
issing data are ubiquitous in statistical practice. Missing data can
arise due to laboratory instrument failure, participant withdrawal
or loss-to-follow-up in longitudinal studies, participant refusal to

answer particular survey questions, or even intentionally by study design.
Many statistical techniques used in data analysis require complete data and
are not equipped to handle missing data. Some common software imple-
mentations of these statistical analysis procedures drop all cases with miss-
ing values for any of the variables included in the analysis. For analyses
involving a large number of variables, such as a complex logistic regression
model, missing data may occur in the outcome variable and in any of the po-
tentially numerous explanatory variables and confounders included in the
model. Where a scattered missing data pattern such as this may occur, case-
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Multiple Imputation by Chained Equations:
An Overview of Conceptual and

Operational Aspects and Software: Review

AABBSSTTRRAACCTT  Missing data are prevalent in nearly all areas of research. It is of utmost importance that
appropriate methods are used to obtain statistically valid inferences in the presence of missing data.
Multiple imputation relies on the creation of multiple sets of plausible values for the missing data.
We provide background on missing data and its consequences, and describe the fundamental con-
cepts underlying multiple imputation. We then describe a flexible implementation of multiple im-
putation, called multiple imputation by chained equations, that allows the analyst to specify a
separate conditional regression for each variable with missing data. We conclude with an overview
of software options for multiple imputation by chained equations.  
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ÖÖZZEETT  Hemen hemen bütün çalışma alanlarında kayıp veriler ortaya çıkmaktadır. Kayıp veri du-
rumunda, istatistiksel olarak geçerli çıkarsamalar yapabilmek için uygun yöntemlerin kullanılması
son derece önemlidir. Çoklu değer atama, kayıp veriler yerine geçebilecek uygun değerleri içeren
veri setleri oluşturma temeline dayanır. Bu çalışmada, kayıp verilere ilişkin genel bilgiler ve neden
olacağı sonuçların yanı sıra, çoklu değer atamanın temelini oluşturan kavramlara değinilmiştir.
Kayıp veri içeren her değişken için ayrı bir regresyon denklemi tanımlamaya olanak sağlayan ve bu
anlamda esnek bir yöntem olan zincir denklemleri ile çoklu değer atamadan bahsedilmiştir. Zincir
denklemleri ile çoklu değer atama için kullanılan yazılımlar incelenmiştir.

AAnnaahhttaarr  KKeelliimmeelleerr:: Kayip veriler; çoklu değer atama; zincir denklemleri
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wise deletion of subjects with missing data on any
variable can substantially reduce power by limit-
ing the sample size available for analysis. Further-
more, the particular subset of observations with
complete data may not be representative of the
original sample and may lead to biased estimates
and incorrect conclusions.

Arbitrary missing data patterns where data
may be missing for any variable on any subject are
very common, though there are some special miss-
ing data patterns that can afford simpler treatment.
The special case of univariate missing data occurs
when only one variable in a data set has missing
data. A monotone missing data pattern occurs when
the variables under study, Y1,...,Yp can be ordered in
a such a way that if Yj is missing for a subject then
Yj+1,...,Yp are missing as well, while Y1,...,Yj-1 are ob-
served. The monotone missing data pattern is com-
monly seen in longitudinal studies where missing
data are due to attrition or study drop-out.

Missing data mechanisms can be classified into
three main types that were first described by Rubin1

and later refined in Little and Rubin’s seminal text
on missing data.2 Missing data are considered miss-
ing completely at random, or MCAR, if the proba-
bility of missingness is completely independent of
both the observed and unobserved data. That is,
every data element has equal probability of being
missing. To describe this mathematically, we must
first define R = R1,..., Rp as vectors of missingness in-
dicators that take the value 1 if Y is observed and 0
if Y is missing. MCAR implies that P (R | Y) = P (R).
It is quite rare in practice for data to be missing com-
pletely randomly. For an example of MCAR data,
imagine a printer that failed to print two pages of a
multi-page survey for a random 10% of surveys. The
probability of missing data is completely unrelated
to the survey respondents and their characteristics.
Data that are missing by design are sometimes
MCAR. For example, a portion of a very long sur-
vey may be broken into blocks and survey partici-
pants randomly assigned to complete only one block
of questions, rather than the whole survey.

