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Dengeli Agirliklt Hassas Fonksiyon Kaybi ile Bayes Regresyon Tahmini:
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ABSTRACT Objective: The main aim of this study is to derive
the alternative risk and loss function for Bayesian paradigm.
Bayesian Decision making is an integral part of Bayesian infer-
ence which had for long overshadowed due to the adoption of
frequentist performance metric, and Bayesian inference is proba-
bilistic in nature, treating it in classical paradigm would lead to
poor performances. This study seeks to examine critically and
introduce weight which eventually makes Bayesian estimates
compare favourably well with classical estimates. Material and
Methods: Balanced weighted precision loss function was adopted
and described; it is an extraction of precision of estimates from
balanced loss function which ordinarily combined goodness of fit
and precision of estimates. The goodness of fit criterion measures
the quality of data while the precision of estimates measures the
quality of inferences, combining the two criteria may lead to loss
of information as each criterion has its specific role in both clas-
sical and Bayesian paradigms. Results: Weighted quadratic loss
to measure the precision of estimates of Posterior mean and
Bayes estimate were constructed as a standard metric. The study
established the estimation characteristics under weighted quadrat-
ic loss function which makes Bayesian inference compare favour-
ably well with other estimators. Conclusion: It is therefore rec-
ommended that weighted quadratic loss function of assessment
criteria of both posterior mean and Bayes estimates is of im-
portance for correct comparison.
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OZET Amac: Bu calismanin asil amaci, Bayes paradigmasi igin
alternatif risk ve fonksiyon kaybi tiiretmektir. Bayes karar verme,
siklik¢1 performans Olgiitlerinin benimsenmesi nedeniyle uzun
siire gblgede kalmis olan Bayes ¢ikarimin ayrilmaz bir pargasidir
ve Bayes ¢ikarim dogas1 geregi olasiliklidir, Klasik paradigma ile
ele alinmasi diisik performanslara yol agacaktir. Bu g¢alisma,
Bayes tahminleri klasik tahminlerle olumlu karsilastiran agirhigt
tanitmay1 ve elestirel bir bakis agisiyla tanitmayr amaglamaktadir.
Gere¢ ve Yontemler: Dengeli agirlikli hassas fonksiyon kaybi
benimsenmis ve tanimlanmistir; uyumun iyiligi ve tahminlerin
kesinliginin kombinasyonu olan dengeli fonksiyon kaybindaki
tahminlerin kesinliginin ¢ikarimidir. Tahminlerin kesinligi ¢ika-
rimlarin kalitesini 6lgerken uyumun iyiligi kriterleri verilerin ka-
litesini Olger. Her kriterin kendine 6zgii spesifik rolii oldugundan
iki kriterin birlestirilmesi bilgi kaybima yol agabilir. Bulgular:
Posterior ortalamanin tahminlerinin kesinligini 6lgmek igin agir-
likl1 kuadratik kayip ve Bayes tahmini standart bir 6l¢iim olarak
olusturulmustur. Calisma, diger tahminlerle Bayes ¢ikarimlarini
olumlu bir gekilde karsilagtiran agirlikli kuadratik fonksiyon kay-
b1 altinda tahmin karakteristiklerini ortaya koymustur. Sonug: Bu
sebeple, posterior ortalama ve Bayes tahminlerinin agirlikli
kuadratik fonksiyon kaybi degerlendirme kriterlerinin dogru kar-
stlagtirma i¢in dnemi vurgulanmistir.
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It was observed in the literature that not at all times prior distribution is dominated by the likelihood.2
Thus, in Bayesian decision theoretic, a decision has to be made for variety of choices of action “a” subject to
the state of nature 6 which is unknown.* The decision maker’s knowledge is the probability distribution
which combines prior knowledge of 6 with the information provided by the experiment (likelihood). There
is need to choose action & which minimizes loss over the posterior distribution. There are different results
from different choices of prior. The work with reference to point estimate and as well as mean squares error
were evaluated, they found out that the authors were disturbed by poor performance of the estimators due to
large mean square error (MSE), and that point estimate had large MSE which make it inefficiency.*2

