Plasma Homocysteine Levels in Patients with Pseudoexfoliation
Psödoeksfoliyasyonlu Olgularda
Plazma Homosistein Düzeyleri

ABSTRACT Objective: To evaluate plasma homocysteine (Hcy) levels in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, primary open angle glaucoma and healthy control subjects. Material and Methods: Twenty patients with primary open angle glaucoma (POAG), twenty patients with pseudoexfoliation (PEX) glaucoma, twenty patients with PEX syndrome and twenty control subjects were enrolled. Mean plasma Hcy levels of four groups were determined using high-performance-liquid-chromatography and were compared. Then all participants were classified into two groups as subjects with or without PEX and were compared. Patients who had any history of a systemic disease known to be associated with high plasma Hcy levels and taking vitamin B supplements within the previous year were excluded. Results: Of the 80 patients, 43 were females (53.75%) and 37 were males (46.25%). Mean age was 69.1±8.53 years. Mean plasma Hcy levels were 19.02±10.66 µmol/l, 19.13±17.76 µmol/l, 10.58±3.50 µmol/l and 9.92±2.59 µmol/l in patients with PEX syndrome, PEX glaucoma, POAG and control subjects, respectively. Hcy levels in patients with PEX glaucoma were significantly higher when compared to POAG patients and the control group (p=0.025, p=0.004, respectively). Hcy levels in patients with PEX syndrome were also significantly higher when compared to POAG patients and the control group (p=0.001, p=0.000, respectively). Hcy levels in patients with POAG were not statistically different from the control group (p=0.365). When the patients were classified into two groups as subjects with or without PEX, mean plasma Hcy levels were found as 19.08±14.44 µmol/l and 10.25±3.06 µmol/l, respectively (p=0.000). Conclusion: Hcy levels were found to be significantly higher in PEX with or without glaucoma.

Key Words: Hyperhomocysteinemia; exfoliation syndrome; glaucoma

ÖZET Amacı: Psödoeksfoliyasyon sendromu, psödoeksfoliyasyon glomoku, primer açık açılı glomok, ve sağlıklı kontrol olgularda plazma homosistein düzeylerini belirlemek. Gereç ve Yöntemler: Yirmi primer açık açılı glokomlu (PAAG), yirmi psödoeksfoliyasyonlu (PE) glokomlu, yirmi PE sendromlu olgu ve yirmi kontrol olgusu çalışmaya alındı. Yüksek performanslı svi kromotografi kullanılarak dört grupun ortalaması plazma homosistein düzeyleri belirlendi ve karşılaştırıldı. Daha sonra bütün çalışma grupları PE olan ve olmayan gruplar olarak ayrılrak karşılaştırıldı. Yüksek plazma homosistein düzeyleri ile ilişkili olduğu bilinen sistemik bir hastalık öyküsü olan hastalar ve vitamin B preparatlarından son bir yıl içinde kullanılan bilinenler çalışma dışında tutuldu. Bulgular: Seksen olgunun 43’ü (%53.75) kadın, 37’si (%46.25) erkekdi. Hastaların yaş ortalaması 69.1±8.53 yıl idi. Ortalama plazma homosistein değerleri PE sendromu, PE glokomu, PAAG ve kontrol grubunda, sırasıyla, 19.02±10.66 µmol/l, 19.13±17.76 µmol/l, 10.58±3.50 µmol/l and 9.92±2.59 µmol/l idi. PE glokomu hastalarda plazma homosistein değerleri PAAG hastaları ve kontrol grubu ile karşılaştırıldığında anlamlı derecede yüksek bulundu (p=0.025, p=0.004, sırasıyla). PE sendromlu hastalarda plazma homosistein değerleri PAAG hastaları ve kontrol olguları ile karşılaştırıldığında anlamlı derecede yüksek bulundu (p=0.001, p=0.000, sırasıyla). PAAG’lı hastaların plazma homosistein değerleri kontrol grubu ile karşılaştırıldığında anlamlı fark bulunmadı (p=0.365). Çalışma grupları PE’si olan ve olmayanlar olarak ikiye ayrılrak ortalaması plazma homosistein değerleri, sırasıyla, 19.08±14.44 µmol/l ve 10.25±3.06 µmol/l (p=0.000) olarak bulundu. Sonuç: Plazma homosistein düzeyleri eşlik eden glokomu oluman ve olmayan PE’li olgularda daha yüksek bulundu.

Anahtar Kelimeler: Hiperhomosisteinemi; dökülme sendromu; glokom

Pseudoexfoliation (PEX) syndrome is an age-related disorder characterized by production and progressive accumulation of extracellular fibrillar material in various ocular tissues such as corneal endothelium, lens surface, trabecular meshwork, zonula, ciliary body, iris and anterior vitreous. This extracellular matrix material may also accumulate in the connective tissue portions of visceral organs and the skin. It is the most common identifiable cause of secondary open angle glaucoma and it is associated with an increased risk of complications during intraocular surgery. Although its pathogenic mechanism and clinical importance remain poorly understood, PEX material that contains the main components of elastic microfibrils such as elastin and fibrillin-I, is correlated with hypertension, angina, myocardial infarction and stroke.1,2 Strong correlation between elevated serum homocysteine (Hcy) levels and occlusive vascular disorders has been shown.1-3 It promotes vascular endothelial injury, myointimal hyperplasia, hypertrophy, raised sulfated glycosaminoglycan deposition, collagen synthesis, fibrosis and calcification of atherosclerotic plaques.4,5