If the probability of missingness depends on
observed data, then the missing data are missing at

random, or MAR. That is, P (R | Y) = P (R | Yobs),
where Yobs is the portion of Y that is observed. If,
however, the probability of missingness depends on
the unobserved values, then the missing data are
called missing not at random, or MNAR, and P (R |
Y) cannot be reduced to a simpler form that does
not require specific assumptions about the missing
data mechanism. In a cross-sectional study examin-
ing correlates of physical functioning, for example,
perhaps cholesterol level is one such potential cor-
relate under investigation and 15% of study partic-
ipants are missing data for their cholesterol level.
These missing data may be MNAR if people with
low cholesterol levels are more likely to have miss-
ing cholesterol data, perhaps because they are gen-
erally younger and healthier and less likely to have
ever had cholesterol testing conducted. Note that if
data are collected on age and general health status,
it may then be reasonable to consider the missing
cholesterol data MAR conditional on those ob-
served variables. This is an important point that is
leveraged by many statistical techniques for hand-
ing missing data that will be described later. It is im-
portant to note that the distinction between MAR
and MNAR is essentially untestable in most cir-
cumstances because the data required to evaluate
the distinction are, by definition, missing. Re-
searchers must rely on external data if possible and
their understanding of the constructs under study
to judge the reasonableness of the MAR assumption. 

All statistical analysis techniques make some
assumptions about the nature of missing data. It is
up to the researcher to recognize them and deter-
mine whether those assumptions are reasonable.
The simplistic technique mentioned previously,
throwing out cases with missing data and analyzing
only complete cases, assumes that missing data are
MCAR.3 In many cases, this may not be a reason-
able assumption, in addition to leading to a poten-
tially substantial loss of power due to reduced
sample size. Single imputation techniques, such as
substituting missing data with a mean value or re-
gression prediction, offer some improvements over
simply ignoring cases with missing data but they
also rely on assumptions that are very likely un-
tenable and do not account for the uncertainty in



the imputation of the missing data.4 After missing
values are “filled in” using some form of single im-
putation, the analysis then carries on as if this were
the complete data set. However, it is not a recre-
ation of the complete data since some of the values
are not real data but “guesses,” and there is some
level of uncertainty in these guesses that should be
incorporated into the statistical analysis to avoid
over-stating the precision in the form of p-values
that are too small and confidence intervals that are
too narrow.

Some statistical analysis techniques can han-
dle missing data directly via direct maximum like-
lihood methods, including some software for
multilevel models and structural equation model-
ing. For example, multilevel models, such as those
implemented in SAS PROC MIXED, are able to use
all of the available data and provide appropriate in-
ferences even in the presence of missing values in
the outcome variable under the assumption of
MAR. However, these multilevel models do not ac-
commodate missing values in the explanatory vari-
ables. 

MULTIPLE IMPUTATION

Rubin developed the beginnings of multiple impu-
tation in 19775 and published his seminal book on
the topic in 1987.6 He reviewed the progress of
multiple imputation nearly two decades later in
19967 and many others in the field have published
reviews and instructive tutorials.3,8,9 At first, multi-
ple imputation was conceived of in the context of
large-scale sample surveys—a situation where a
single data set may be analyzed by a large number
of users, some of whom may not be granted access
to the full data set (e.g., detailed confidential data
such as protected health information). It has now
achieved broader application in many fields. In the
most basic sense, multiple imputations are simply
multiple sets of plausible values for the missing val-
ues. Different multiple imputation methods rely on
different techniques to create the plausible values
as will be described below. The use of multiple sets
of plausible values allows the analyst to incorpo-
rate uncertainty about the imputed values. Once
imputations have been created, analysis of multi-

ply imputed data requires little to no specialized
statistical knowledge as analyses can be conducted
using any statistical package and complete-data
technique. Subsequently, results are combined to a
single inferential summary by Rubin’s rules.6