The unbiased estimator should not be adopted as criterion due to large MSE, thus, the use of posterior
mean might yield inefficient estimator and that Bayesian estimator fails due to infinite Bayes risk, which
had large bias due to the posterior distribution with quasi prior.> The reason being that the authors failed
to weigh the risk function thereby have large bias and MSE, and are also in the category of not adding
weight to the bias and risk, both would escalate the criteria and perform poorly as compared with ordinary
least squares (OLS).”8 In an attempt to improve on this and managed to proposed another balanced loss
function called weighted balanced loss function, which attempted to divide the balance loss function
(BLF) by the square of the OLS parameters.? The duo of goodness of fit that is mean sum of squares of
residuals of regression estimation and precision of the estimates which can be obtained from the weighted
or unweighted loss function can be simultaneously used as performance metric to evaluate the perform-
ance of regression estimator.” In line with this assertion, balanced loss function was postulated which
makes use of quadratic loss function, that is the combination of sum of squares of residuals and weighted
sum of estimation errors. The measures of goodness of fit and measures of precision of estimates to for-
mulate the loss function through which optimal estimates and posterior expected loss were obtained.? This
study argued that since each of the performance metrics either goodness of fit or precision of estimate has
its respective function in evaluating the performance of regression, thus combining them may lead to loss
of information or inability to measure what each of them was designed to measure. In line with this, bal-
ance precision loss function was proposed which considered only precision of estimate to derive posterior
and Bayes expected loss function.

All these efforts may not give accurate or optimal decision and may not be scientifically explained, the
main point is just to weighing it. Due to this aged-long problem, this study is trying to fill the gap. The sec-
tion of the study is arranged as follow: section 1 contains introduction while section 2 examines Expected
loss and risks which covered Frequentist, posterior and Bayesian. Balanced Weighted Precision Loss func-
tion (BWPLF) is described in section 3, section 4 considered data analysis and interpretation while section 5
contains conclusion.

BALANCED LOSS FUNCTION (BLF)

From literature various authors have adopted weighted balanced loss function and unweighted balanced loss
function, but none of them considered BWPLF that specifically meant for precision of estimates. Balanced
and unbalanced loss functions were compared, they found out that when goodness of fit is used singlehand-
edly the 3 turned out to be the best choice based on their choosing value of / but when both criteria (good-
ness of fit and precision of estimates) are used simultaneously, it was observed that £ is optimal if the 7 is
greater than specified f but if the / is less than specified f then the optimal falls.t®

Balanced loss function in the realm of regret loss was examined and established the relationship be-
tween quadratic balanced loss and usual quadratic loss, they examined the implication of their study with re-
spect to Stein-rule estimators, they examined the regret loss with reference to several non-quadratic balanced
loss function.* Balanced loss function as criterion to evaluate the performance of estimates of Posterior
mean was adopted and obtained its Bayes estimator using weighted balanced loss function.? They con-

142



Isiaka OLOYEDE et al. Turkiye Klinikleri J Biostat. 2023;15(3): 141-9

cluded that the obtained Poisson mean is admissible. Weighted squared error loss, entropy loss and weighted
entropy loss to examine the characteristics of estimators were adopted by adopted. 2322

Balanced loss function was adopted in the study and concluded that both the classical and Bayesian de-
picted similar results which is only a reflection of precision of estimates.*® Their study led to generalized im-
proved Bayes estimator under balanced loss function. Constrained Bayes and empirical Bayes estimators un-
der balanced loss functions was derived.*” Thus, their study established that both estimators have their indi-
vidual usefulness particularly if comparison is taken place between them. The target estimator has certain
optimal characteristics under balanced loss function and they established relationship between optimal ac-
tions derived under balanced and unbalanced losses function.2222 Considered the problem of estimating a
continuous distribution function F and z(F) under a variety of loss functions.?2 Examined estimations of a
normal mean under balanced loss functions, examined Bayesian estimation and measured it with different
loss functions and were able to develop new estimator under different loss functions.2:% Opined that Bayes-
ian estimator under loss function outperformed other classical estimators, this study therefore postulated both
Bayes estimator and posterior mean under the unbalanced loss function called sliced loss function by single-
handedly considering precision of estimate.

