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ABSTRACT Objective: The main aim of this study is to derive 

the alternative risk and loss function for Bayesian paradigm. 
Bayesian Decision making is an integral part of Bayesian infer-

ence which had for long overshadowed due to the adoption of 

frequentist performance metric, and Bayesian inference is proba-
bilistic in nature, treating it in classical paradigm would lead to 

poor performances. This study seeks to examine critically and 

introduce weight which eventually makes Bayesian estimates 
compare favourably well with classical estimates. Material and 

Methods: Balanced weighted precision loss function was adopted 

and described; it is an extraction of precision of estimates from 
balanced loss function which ordinarily combined goodness of fit 

and precision of estimates. The goodness of fit criterion measures 
the quality of data while the precision of estimates measures the 

quality of inferences, combining the two criteria may lead to loss 

of information as each criterion has its specific role in both clas-
sical and Bayesian paradigms. Results: Weighted quadratic loss 

to measure the precision of estimates of Posterior mean and 

Bayes estimate were constructed as a standard metric. The study 
established the estimation characteristics under weighted quadrat-

ic loss function which makes Bayesian inference compare favour-

ably well with other estimators. Conclusion: It is therefore rec-
ommended that weighted quadratic loss function of assessment 

criteria of both posterior mean and Bayes estimates is of im-

portance for correct comparison. 
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ÖZET Amaç: Bu çalışmanın asıl amacı, Bayes paradigması için 

alternatif risk ve fonksiyon kaybı türetmektir. Bayes karar verme, 
sıklıkçı performans ölçütlerinin benimsenmesi nedeniyle uzun 

süre gölgede kalmış olan Bayes çıkarımın ayrılmaz bir parçasıdır 

ve Bayes çıkarım doğası gereği olasılıklıdır, klasik paradigma ile 
ele alınması düşük performanslara yol açacaktır. Bu çalışma, 

Bayes tahminleri klasik tahminlerle olumlu karşılaştıran ağırlığı 

tanıtmayı ve eleştirel bir bakış açısıyla tanıtmayı amaçlamaktadır. 
Gereç ve Yöntemler: Dengeli ağırlıklı hassas fonksiyon kaybı 

benimsenmiş ve tanımlanmıştır; uyumun iyiliği ve tahminlerin 

kesinliğinin kombinasyonu olan dengeli fonksiyon kaybındaki 
tahminlerin kesinliğinin çıkarımıdır. Tahminlerin kesinliği çıka-

rımların kalitesini ölçerken uyumun iyiliği kriterleri verilerin ka-
litesini ölçer. Her kriterin kendine özgü spesifik rolü olduğundan 

iki kriterin birleştirilmesi bilgi kaybına yol açabilir. Bulgular: 

Posterior ortalamanın tahminlerinin kesinliğini ölçmek için ağır-
lıklı kuadratik kayıp ve Bayes tahmini standart bir ölçüm olarak 

oluşturulmuştur. Çalışma, diğer tahminlerle Bayes çıkarımlarını 

olumlu bir şekilde karşılaştıran ağırlıklı kuadratik fonksiyon kay-
bı altında tahmin karakteristiklerini ortaya koymuştur. Sonuç: Bu 

sebeple, posterior ortalama ve Bayes tahminlerinin ağırlıklı 

kuadratik fonksiyon kaybı değerlendirme kriterlerinin doğru kar-
şılaştırma için önemi vurgulanmıştır. 

 

 
 

Anahtar kelimeler: Öncelik; kesinlik; fonksiyon kaybı;  

                                   posterior ortalama ve Bayes tahminleri 

 

Türkiye Klinikleri Biyoistatistik Dergisi 

Turkiye Klinikleri Journal of Biostatistics 

Correspondence: Isiaka OLOYEDE 

Department of Statistics, University of Ilorin, Kwara, Nigeria 

E-mail: oloyede.i@unilorin.edu.ng 

Peer review under responsibility of Turkiye Klinikleri Journal of Biostatistics. 