The foundation of multiple imputation has a
Bayesian motivation, although it can be carried out
by frequentist arguments.6 If we define Q as the
vector of parameters of interest, then the actual pos-
terior distribution of Q is the complete-data poste-
rior distribution of Q, averaged over the repeated
imputations. The repeated imputations, in turn, are
draws from the posterior predictive distribution of
the missing data given the observed data:

where Y = (Yobs, Ymis) is the complete data where
Yobs is the portion of Y that is observed and Ymis is
the portion of Y that is missing. Where R=0, we
have no information for                            but the ig-
norability, or MAR, assumption allows us to define 

The basic result led to the rules for estimating
the posterior mean and variance of Q, which are
frequently referred to as “Rubin’s Rules”.6 Specifi-
cally, the posterior mean of Q is the average of the
repeated complete-data posterior means of Q: 

which is estimated by

where                    are the values of the complete
data statistics calculated on the m completed data
sets. The posterior variance of Q is the average of
the repeated complete-data variances of Q, plus the
variance of the repeated complete-data posterior
means of Q: 

which is estimated by

where the within imputation variability is
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and the between imputation variability is 

Confidence intervals can then be calculated as 
where

We have not yet addressed how the multiple
imputations are generated. Imputations are repeat-
edly drawn from the posterior predictive distribu-
tion of the missing values under a specific model. A
common implementation of multiple imputation
relies on specification of a joint model for the full
data set, Y.  Most traditionally, the multivariate
normal distribution has been used. Each iteration
then alternates between making draws from the
posterior distribution of the parameters and im-
puting the missing values based on these parameter
draws.  The imputation model should include as
many variables as possible, including all variables
that will be included in analysis models as out-
comes, predictors, or covariates, as well as cluster-
ing and stratification factors, predictors of missing
data, and interactions of scientific relevance.10 Most
multiple imputation methods assume that the miss-
ing data mechanism is MAR and generous inclu-
sion of variables in the imputation model will
improve the plausibility of the MAR assumption.
Furthermore, it is important to include variables
whose relationships one is interested in testing be-
cause failure to do so will result in those associa-
tions being biased towards zero at the time of
analysis.

As mentioned before, some statistical analysis
techniques can handle missing data directly via di-
rect maximum likelihood methods, including some
software for multilevel models and structural equa-
tion modeling. In cases where the MAR assump-
tion is reasonable, these methods may be more
efficient than multiple imputation. However, the
ability to include additional variables in the impu-

tation model can make the MAR assumption more
tenable under multiple imputation. The basic im-
plementation of all multiple imputation methods
assumes MAR but multiple imputation can gener-
alize to MNAR scenarios. Specific assumptions
about departures from MAR must be specified, for
example, imputed values for a particular variable
are reduced by 20% from the values derived from
the observed data. Sensitivity analyses evaluating
the impact of different MNAR assumptions should
be performed, although it is important to remem-
ber that no MNAR assumption is testable using the
data available except for simple situations. For
some imputation methods that can accommodate
MNAR type of missingness see Demirtas and
Schafer11 and Demirtas.12

After the multiple imputed data sets are cre-
ated, it is important to conduct some diagnostic
checking. Of particular use is an examination of the
distribution of the imputed and observed data.
Some degree of difference between the distribu-
tions is to be expected and is acceptable, especially
if missing data are not MCAR, but differences be-
tween observed and imputed data distributions
should seem reasonable. The goal of all multiple
imputation procedures is not to recreate the indi-
vidual missing values but to provide a means to
make statistically valid inferences.

MULTIPLE IMPUTATION BY
CHAINED EQUATIONS

Real data rarely conform to the multivariate nor-
mal model. Procedures for other joint models have
been developed, such as the log-linear and general
location models,8 but there are many data sets for
which a definable joint model may not apply. Mul-
tiple imputation by chained equations (MICE), on
the other hand, is flexible enough for nearly any
data structure.  MICE is also called fully conditional
specification13 or sequential regressions.14 Rather
than relying on a single joint model for the data,
the analyst specifies a separate imputation model
for each variable with missing data. MICE is much
more flexible than joint modeling as one can easily
specify imputation models that do not fit within
any known joint multivariate distribution. Impu-
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tations can also incorporate complexities in the
data such as skip patterns, summed scores, interac-
tions, and variable bounds. A tutorial for multiple
imputation using chained equations has been pub-
lished by White et al.10 and is an excellent resource
for analysts, as is van Buuren’s latest book on the
topic of imputation.15

