Tc-99m DMSA Scintigraphy in Recurrent Urinary Tract Infection in Children

ÇOCUKLARDA TEKRARLAYAN İDRAR YOLU ENFEKSİYONLARINDA Tc-99m DMSA SİNTİGRAFİSİ

* Dept. of Nuclear Medicine, Medical School of Celal Bayar University, Manisa, ** Dept. of Nuclear Medicine, Medical School of Dokuz Eylül University, İzmir, *** Dept. of Radiology, Medical School of Celal Bayar University, Manisa, **** Dept. of Pediatrics, Medical School of Dokuz Eylül University, İzmir, TURKEY

Summary

Tc-99m DMSA scintigraphy is the imaging modality of choice for the detection of renal cortical scarring and renal parenchymal status. The present study was designed to compare radionuclide cortical imaging with IVU and USG for the detection of postpyelonephritic cortical scars and to define the indications of DMSA in the pediatric nephrology field and to enhance the clinicians' interest in the renal cortical scintigraphy. In the present study, we performed Tc-99m DMSA cortical scan on 25 children (49 kidneys) with recurrent urinary tract infections who were at risk for renal scarring. Intravenous urography and ultrasonography were also performed on 15 patients. Their age ranged from 4 months to 16 years (mean: 8.1±4.4 years). Renal scarring was detected in 24 of 49 kidneys. DMSA cortical scanning and IVU/USG were in concordance in the normal kidneys. DMSA cortical scanning detected more scars than IVU and USG. We conclude that DMSA scanning is the most valid modality in the evaluation of kidneys at risk for scarring in children.

Key Words: Tc-99m DMSA, Urinary tract infection, Intravenous urography, Ultrasonography.

Anahtar Kelimeler: Tc-99m DMSA, Üriner sistem enfeksiyonu, intravenöz ürografi, ultrasonografi

Received: Sep. 16, 1999
Correspondence: Elvan SAYIT
Dept. of Nuclear Medicine
Medical School of Celal Bayar University
45030, Manisa, TURKEY

Urinary tract infections in children may be symptomatic or asymptomatic. Symptomatic urinary tract infections may be confined to the bladder (cystitis) or renal parenchyma (pyelonephritis).

Technetium 99m (Tc-99m) dimercaptosuccinic acid (DMSA) scintigraphy is the imaging modality of choice for the detection of acute pyelonephritis and chronic renal scarring in children. DMSA is a
Tc-99m DMSA SCINTIGRAPHY IN RECURRENT URINARY TRACT INFECTION IN CHILDREN

radiopharmaceutical that localizes in the proximal tubular cells in the renal cortex, that provides an image of functional renal parenchyma (that allows visualization of functioning renal parenchyma) (1). DMSA is actively accumulated by the renal proximal tubules following two pathways:

- peritubular uptake
- filtration plus reabsorption

Its integrity is dependant upon several parameters combining intact intrarenal blood flow and intact enzyme function (2). Any pathological process that alters either or both of these parameters may result in focal or diffuse areas of diminished uptake. DMSA offers a unique opportunity to study the progression of renal damage and functional loss from the initial insult of acute pyelonephritis to the subsequent development of irreversible renal scarring.

Clinical reports in the 1980's indicated that renal cortical scintigraphy was more useful than intravenous urography (IVU) or ultrasonography (USG) in confirming the diagnosis of acute pyelonephritis (3-5).

Intravenous urography has been the traditional modality to evaluate renal parenchymal scarring. However, recent studies comparing the diagnostic capability of renal cortical scintigraphy with DMSA to that of the IVU have demonstrated a greater sensitivity with radionuclide imaging, especially in younger children (6,7). USG has been evaluated as one of the imaging techniques for differentiating acute pyelonephritis from lower urinary tract infection (UTI). Although USG is a useful technique for initial assessment of upper urinary tracts and anatomical definition, it is a relatively insensitive test for the detection of acute inflammatory changes of renal cortex. The present study has two aims: one of them is to compare radionuclide cortical imaging with IVU and USG for the detection of postpyelonephritic cortical scars and the other one is to define the indications of DMSA in the pediatric nephrology field and to enhance the clinicians' interest in the renal cortical scintigraphy.

Materials and Methods

Sixteen female and 9 male children (mean age: 8.1 ±4.4 years; range from 4 months to 16 years) were included. They all experienced urinary tract infection more than once. For follow up, they were imaged again at least 3 months after acute infection. Tc-99m DMSA, IVU and/or USG were performed within the same week.

A dose of 2 MBq/kg (with a minimum dose of 20 MBq) Tc-99m DMSA was administered intravenously. Four and 24 hours later anterior, posterior and posterior oblique planar images were obtained with a gamma camera (GE Starcam, XR/T) in 256 x 256 matrix using an acquisition time of 5 minutes for each individual image. DMSA images of 49 kidneys were evaluated visually by two independent observers. Presence of areas with diminished focal cortical uptake was accepted as cortical scarring. The set of criteria for the normal appearance of Tc-99m DMSA planar images as developed by "International Radionuclides in Nephrology" was used to minimize false positive results (8). IVU, USG and DMSA scanning were evaluated by correlating with each other.