Received: 09 Mar 2023       Received in revised form: 15 Aug 2023       Accepted: 15 Aug 2023       Available online: 19 Sep 2023 

2146-8877 / Copyright © 2023 by Türkiye Klinikleri. This in an open 

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

  

 

https://doi.org/10.5336/biostatic.2023-96651
mailto:oloyede.i@unilorin.edu.ng
https://orcid.org/0000-0002-0462-5433
https://orcid.org/0009-0000-6360-5486


 

Isiaka OLOYEDE et al. Turkiye Klinikleri J Biostat. 2023;15(3): 141-9 

 

 142 

It was observed in the literature that not at all times prior distribution is dominated by the likelihood.
1-3

 

Thus, in Bayesian decision theoretic, a decision has to be made for variety of choices of action “a” subject to 

the state of nature   which is unknown.
4
 The decision maker’s knowledge is the probability distribution 

which combines prior knowledge of   with the information provided by the experiment (likelihood). There 

is need to choose action    which minimizes loss over the posterior distribution. There are different results 

from different choices of prior. The work with reference to point estimate and as well as mean squares error 

were evaluated, they found out that the authors were disturbed by poor performance of the estimators due to 

large mean square error (MSE), and that point estimate had large MSE which make it inefficiency.
4-6

 

The unbiased estimator should not be adopted as criterion due to large MSE, thus, the use of posterior 

mean might yield inefficient estimator and that Bayesian estimator fails due to infinite Bayes risk, which 

had large bias due to the posterior distribution with quasi prior.
5
 The reason being that the authors failed 

to weigh the risk function thereby have large bias and MSE,
 
and are also in the category of not adding 

weight to the bias and risk, both would escalate the criteria and perform poorly as compared with ordinary 

least squares (OLS).
7,8

 In an attempt to improve on this and managed to proposed another balanced loss 

function called weighted balanced loss function, which attempted to divide the balance loss function 

(BLF) by the square of the OLS parameters.
9
 The duo of goodness of fit that is mean sum of squares of 

residuals of regression estimation and precision of the estimates which can be obtained from the weighted 

or unweighted loss function can be simultaneously used as performance metric to evaluate the perform-

ance of regression estimator.
7
 In line with this assertion, balanced loss function was postulated which 

makes use of quadratic loss function, that is the combination of sum of squares of residuals and weighted 

sum of estimation errors. The measures of goodness of fit and measures of precision of estimates to for-

mulate the loss function through which optimal estimates and posterior expected loss were obtained.
9
 This 

study argued that since each of the performance metrics either goodness of fit or precision of estimate has 

its respective function in evaluating the performance of regression, thus combining them may lead to loss 

of information or inability to measure what each of them was designed to measure. In line with this, ba l-

ance precision loss function was proposed which considered only precision of estimate to derive posterior 

and Bayes expected loss function. 

All these efforts may not give accurate or optimal decision and may not be scientifically explained, the 

main point is just to weighing it. Due to this aged-long problem, this study is trying to fill the gap. The sec-

tion of the study is arranged as follow: section 1 contains introduction while section 2 examines Expected 

loss and risks which covered Frequentist, posterior and Bayesian. Balanced Weighted Precision Loss func-

tion (BWPLF) is described in section 3, section 4 considered data analysis and interpretation while section 5 

contains conclusion. 