A conditional density,                          is defined
for each Yj and used to impute              given Y− j.
Note that since there is a separate conditional den-
sity for each Yj, the θj are specific to that particular
conditional density. Each iteration of the chained
equation approach effectively draws θj from its dis-
tribution conditional on the observed portion of  Yj

and Y− j, which may contain observed and previ-
ously imputed values. Then Yj is sampled from its
distribution conditional on this sampled θj and the
observed and imputed Y. Once the algorithm has
cycled through θ1, Y1, θ2, Y2,..., θp, Yp, that is one
full iteration and the process starts again. To begin
the first iteration, initial values are generated by
randomly selected observed values.10 Certain or-
derings of the variables may be more efficient than
others. For example, ordering monotone missing
data according to the decreasing proportion of ob-
served data will result in instant convergence.
However, in general cases the order should have
little impact if a large number of iterations are per-
formed.

These conditional densities can be measure-
ment scale-appropriate models for different types
of variables. Continuous variables may be modeled
using linear regression. If continuous variables are
non-normal, transformations can be applied or pre-
dictive mean matching can be used to generate the
imputed values. In predictive mean matching, im-
puted values are sampled from a subset of values in
the observed data that are “close” to the predicted
mean for the missing value.10 Predictive mean
matching will not perform well if the imputations
necessitate an extrapolation beyond the range of
the observed values. Binary variables may use a lo-
gistic regression model for imputation. Nominal, or
unordered categorical, variables can be modeled
using multinomial logistic regression; while ordi-
nal, or ordered categorical, variables can use multi-

nomial logistic regression or ordinal logistic re-
gression based on the proportional odds assump-
tion. An overdispersed Poisson regression model
may be a desirable option for counts or ordinal data
with many categories. Longitudinal data can be
straightforwardly imputed by treating the differ-
ent time points as different variables. Censored
time-to-event variables can be imputed by using
time, log(time) and the censoring indicator all as
separate variables or by using the cumulative haz-
ard function for each individual with the censor-
ing indicator. MICE using all linear regressions is
equivalent to imputation under the joint multi-
variate normal model. Perfect prediction can be a
problem in imputation models for categorical vari-
ables. For example, if a 2x2 table representing the
association between two variables contains a zero
cell. This leads to infinite parameter estimates and
problems in estimation.10

Plots of parameter estimates versus the itera-
tion number for each of the m parallel streams can
be examined to evaluate convergence of the
method. There should be mixing of streams and no
apparent trend after convergence. In many cases 5
to 10 iterations are sufficient to achieve conver-
gence but analysts should examine plots and, if
computing time is not a limiting factor, increase the
maximum number of iterations. The suggestions
for the number of imputed data sets was tradition-
ally m = 3 to 5. These suggestions were related to
the concept of the fraction of missing information
(FMI), which is defined as B/(U+B), or the between
imputation variance divided by the total variance.
If the fraction of missing information is ≤ 0.25 then
m=5 imputations is generally sufficient to achieve
loss of efficiency of 5 percent or less.10 However,
Graham et al.16 recommended at least 20 imputa-
tions to minimize power loss  and White et al.10

recommended at least as many imputations as the
percentage of incomplete cases in the data set. As
suggested for multiple imputation in general, after
creation of the multiple imputed data sets by
chained equations, one should examine the im-
puted data to ensure the imputations are plausible.