EXPECTED LOSS AND RISKS
Theorem 1: Let D = (X4, X, ..., X,,) be set of data with probability distribution P(8) with g~m, m is the
prior and 8 = §(D), thus, §(D) can be expressed as §(D), depending on the nature of data. The loss func-
tion can be expressed as L(B,8) = L(B,5(D)), the two random variables are minimized by taking its ex-
pected value. There are two possible paths: average of data (frequentist) and average of theta (prior) Bayes-
ian.
FREQUENTIST EXPECTED LOSS
Def 1: the loss function of a decision rule (D) can be expressed as:

E(L(B,5(D))IB)

This is average on data D conditional on parameter 8, the belief of frequentist is that there is adequate
knowledge of data, and it does not make sense to average on prior distribution that is unknown, and there is
no justification for using prior distribution for making decision or take action.

Def 2: the risk function of a decision rule 6(D) is obtained as:
R(B,8) = E(L(B,6(D))IB) = [ ,L(B. B)m(BID)dp ©)
The frequentist risk function is the integral of loss function and likelihood

POSTERIOR EXPECTED LOSS AND RISK
p(n(B\D), B) = E(L(B, £)ID) = [ oL (B, F)m(BID)dp @
Adopting quadratic loss function, we have

Let B denote the set of nature S and 8 represent the action a having real value loss function of (,8, ,[?)
D = X;,X,, ... Xy set of observations, g is a random variable, the distribution of D depends on g, the optimal
decision is to chose 2 that will minimize the posterior expected loss.

[ oL(B.B)(BIDYAB = [, (B — B)’=(BID)dB @3)
Solve for § we have

B = E(B)n(B|D)
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BAYESIAN EXPECTED LOSS FUNCTION
Def 3: If m*(B) is the prior probability density of B during the time of decision making, then the Bayesian
expected loss of an action B is p(1*, B) = E™ L(B,B) = [ {L(B. B)m* (B)d(B)

Let §(D) be the decision rule associated with prior density (), the expected value of the loss function
() from the joint probability density function (X, B) is referred to as Bayes risk rn(ﬁlD) which is expressed

as: 74(BID) = E [E[L(B. B)|B]| = Ex[R(B.B)]

Thus, the Bayes rule is the procedures that minimize the Bayes risk. The posterior risk of an action a is
the expected loss from taking action a under the posterior distribution as (8|D)
7(BID) = Exzp)[L(B. B)]

L: @ x A — Riis the loss function of loss incurred as a result of the action a employed with state of the
nature B. The risk function is expressed by

R(6,D) = [3L(B,D)f(D|B)dD (4)
Bayes risk can be expressed by
r(m,D) = [zR(B, D)n(B)dp ®)

r(m,D) = [ of .3L(B,D)f(D|B)dDm(B)dp
T(T[,D) = IRBIQL(B!D) ﬂ(ﬁlD)dﬁ
T(T[,D) = prf@L(.B'D) T[(BlD)dB

which is equivalent to minimizing posterior expected loss. Note that © is the all-possible state of nature that
is unknown quantities, it can be regarded as parameter space of which 6 is the parameter that is 8e®. Thus, a
is the action or decision of which A is the set of all possible actions, hence a eA.

BALANCED WEIGHTED PRECISION LOSS FUNCTION (BWPLF)

Let y = X + u be a linear regression model with y as a vector of observations of the dependent variable, X
is an n X k matrix of observations with rank k < n, g is a vector of unknown parameters and u is a vector of
disturbance error term in line with, the posterior pdf for 8 has the property of finite second moment. BLF has
been used over decades in the literature as a performance metric in a Bayesian paradigm.” Thus, it combined
goodness of fit and precision of estimate as in, it may be impossible to make comparison between Bayesian
and frequentist if both are not measured in the same frequency.”

