with ameloblastomatous proliferation, and the term dentinogenic ghost cell tumor was proposed for the type 2 lesion.

Histologically, dentinogenic ghost cell tumor consists of ameloblastoma-like strands and islands of odontogenic epithelial proliferations infiltrating the bone and connective tissue. Ghost cells are present as well as varying amounts of dentinoid material, the latter being closely associated with odontogenic epithelium.1,15-19 It occurs predominantly in old people and can present as a peripheral (in the gingival soft tissues outside bone) or central (intraosseous) lesion.8,9

The aim of this report is to present a new case of dentinogenic ghost-cell tumor and review the literature.

CASE REPORT

A 77-year-old male was referred to the Marmara University, Faculty of Dentistry, Department of Oral Diagnosis and Radiology. He complained of a painless swelling on the lower jaw. He stated that the mass had been growing slowly over 5 years. Clinical examination revealed a hard mass of 1 cm diameter on the alveolar crest mucosa of canine to first premolar of the right mandibular region, and the patient was found to be partially edentulous. Overlying mucosa was healthy and did not present any differentiation from surrounding tissue. Lymphadenopathies were not evident. The clinical features were nonspecific. The patient’s medical and dental histories were non-contributory. A periapical radiograph showed a small radiolucent area in the right mandibular canine-premolar region and diffuse small opacities within the bulk of the lesion (Figure 1). According to the clinical appearance of the present lesion, it was initially considered as an irritation fibroma. However, this clinical diagnosis was changed after radiographic examination. The osteolytic lesion and the presence of small radiopacities within the lesion suggested a pre-diagnosis of peripheral ossifying fibroma. The patient was also requested to sign a written informed consent statement. An incisional biopsy was performed under local anesthesia. The specimen was sent for histopathological examination to Istanbul University, Institute of Oncology, Department of Oncologic Cytology and Tumor Pathology.

The gross specimen consisted of a yellowish piece of tissue, measuring 0.7x0.6x0.5 cm in size and had a firm consistency. Histopathologic features revealed a solid tumor with an overlying hyperplastic squamous epithelium. The ameloblastoma-like...
like epithelial nests consisted of a layer of basaloid cells with stellate reticulum-type cells in the centrally. A considerable amount of ameloblastoma-like epithelial elements were noted in association with grouped ghost cells. Some areas showed cyst formation in the tissue sections. In focal areas, ghost cells tended to form stratified masses of variable thickness with several portions entrapped within areas of irregular dentinoid material (Figure 2 a-c). The histopathologic diagnosis was dentinogenic ghost cell tumor. In accordance with the histopathologic report, the treatment plan was changed to extensive resection of the lesion. Therefore, the area was examined with computerized tomography (CT) imaging to evaluate bone involvement. The preoperative CT imaging revealed a radiolucent lesion with marked saucerization of the right mandibular canine to first premolar region (Figure 3 a-b). The present case showed a predominant peripheral type (gingival location) with intraosseous infiltration.

Surgery was performed under general anesthesia. A wide local surgical resection was performed with 5 mm safety margin at #42-45 region. The operation site was covered with rotational flap from the vestibular sulcus. The gross specimen consisted of a yellowish piece of tissue, measuring 1.5x0.5x3 cm and had a smooth bone tissue, measuring 1.5x1.0x0.8 cm. Histologically, these specimens were distributed in a fibrous connective tissue and nonspecific chronic inflammation. The patient was followed-up at the 1st, 2nd and 5th weeks after resection. No complication was observed at the operation site. Ten months of follow-up revealed no recurrences.