One limitation of MICE that is frequently
highlighted is its lack of theoretical basis. Separate
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After the multiple imputed data sets are created, it is important to conduct some diagnostic checking. Of particular use is an examination of the distribution of the imputed and observed data. Some degree of difference between the distributions is to be expected and is acceptable, especially if missing data are not MCAR, but differences between observed and imputed data distributions should seem reasonable. The goal of all multiple imputation procedures is not to recreate the individual missing values but to provide a means to make statistically valid inferences.   MULTIPLE IMPUTATION BY CHAINED EQUATIONS  Real data rarely conform to the multivariate normal model. Procedures for other joint models have been developed, such as the log-linear and general location models [8], but there are many data sets for which a definable joint model may not apply. Multiple imputation by chained equations (MICE), on the other hand, is flexible enough for nearly any data structure.  MICE is also called fully conditional specification [13] or sequential regressions [14]. Rather than relying on a single joint model for the data, the analyst specifies a separate imputation model for each variable with missing data. MICE is much more flexible than joint modeling as one can easily specify imputation models that do not fit within any known joint multivariate distribution. Imputations can also incorporate complexities in the data such as skip patterns, summed scores, interactions, and variable bounds. A tutorial for multiple imputation using chained equations has been published by White et al. [10] and is an excellent resource for analysts, as is van Buuren’s latest book on the topic of imputation [15]. A conditional density, | , , is defined for each  and used to impute  given . Note that since there is a separate conditional density for each , the  are specific to that particular conditional density. Each iteration of the chained equation approach effectively draws from its distribution conditional on the observed portion of  and , which may contain 
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conditional distributions may be incompatible in
the sense that they may not correspond to a unique,
well-defined joint distribution. Nevertheless, posit-
ing a joint distribution may be a daunting task, es-
pecially when different types of variables are
involved. Even with this theoretical shortcoming,
MICE has been found to perform well in simula-
tion studies.17-20 One consequence of this potential
incompatibility is that the results of an analysis
may depend on the order of the variables in the im-
putation but so far this appears to have little impact
in practice.17 Comparisons between multiple im-
putation with multivariate joint modeling and
MICE have been mixed,13,21,22 and it is likely that
the relative performance of the two methods de-
pends upon the level and type of missing data and
degree of departure from multivariate normality.
More work examining the performance of MICE
under different conditions is needed to identify
whether there are any situations where the method
breaks down and should not be used.

SOFTWARE OVERVIEW

A recent compilation of papers provides details on
several software options for the implementation of
multiple imputation in general and MICE in par-
ticular.23-27 We provide an overview of the software
options for MICE here.

The RR package mice 2.9 implements multiple
imputation by chained equations with many flexi-
ble options.24 The package includes useful functions
for examining the number and pattern of missing
values and creating graphical displays. A basic call
to the function with no changes to defaults
will produce five multiply imputed data sets using
the software’s default method for each variable
type (Table 1). Other models can be explicitly spec-
ified if desired. For numeric variables additional
options include linear regression (Bayesian and
non-Bayesian), a two-level linear model, and un-
conditional mean imputation. For categorical vari-
ables, a linear discriminant analysis can be
specified. For any type of variable, a random sam-
ple from the observed data can be used, and this is
the method used by the program to obtain initial
starting values. The order in which variables are

imputed can be specified by the user, the seed value
can be defined so that analyses are repeatable, and
the number of imputations can be changed. 

A square matrix of zeros and ones is used to
specify the predictors to be used for each imputa-
tion model. By default, all variables are used to pre-
dict all others but a custom matrix can be inputted.
While general advice for imputation models is to
include as many variables as possible to make the
MAR assumption more plausible, there are many
situations where one may need to reduce the num-
ber of predictors. Collinearity and computational
problems can arise when there are many variables
in a model. There may be little gain in explained
variance after the best 15-25 predictors are in-
cluded anyway.24 mice 2.9 includes a function to
aid in selection of predictors that will automatically
create a custom predictor matrix. It also includes a
capability for passive imputation, which maintains
consistency between different transformations of
the same data. This is useful in the context of vari-
able transformations, interaction terms, summed
scores, or other derived scores.  The plot function
can then be used to plot, for example, means of the
imputed values against the iteration number to
evaluate convergence. 

After the multiple imputed data sets have been
created, RR’s many graphics capabilities can be used
to examine the distributions of the original and im-
puted data for diagnostic checks. The
and                functions use different colors to dif-
ferentiate between the observed and imputed val-
ues. The RR package mice 2.9 includes a wrapper
function,                          that can be used to con-
duct any analysis on a set of multiply imputed data.
Finally, the function               will pool the re-
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Variable type mice (R) ice (Stata)

Numeric Predictive mean matching Linear regression

Dichotomous Logistic regression Logistic regression

Nominal Multinomial logit Multinomial logit

Ordinal Ordered logit Multinomial logit

TABLE 1: Default imputation models.
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sults of the multiple analyses providing estimates,
standard errors, confidence intervals, t-tests, the
fraction of missing information, and the proportion
of the total variance attributable to the miss-
ing data. A                                      function also ex-
ists for pooling estimates of R2 using the Fisher 
z transformation, while                                can be
used to compare two nested models.