Letuu = (y — XB)'(y — XB) (6)
Simplify rhs of u'u further we have

=0y —-28Xy+BXXB)

=yy=2BXy+BXXB-2(XX)T X)Xy + (X X)X y)XX((X'X)'X"y)
=(y—Xb)(y—Xb)+bX'Xb+ BXXB—2BXXb

= (6(n—k) + (B —b)X'X(B — b))

b=XX)"1X'y
Expressing eq (6) as BLF in order to estimate posterior pdf of 2, we have:
Ls(B.8) =w(y — XB)'(y = XB) + (1 —w)(B - B)'(B - B) ™
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The equation has two parts criteria, the first path represents goodness of fit while the other part denotes
precision of estimate. Suffice to say the study will consider the second path, with 0 < w < 1 and g is the es-
timate of 8, we will obtain 8 which minimizes posterior expected loss, and § the Bayesian estimate that
minimizes posterior expected loss.

Thus, w and 1 — w are defined as:

A2

. B £
TG
_ 3*n

G

f=wB+(1-w)p (8a)

It should be noted that Bayes estimate £ is the weighted average of OLS f and posterior mean.”
p=&XX)TXy

£ is the posterior mean of S

B=af+(1-a)B (8b)

In eq.(8b) above B is the prior parameters, thus in Posterior expected loss, there is no justification to in-
clude measure of goodness of fit in our BWPLF, since the Bayes risk function is to be compared with fre-
quentist risk as well as other frequentist criteria

with the omission of goodness of fit we have a criterion

n(B) = (B~ B)T'(8 ~ B) ©
EsLs(B.8) = [1-w)(B - ) (B1) " (5 - )] (10)
Esls(8.8) = [(1—w)(B-p) (B1) (B - B)] (11)

Note that there may be need to remove w form the equation above except if it will be inclusive in the
frequentist criteria. Besides, we weighted the equation (10) and (11) above since prior is inherent in both
posterior mean and Bayes estimate.

TABLE 1: Average operating characteristics.

Average operating characteristic Frequentist Posterior mean Bayes estimate
Mean B =XX)1xy B=af+(1-a)B B=af+(1-a)B
Bias £—-B B-B B-8)
Loss function B-B)B-5) aA-a)(B-8)(B-5) a-w(@BE-8)B-8)
, . . A-a)(B-B)(B-B) A-w)(B-B)(E-B)
Bayes risk B-B)B-B — 7 — -1
G=ne=n @ @

The Table 1 presented average operating characteristics of risk and loss function. The above average oper-
ating characteristics omitted a or w, there is no justification of imposing it and that it can be added, but care
must be taken to add it thoroughly including OLS. This weight of the loss function makes Bayes risk outper-
formed pos;[erior risk and frequentist risk. This will correct age long assertion that made having large MSE in
their study.>
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DATA ANALYSIS, RESULTS AND INTERPRETATION

density(x =vy)

Density
Density
006
1

004
I

0.00 - - L T P IR A B2

000
!

T T T T T
-8 -6 4 -2 o 2 T T T T T T

Negatively Skewed Distribution 10 15 20 25 30 35

N = 250 Bandwidth = 1.268

FIGURE 1: Depicts the density of negatively skew-normal error and dependent variable y.

From Figure 1 above, the data generated with negatively skew-normal error with sample size 250, this is
common in health research. The density of the error has impact on the dependent variable, the data was ana-
lysed with both classical and Bayesian frameworks to ascertain the effectiveness of loss and risk function
proposed in the study.

TABLE 2: Depicts negatively skew-normal error structure dataset in classical and Bayesian frameworks.