Results

The distribution of positive and negative findings in three modalities is shown in Figure 1. Regarding Tc-99m DMSA as the gold standard modality; the evaluation of the sensitivity and specificity of IVU and USG compared to DMSA is shown in Table 1. USG, IVU and Tc-99m DMSA examinations of a 8 year old male patient are shown in Figure 2A, 2B and 2C, respectively.

Discussion

Tc-99m DMSA is an excellent renal cortical imaging agent. About 60% of the administered dose is tightly bound to the proximal tubular cells and only a small amount is slowly excreted in the urine. DMSA allows visualization of renal parenchyma without interference from retained tracer in the collecting systems (9). Renal cortical abnormalities, demonstrated by DMSA radionu-

<table>
<thead>
<tr>
<th>Gold standard: Tc-99m DMSA</th>
<th>IVU</th>
<th>USG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (%)</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1. The sensitivity and specificity of IVU and USG compared to DMSA
Tc-99m DMSA SCINTIGRAPHY IN RECURRENT URINARY TRACT INFECTION IN CHILDREN

Elvan SAYIT et al.

Figure 1. The distribution of positive and negative findings in IVU-USG-DMSA.
[Values in parenthesis () indicate the number of kidneys examined with the mentioned technique]
* / the follow up of these 24 kidneys after at least three months, no change in the scintigraphic appearances were detected, thus indicating renal scarring.
**The negative findings in ultrasonographic examination were present in 4 kidneys which were later studied with IVU examination.

Acute pyelonephritis is a major cause of morbidity in children with UTI and can result in irreversible renal cortical scarring. Well recognized late sequelae of pyelonephritic scarring include hypertension, proteinuria and chronic renal failure (12,13). Clinical and experimental studies have
demonstrated that renal scarring can be prevented or diminished by early diagnosis and aggressive treatment of acute pyelonephritis (14,15). Therefore, accurate diagnosis of acute pyelonephritis has significant clinical relevance. DMSA renal scintigraphy is a valid tool for confirming the diagnosis of acute pyelonephritis and for identifying kidneys at risk for subsequent cortical scarring and also offers a unique opportunity to study the progression of renal damage and functional loss from the time of the initial insult until the development of renal scarring. Furthermore, differential renal function can be objectively determined. Acute pyelonephritis may resolve completely and the scan may return to normal within three months or it may become into permanent damage or scar formation. In order to increase the specificity, Tc-99m DMSA follow up scans are recommended to differentiate ischemia due acute infection from permanent renal scarring.

The IVU has been the traditional modality for evaluation of renal parenchymal scarring, but however it is not a sensitive detector of acute pyelonephritis (16). Furthermore, it has been stated that pyelographic evidence of new renal scarring may take up to 2 years to develop after urinary tract infection (17). Pyelographic evidence of renal scarring reflects an architectural change caused by contraction of the damaged cortex and continued growth of the surrounding normal cortex, which requires time. Studies on sensitivity are generally based on comparison with other techniques, mainly IVU and USG. In children with urinary tract infection, there is much evidence that DMSA scintigraphy is more sensitive than the two other techniques in acute lesions (18-21) and in chronic lesions (18,19,22). Compared with IVU, visualization of the kidneys with DMSA scintigraphy is not hampered in children by overlying bowel gas, stool or bony abnormalities. Contrast induced reactions are avoided and the radiation dose to the reproductive organs is significantly less than with on IVU.

Sonography has a low sensitivity for the detection of acute inflammatory changes of renal cortex. Therefore, it is not the optimal imaging technique for the diagnosis of acute pyelonephritis. However, sonography is very useful in characterizing the defects seen on the DMSA cortical scan and in detecting obstructive uropathies that may be associated with UTI. Scintigraphic abnormalities are not specific. In case of acute urinary tract infection, regional defects can be due to acute infection but also to any other underlying disease such as renal abscess, hydronephrosis, cysts, or complicated duplex kidney. It is mandantine, therefore, to combine scintigraphy with USG allowing differentiation between these situations.

The importance of the timing of therapy has been reported in animal studies in which early antibiotic treatment prevented or diminished subsequent renal scarring (15). Therapeutic delay has been associated with an increased frequency of renal scarring in clinical reports (14,23,24). Accurate diagnosis of acute pyelonephritis in children is essential since early treatment is crucial to prevent renal scarring (14,23,24).

The results of our study confirm that DMSA examinations detects a significantly higher number of renal cortical abnormalities than detected on USG and/or IVU. We conclude that Tc-99m DMSA scanning is a sensitive modality compared to IVU and USG in the evaluation and the follow up of the kidneys at risk for scarring in children. There should definitely be no concern regarding the efficiency of DMSA in the pediatric nephrology departments and clinicians should enhance their interest in referring pediatric patients for DMSA scintigraphic examinations.