BALANCED LOSS FUNCTION (BLF) 

From literature various authors have adopted weighted balanced loss function and unweighted balanced loss 

function, but none of them considered BWPLF that specifically meant for precision of estimates. Balanced 

and unbalanced loss functions were compared, they found out that when goodness of fit is used singlehand-

edly the    turned out to be the best choice based on their choosing value of   but when both criteria (good-

ness of fit and precision of estimates) are used simultaneously, it was observed that    is optimal if the   is 

greater than specified   but if the   is less than specified   then the optimal falls.
10

 

Balanced loss function in the realm of regret loss was examined and established the relationship be-

tween quadratic balanced loss and usual quadratic loss, they examined the implication of their study with re-

spect to Stein-rule estimators, they examined the regret loss with reference to several non-quadratic balanced 

loss function.
11

 Balanced loss function as criterion to evaluate the performance of estimates of Posterior 

mean was adopted and obtained its Bayes estimator using weighted balanced loss function.
12

 They con-
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cluded that the obtained Poisson mean is admissible. Weighted squared error loss, entropy loss and weighted 

entropy loss to examine the characteristics of estimators were adopted by adopted.
13-15

 

Balanced loss function was adopted in the study and concluded that both the classical and Bayesian de-

picted similar results which is only a reflection of precision of estimates.
16

 Their study led to generalized im-

proved Bayes estimator under balanced loss function. Constrained Bayes and empirical Bayes estimators un-

der balanced loss functions was derived.
17

 Thus, their study established that both estimators have their indi-

vidual usefulness particularly if comparison is taken place between them. The target estimator has certain 

optimal characteristics under balanced loss function and they established relationship between optimal ac-

tions derived under balanced and unbalanced losses function.
18,19

 Considered the problem of estimating a 

continuous distribution function F and τ(F) under a variety of loss functions.
20

 Examined estimations of a 

normal mean under balanced loss functions, examined Bayesian estimation and measured it with different 

loss functions and were able to develop new estimator under different loss functions.
21,22

 Opined that Bayes-

ian estimator under loss function outperformed other classical estimators, this study therefore postulated both 

Bayes estimator and posterior mean under the unbalanced loss function called sliced loss function by single-

handedly considering precision of estimate. 

EXPECTED LOSS AND RISKS 

Theorem 1: Let                be set of data with probability distribution      with    ,   is the 

prior and        , thus,      can be expressed as     , depending on the nature of data. The loss func-

tion can be expressed as                  , the two random variables are minimized by taking its ex-

pected value. There are two possible paths: average of data (frequentist) and average of theta (prior) Bayes-

ian. 

FREQUENTIST EXPECTED LOSS 

Def 1: the loss function of a decision rule      can be expressed as:  

                

This is average on data   conditional on parameter  , the belief of frequentist is that there is adequate 

knowledge of data, and it does not make sense to average on prior distribution that is unknown, and there is 

no justification for using prior distribution for making decision or take action. 

Def 2: the risk function of a decision rule      is obtained as: 

                       
 
                               (1)  

The frequentist risk function is the integral of loss function and likelihood 

POSTERIOR EXPECTED LOSS AND RISK  

                           
 
                                    (2) 

Adopting quadratic loss function, we have 

Let   denote the set of nature S and    represent the action   having real value loss function of       , 

            set of observations,   is a random variable, the distribution of   depends on  , the optimal 

decision is to chose    that will minimize the posterior expected loss. 

 
 
                 

 
      

 
                                        (3) 

Solve for    we have 
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BAYESIAN EXPECTED LOSS FUNCTION 

Def 3: If       is the prior probability density of   during the time of decision making, then the Bayesian 

expected loss of an action    is             
         

 
                 

Let      be the decision rule associated with prior density     , the expected value of the loss function 

() from the joint probability density function       is referred to as Bayes risk          which is expressed 

as :                                       

Thus, the Bayes rule is the procedures that minimize the Bayes risk. The posterior risk of an action   is 

the expected loss from taking action   under the posterior distribution as        

                         

        is the loss function of loss incurred as a result of the action   employed with state of the 

nature  . The risk function is expressed by  

        
   

                                            (4) 

Bayes risk can be expressed by   

        
   

                                                (5) 

        
 
 
   

                     

        
   

 
 
                

        
   

 
 
                

which is equivalent to minimizing posterior expected loss. Note that   is the all-possible state of nature that 

is unknown quantities, it can be regarded as parameter space of which   is the parameter that is    . Thus,   

is the action or decision of which   is the set of all possible actions, hence     . 