Another RR package, mi, also implements MICE
and includes many additional features for diagnos-
tic checks and an optional graphical user inter-
face.25 The implementation, options, and defaults
for mi are different from those for mice; we do not
go into details here but do summarize some of the
unique features. mi includes Bayesian versions of
the general linear models to automatically handle
computational problems with perfect prediction.
Special transformations are applied for semi-con-
tinuous variables. To deal with collinearity, mi will
screen for perfectly correlated variables and auto-
matically exclude one from the imputation models
and also uses reshuffling noise to deal with addi-
tive collinearity. Multiple diagnostic plots are avail-
able for the imputation models including overlaid
histograms of the observed, imputed and com-
pleted data, binned residuals plotted against ex-
pected values, and scatterplots of observed or
imputed values versus predicted values.

Multiple imputation by chained equations is
implemented by SSttaattaa in ice.26 The default imputa-
tion models for different variable types are listed in
Table 1. Other methods that are also available for
user-specification are predictive mean matching,
ordinal logistic regression, interval censored re-
gression for a continuous variable, negative bino-
mial regression for a count variable, and a method
that estimates regression coefficients in a bootstrap
sample. The interval censored regression may be
useful in applications where, for example, age is
recorded only in age groups (e.g., <18, 19-29, 30-
39, 40-49, etc.). In addition to the imputation
model for each variable, analysts can specify the
number of imputations, the random seed, and the
pool-size for predictive mean matching.  Condi-
tional imputation can be implemented easily, al-
lowing a variable to be imputed only for subsets of

subjects, for example, imputing number of ciga-
rettes smoked for smokers only or imputing num-
ber of pregnancies for women only. By default, ice
places the variables to be imputed in order of in-
creasing missingness. Because monotone missing
data patterns converge instantly, using the mono-
tone option in ice will result in only one iteration
per imputation stream. A user-written program
called mim is used to implement Rubin’s rules for
combining estimates.

The multiple imputation procedure for SSAASS,
proc mi, implements multiple imputation by joint
modeling and by MICE, using the FCS statement.28

Linear regression is the default method for all con-
tinuous variables and the discriminant function
method is the default for all classification variables.
Other methods that can be specified by the user in-
clude predictive mean matching, logistic regression
and ordinal logistic regression. proc mianalyze
reads in datasets of parameters and standard errors
and produces the pooled estimates. Prior to the re-
lease of version 9.3, SSAASS implemented sequential
regressions for monotone missing data patterns
only27 and IVEware was developed as a SSAASS
callable application that implements MICE via 
four modules:                                                   and

.29

SSPPSSSS implements MICE in its MULTIPLE IM-
PUTATION procedure and analysis procedures
recognize multiply imputed data sets and automat-
ically produce pooled estimates. Multiply imputed
data from other software can be imported into SSPPSSSS
and analyzed in this way if it is in the proper for-
mat.24

FINAL REMARKS

Missing data are a prevalent and persistent prob-
lem throughout research and the application of
principled techniques has not yet become wide-
spread to the extent that it should. In the field of
quality of life research, for example, a review of
randomized controlled trials published in major
medical journals found that in a sample of 61 trials
reporting on quality of life outcomes, 90% reported
some missing data but only two studies used mul-
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tiple imputation while the others used less statisti-
cally rigorous techniques such as last value carried
forward or complete case analysis.30 Multiple im-
putation was first developed in the 1970s and pro-
vides a principled, statistically valid means to make
inferences in the presence of missing data.

Multiple imputation by chained equations is a
flexible approach to multiple imputation that al-
lows for a wide range of variable-specific imputa-
tion models and avoids the daunting task of
specifying a joint distribution for the data. Al-

though sometimes computationally intensive, the
methods are straightforward to apply and are now
included in many statistical software packages. Fur-
ther research is warranted to continue to investi-
gate the performance of MICE under different
missing data circumstances and methods for han-
dling MNAR data. The current availability of soft-
ware to implement the flexible method of multiple
imputation by chained equations will hopefully
lead to an increasing trend in appropriate analyses
in the presence of missing data.
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