Classical Bayesian OLS Bayesian stein
Negatively skewed data OoLS Stein-rule Posterior mean Bayes estimate Posterior mean Bayes estimate
0.9348 0.9192 1.2488 1.2485 1.2502 1.2504
1.9993 2.0012 1.9917 1.9918 1.9915 1.9915
0.8006 0.7998 0.6924 0.6924 0.6924 0.6924
Mean
0.2995 0.3001 0.2829 0.2829 0.2828 0.2828
2.0993 2.1005 2.0781 2.0781 2.0780 2.0780
1.0999 1.0997 1.0643 1.0643 1.0643 1.0643
-0.2652 -0.2808 0.0332 0.0329 0.0341 0.0343
-0.0007 0.0012 -0.0056 -0.0056 -0.0058 -0.0058
_ 0.0006 -0.0002 -0.0731 -0.0731 -0.0731 -0.0731
e -0.0005 0.0001 -0.0116 -0.0116 -0.0117 -0.0117
-0.0007 0.0005 -0.0149 -0.0149 -0.0149 -0.0149
-0.0001 -0.0002 -0.0243 -0.0243 -0.0243 -0.0243
Loss function 0.07033 0.07886 0.010926 0.010908 0.011028 0.011042
Bayes risk 0.00972 0.01092 0.001472 0.001469 0.001499 0.001500

OLS: Ordinary least squares.

In Table 2 above, the error structure is negatively skew-normal as it depicted in Figure 1 above, the out-
come of the study pointed out that Bayesian framework outperformed classical paradigm both in loss func-
tion and Bayes risk, this affirms the efficiency of our proposed BWPLF.
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FIGURE 2: Depicts the density of positively skew-normal error and dependent variable y.

From Figure 2 above, the data generated with positively skew-normal error with sample size 250, this is
common in health research. The density of the error has impact on the dependent variable, the data was ana-
lysed with both classical and Bayesian frameworks to ascertain the effectiveness of loss and risk function
proposed in the study.

TABLE 3: Depicts positively skew-normal error structure dataset in classical and Bayesian frameworks.

Classical Bayesian OLS Bayesian stein
Positively skewed data oLs Stein Posterior mean Bayes estimate Posterior mean Bayes estimate
4.0463 4.0575 3.0529 3.0524 3.0552 3.0556
2.0007 1.9998 2.1645 2.1646 2.1642 2.1641
0.7998 0.8003 0.8501 0.8500 0.8501 0.8500
Mean
0.3007 0.2996 0.2882 0.2883 0.2882 0.2882
2.1009 2.0999 2.0692 2.0692 2.0691 2.0690
1.1000 1.1001 1.1484 1.1484 1.1484 1.1484
2.8463 2.8575 1.2449 1.2446 1.2465 1.2467
0.0007 -0.0002 0.1105 0.1106 0.1103 0.1103
. -0.0001 0.0003 0.0336 0.0336 0.0336 0.0336
ples 0.0007 -0.0004 -0.0079 -0.0079 -0.0079 -0.0079
0.0009 -6.086-05 -0.0207 -0.0207 -0.0208 -0.0208
4.98e-05 7.58e-05 0.0325 0.0325 0.0325 0.0325
Loss function 8.1016 8.1654 2.3288 2.3277 2.3346 2.3354
Bayes risk 0.78287 0.78838 0.2410 0.2409 0.2438 0.2439

OLS: Ordinary least squares.
In Table 3 above, the error structure is positively skew-normal as it depicted in Figure 2 above, the out-

come of the study pointed out that Bayesian framework outperformed classical paradigm both in loss func-
tion and Bayes risk, this affirms the efficiency of our proposed BWPLF.
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I CONCLUSION

BWPLF that captured precision of estimation was examined to develop performance metrics for posterior
and Bayesian estimates. Conventional BLF was derived from sum of squares of error of which BWPLF was
extracted. However, aged-long inefficient metrics had been weighted, thereby making it efficient and com-
paratively well with other estimators. The performance metrics were established with regression parameters
for easy understanding. The study affirmed the efficiency of our proposed BWPLF in comparison with clas-
sical framework. Both OLS and Stein -rule estimators were compared with Bayesian paradigms, the study
observed better performances of Bayesian paradigm in comparison with classical frameworks.
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