BALANCED WEIGHTED PRECISION LOSS FUNCTION (BWPLF) 

Let        be a linear regression model with   as a vector of observations of the dependent variable,   

is an     matrix of observations with rank    ,   is a vector of unknown parameters and u is a vector of 

disturbance error term in line with, the posterior pdf for   has the property of finite second moment. BLF has 

been used over decades in the literature as a performance metric in a Bayesian paradigm.
7
 Thus, it combined 

goodness of fit and precision of estimate as in, it may be impossible to make comparison between Bayesian 

and frequentist if both are not measured in the same frequency.
7
 

Let                                    (6) 

Simplify rhs of     further we have 

                     

                                                                  

                                       

                          

             

Expressing eq (6) as BLF in order to estimate posterior pdf of   , we have: 

                                                  (7) 



 

Isiaka OLOYEDE et al. Turkiye Klinikleri J Biostat. 2023;15(3): 141-9 

 

 145 

The equation has two parts criteria, the first path represents goodness of fit while the other part denotes 

precision of estimate. Suffice to say the study will consider the second path, with       and    is the es-

timate of  , we will obtain    which minimizes posterior expected loss, and    the Bayesian estimate that 

minimizes posterior expected loss. 

Thus,   and     are defined as: 

    
   

           
 

  
     

           
 

                      (8a) 

It should be noted that Bayes estimate    is the weighted average of OLS    and posterior mean.
5
 

              

   is the posterior mean of    

                                  (8b) 

In eq.(8b) above   is the prior parameters, thus in Posterior expected loss, there is no justification to in-

clude measure of goodness of fit in our BWPLF, since the Bayes risk function is to be compared with fre-

quentist risk as well as other frequentist criteria 

with the omission of goodness of fit we have a criterion 

                          (9) 

                        
 
      

  
            (10) 

                       
 
      

  
            (11) 

Note that there may be need to remove w form the equation above except if it will be inclusive in the 

frequentist criteria. Besides, we weighted the equation (10) and (11) above since prior is inherent in both 

posterior mean and Bayes estimate.  

 

TABLE 1: Average operating characteristics. 
 

Average operating characteristic Frequentist Posterior mean Bayes estimate 

Mean                                           

Bias                  

Loss function                                                     

Bayes risk               
                  

      
   

                  

      
   

 

The Table 1 presented average operating characteristics of risk and loss function. The above average oper-

ating characteristics omitted   or  , there is no justification of imposing it and that it can be added, but care 

must be taken to add it thoroughly including OLS. This weight of the loss function makes Bayes risk outper-

formed posterior risk and frequentist risk. This will correct age long assertion that made having large MSE in 

their study.
5
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DATA ANALYSIS, RESULTS AND INTERPRETATION  

 
 

FIGURE 1: Depicts the density of negatively skew-normal error and dependent variable y. 

 

From Figure 1 above, the data generated with negatively skew-normal error with sample size 250, this is 

common in health research. The density of the error has impact on the dependent variable, the data was ana-

lysed with both classical and Bayesian frameworks to ascertain the effectiveness of loss and risk function 

proposed in the study. 

 

TABLE 2: Depicts negatively skew-normal error structure dataset in classical and Bayesian frameworks. 
 