DISCUSSION

Peripheral dentinogenic ghost cell tumor (DGCT) is an extremely rare odontogenic tumor. Ellis reported that the peripheral type is more common than the central type. The largest series was reported by Hong et al.; 8 of 92 cases of calcifying odontogenic cyst were identified as peripheral ghost cell tumors, and only 3 central ghost cell tumors were identified. A case by Wong et al.
showed predominant peripheral location with central infiltration. Radiologically, the peripheral DGCT causes no alteration or only mild erosion or saucerization of the cortical bones. The central DGCT has been described as a purely radiolucent or mixed radiolucent-radiopaque lesion. It is unilocular or multilocular and can manifest as either a well-demarcated or poorly defined lesion. In our case, similar to published data of Wong et al., dentinogenic ghost cell tumor was located peripheral type with central infiltration.

Histologically, DGCTs are composed primarily of ameloblastoma-like areas and odontogenic epithelial islands with varying amounts of ghost cells showing keratinization and calcification. The most important histological feature of DGCTs that distinguishes it from conventional ameloblastoma and other odontogenic tumors is the presence of ghost cells and dentinoid substances. Although the presence of ghost cells is a defining feature for the diagnosis of DGCTs, these cells can also be observed in other tumors, such as pilomatrixcoma, odontoma, and ameloblastic fibro-odontoma. The nature of the dentinoid substance found in DGCTs is composed of amorphous eosinophilic material containing widely separated cell bodies. It lacks the tubular structure of normal dentin, and appears as an irregular mass within the connective tissue adjacent to the proliferation of odontogenic epithelium. Another important differential diagnosis for DGCTs is the malignant odontogenic neoplasms. Malignant odontogenic neoplasms are rare; most carcinomas arising within odontogenic cysts have been diagnosed as squamous cell carcinomas. Squamous cell carcinoma is defined by the presence of atypical cells with cytoplasmic keratinization, with either epithelial pearls or individual cell keratinization, and intercellular bridges. Distinctive “ghost” cells and dentinoid material are not associated with squamous cell carcinoma. The case in this report is believed to fulfill the criteria of DGCT based upon the histological findings of ameloblastomatous-type epithelial components together with clusters of ghost cells and dentinoid association with the odontogenic epithelium.

In the initial histological diagnosis, it was difficult to diagnose, as only areas of dentinoid with dense fibrous connective tissue were seen, which was inconclusive for any diagnosis. In a immunohistochemical evaluation of a study of DGCTs, there was a strong positivity of the cells of the odontogenic epithelium for B-cell leukemia/lymphoma2 (Bcl-2) and a monoclonal antibody against the recombinant part of the Ki-67 antigen (MIB-1), whereas only a rare positivity for p53 was observed. The ghost cells, giant cells, and dentinoid material were completely negative. In addition, typically, the clinical preoperative diagnosis was
suggestive of a reactive or inflammatory lesion (peripheral giant cell granuloma, pyogenic granuloma, epulis, or irritation fibroma). The clinical appearance of all of these lesions is similar; therefore, this emphasized the importance of both histological and immunohistochemical examination in the biological aspect of DGCTs.

Dentinogenic ghost cell tumors are more common in the mandible. However, based on the current literature, it appears that most DGCTs are peripheral lesions arising in the extraosseous gingival or alveolar mucosa, and the canine to premolar region is most frequently affected area although anterior and posterior segments of the jaws may also be involved (Table 1). Most patients were older than 50 years of age and there was a slight predilection for men. Patients were usually without symptoms, although a few have complained of pain or discomfort. In the present case, patient’s age, gender and localization of the lesion were similar to the published data. Moreover, the patient could not use his partial denture, leading him to present with this complaint.