 Classical Bayesian OLS Bayesian stein 

Negatively skewed data OLS Stein-rule Posterior mean Bayes estimate Posterior mean Bayes estimate 

Mean 

0.9348 0.9192 1.2488 1.2485 1.2502 1.2504 

1.9993 2.0012 1.9917 1.9918 1.9915 1.9915 

0.8006 0.7998 0.6924 0.6924 0.6924 0.6924 

0.2995 0.3001 0.2829 0.2829 0.2828 0.2828 

2.0993 2.1005 2.0781 2.0781 2.0780 2.0780 

1.0999 1.0997 1.0643 1.0643 1.0643 1.0643 

Bias 

-0.2652 -0.2808 0.0332 0.0329 0.0341 0.0343 

-0.0007 0.0012 -0.0056 -0.0056 -0.0058 -0.0058 

0.0006 -0.0002 -0.0731 -0.0731 -0.0731 -0.0731 

-0.0005 0.0001 -0.0116 -0.0116 -0.0117 -0.0117 

-0.0007 0.0005 -0.0149 -0.0149 -0.0149 -0.0149 

-0.0001 -0.0002 -0.0243 -0.0243 -0.0243 -0.0243 

Loss function  0.07033 0.07886 0.010926 0.010908 0.011028 0.011042 

Bayes risk 0.00972 0.01092 0.001472 0.001469 0.001499 0.001500 
 

OLS: Ordinary least squares. 

 

In Table 2 above, the error structure is negatively skew-normal as it depicted in Figure 1 above, the out-

come of the study pointed out that Bayesian framework outperformed classical paradigm both in loss func-

tion and Bayes risk, this affirms the efficiency of our proposed BWPLF. 
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FIGURE 2: Depicts the density of positively skew-normal error and dependent variable y. 

 

From Figure 2 above, the data generated with positively skew-normal error with sample size 250, this is 

common in health research. The density of the error has impact on the dependent variable, the data was ana-

lysed with both classical and Bayesian frameworks to ascertain the effectiveness of loss and risk function 

proposed in the study. 

 

TABLE 3: Depicts positively skew-normal error structure dataset in classical and Bayesian frameworks. 
 

 Classical Bayesian OLS Bayesian stein 

Positively skewed data OLS Stein Posterior mean Bayes estimate Posterior mean Bayes estimate 

Mean 

4.0463 4.0575 3.0529 3.0524 3.0552 3.0556 

2.0007 1.9998 2.1645 2.1646 2.1642 2.1641 

0.7998 0.8003 0.8501 0.8500 0.8501 0.8500 

0.3007 0.2996 0.2882 0.2883 0.2882 0.2882 

2.1009 2.0999 2.0692 2.0692 2.0691 2.0690 

1.1000 1.1001 1.1484 1.1484 1.1484 1.1484 

Bias 

2.8463 2.8575 1.2449 1.2446 1.2465 1.2467 

0.0007 -0.0002 0.1105 0.1106 0.1103 0.1103 

-0.0001 0.0003 0.0336 0.0336 0.0336 0.0336 

0.0007 -0.0004 -0.0079 -0.0079 -0.0079 -0.0079 

0.0009 -6.086-05 -0.0207 -0.0207 -0.0208 -0.0208 

4.98e-05 7.58e-05 0.0325 0.0325 0.0325 0.0325 

Loss function 8.1016 8.1654 2.3288 2.3277 2.3346 2.3354 

Bayes risk 0.78287 0.78838 0.2410 0.2409 0.2438 0.2439 
 

OLS: Ordinary least squares. 

 

In Table 3 above, the error structure is positively skew-normal as it depicted in Figure 2 above, the out-

come of the study pointed out that Bayesian framework outperformed classical paradigm both in loss func-

tion and Bayes risk, this affirms the efficiency of our proposed BWPLF. 
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    CONCLUSION 

BWPLF that captured precision of estimation was examined to develop performance metrics for posterior 

and Bayesian estimates. Conventional BLF was derived from sum of squares of error of which BWPLF was 

extracted. However, aged-long inefficient metrics had been weighted, thereby making it efficient and com-

paratively well with other estimators. The performance metrics were established with regression parameters 

for easy understanding. The study affirmed the efficiency of our proposed BWPLF in comparison with clas-

sical framework. Both OLS and Stein -rule estimators were compared with Bayesian paradigms, the study 

observed better performances of Bayesian paradigm in comparison with classical frameworks.  
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