Stone et al. divided peripheral and central DGCTs into two subtypes: a) solid and b) aggressive or malignant subtype. The solid subtype has infiltrative architectural features but is composed of cytological bland cells, similar to ameloblastoma, and has a high rate of local recurrence after limited local resection. The aggressive or malignant subtype, otherwise known as odontogenic ghost cell carcinoma combines architectural and cytological malignant features with prominent mitotic activity, infiltrative growth pattern, locally aggressive and destructive behavior. Although there is a question as to the true malignant nature of DGCTs, a peculiar subtype with malignant potential—the so-called aggressive or malignant DGCT, or odontogenic ghost cell carcinoma—has been recognized, with 16 cases reported in the English literature, distant metastasis is uncommon. To date, only one case with pulmonary metastases has been

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Reference</th>
<th>No of Cases</th>
<th>Age in years/sex</th>
<th>Site</th>
<th>Radiographic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sauk</td>
<td>1</td>
<td>67/F</td>
<td>Extraosseous</td>
<td>No significant findings</td>
</tr>
<tr>
<td>2</td>
<td>Praetorius et al.</td>
<td>2</td>
<td>52/M</td>
<td>Maxillary left lateral incisor and canine region</td>
<td>Slight erosion of underlying bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41/F</td>
<td>Mandibular anterior region</td>
<td>Slight erosion of underlying bone</td>
</tr>
<tr>
<td>3</td>
<td>Hirshberg et al.</td>
<td>1</td>
<td>42/M</td>
<td>Mandibular premolar region (lingual gingiva)</td>
<td>No bone involvement</td>
</tr>
<tr>
<td>4</td>
<td>McClatchey et al.</td>
<td>1</td>
<td>57/M</td>
<td>Mandibular anterior region</td>
<td>No bone involvement</td>
</tr>
<tr>
<td>5</td>
<td>Buchner et al.</td>
<td>3</td>
<td>57/M, 53/F, 92/F</td>
<td>Mandibular central incisor, Mandibular edentulous ridge, Mandibular edentulous cuspid-premolar region</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Günhan et al.</td>
<td>1</td>
<td>71/F</td>
<td>Maxillary anterior region</td>
<td>Slight erosion of underlying bone</td>
</tr>
<tr>
<td>7</td>
<td>Raubenheimer et al.</td>
<td>1</td>
<td>82/M</td>
<td>Mandibular right alveolar ridge (edentulous)</td>
<td>No bone involvement</td>
</tr>
<tr>
<td>8</td>
<td>Castro et al.</td>
<td>1</td>
<td>83/F</td>
<td>Anterior ridge of edentulous mandible</td>
<td>Cup shaped resorption</td>
</tr>
<tr>
<td>9</td>
<td>Wong et al.</td>
<td>1</td>
<td>71/M</td>
<td>Maxillary canine region</td>
<td>Slight erosion beneath the growth</td>
</tr>
<tr>
<td>10</td>
<td>Iezzi et al.</td>
<td>1</td>
<td>43/M</td>
<td>Maxillary canine region</td>
<td>No bone involvement</td>
</tr>
<tr>
<td>11</td>
<td>Ledesma-Montes et al.</td>
<td>1</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>12</td>
<td>Candido et al.</td>
<td>1</td>
<td>45/M</td>
<td>Mandibular canine region</td>
<td>No bone involvement</td>
</tr>
<tr>
<td>13</td>
<td>Our Case</td>
<td>1</td>
<td>77/M</td>
<td>Mandibular edentulous canine-premolar region</td>
<td>Slight erosion of underlying bone</td>
</tr>
</tbody>
</table>

NS: Not Specified.
Peripheral ghost cell tumors are easily excised and do not recur. In our case, we performed a wide local surgical mandibular resection with 5 mm safety margins on the saucerizing bone surface as the pathology report indicated no malignancy risk. Stone et al. reported that most peripheral DGCTs are not aggressive and can be controlled by local excision. On the other hand, some central ones are locally aggressive, similar to ameloblastomas. If the tumor is radiographically well demarcated, curettage is probably sufficient. Radiographically ill defined and more destructive tumors should be treated by block or segmental resection of the jaw and long-term follow-up, including periodic CT, is essential. A further study with more cases of DGCTs is necessary to clearly define its nature, clinical behavior and prognosis.

REFERENCES

Turkiye Klinikleri J Med Sci 2013;33(2)