Hyperhomocysteinemia is a well-known risk factor for retinal vascular disease including central retinal vein occlusion, central retinal artery occlusion and nonarteritic ischemic optic neuropathy.6-13 Apoptotic cell death of retinal ganglion cells induced by Hcy is a hypothetical risk factor for primary open angle glaucoma (POAG).14 Moreover, Hcy causes dysregulation of matrix metalloproteinases (especially MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-3 are increased, TIMP-4 is decreased by Hcy) that has been implicated in the pathogenesis of PEX glaucoma.15-17 Bleich et al., Leibovitch et al. and Clement et al. determined elevated plasma Hcy levels in patients with PEX glaucoma, however Vessani et al.18-21 noted significantly higher plasma Hcy levels in both glaucomatous and nonglaucomatous patients with PEX.

Abnormal plasma Hcy levels may be caused by genetic or nutritional factors. Deficiencies in the enzymes or the cofactors of them such as magnesium, folic acid, vitamin B₆ and B₁₂ that involve the pathway of the metabolism of methionine via Hcy to cysteine are important determinants of elevated concentration of Hcy.22 Homozygous or heterozygous thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 C-T polymorphism are the most common etiological factors to cause moderate hyperhomocysteinemia.7,10,20,23

Our aim in this study is to evaluate plasma Hcy levels in patients with PEX syndrome, PEX glaucoma and POAG in Turkish population.

MATERIAL AND METHODS

This case-control study included 20 patients with PEX glaucoma, 20 with PEX syndrome, 20 with POAG along with 20 control subjects. All participants were examined at Ophthalmology Department of Dokuz Eylül University School of Medicine between June 2005 to June 2006. This study was conducted in accordance with the standards of the local Ethics Committee, the methods described adhered to tenets of the Declaration of Helsinki and all subjects gave their written informed consent prior to enrollment.

A detailed medical history was obtained to identify patients with systemic disorders such as diabetes mellitus, hypertension, cardiovascular disorders, cerebrovascular events, renal disease, endocrinological disorders and current drug therapy. The control group was selected from the subjects attending to Ophthalmology outpatient clinic who had similar gender and age with no ocular disease except refractive error, cataracts and strabismus. All participants were Turkish and underwent a complete eye examination including slit lamp biomicroscopy, testing for best corrected visual acuity, Goldmann application tonometry, gonioscopy, Humphrey visual field analysis with fundusoscopic and optic nerve head examinations. None of the four study groups had any history of systemic disease known to be associated with high plasma Hcy levels (e.g. diabetes mellitus, recent myocardial infarction, malignancies, chronic renal failure, hypothyroidism). The patients treated with drugs which may affect the plasma Hcy level (methotrexate, fibrates, carbamazepine, phenytoin, postmenopausal hormone replacement therapies and...
vitamin supplements especially include B₆, B₁₂ and folate) were also excluded.

To be included in the study, POAG patients had to have open angle on gonioscopy, elevated intraocular pressure (IOP > 21 mmHg) measured via a Goldmann applanation tonometry, characteristic glaucomatous optic nerve damage (including one or more of the following: excavation, notching, focal or diffuse atrophy of neuroretinal rim area, vertical cup-disc ratio more than 0.5, cup-disc asymmetry between fellow eyes greater than 0.2, or disc hemorrhage) and a glaucomatous visual field defect (including abnormal glaucoma hemifield test result and a pattern standard deviation (PSD) outside 95% of normal limits) in at least one eye on standart automated perimetry (full-threshold or Swedish Interactive Threshold Algorithm – SITA strategy, program 30-2, Humphrey Field Analyser). Diagnosis of PEX syndrome was based on the presence of typical exfoliation material on the pupillary margin or anterior lens capsule with peripupillary atrophy in one or both eyes with IOP < 22 mmHg, normal visual field and no evidence of glaucomatous change in optic nerve head. PEX glaucoma was diagnosed if the slit lamp examination revealed deposition of exfoliation material with the presence of typical glaucomatous optic nerve damage, elevated IOP (> 21 mmHg), an open angle in gonioscopic examination and glaucomatous visual field defect in at least one eye. Control healthy subjects had no history of ocular disease, normal IOP (< 22 mmHg), no exfoliative material on the anterior lens capsule or pupillary margin, normal visual fields and optic discs.

Venous blood samples were obtained from each participant into an evacuated tube containing heparin and placed on ice. After a maximum of two hours of collection, samples were centrifugated at 3500 rpm for six minutes and plasma supernatants had been stored in to plastic Eppendorf tubes at -20 oC up to seven days before plasma Hcy level analyses were performed. Hcy was measured using high-performance liquid chromatography (HPLC) with flourescent detection. A plasma Hcy level between 5 and 14 µmol/l was considered normal according to the manufacturer.

Plasma Hcy level, age and sex distribution was compared among groups using Kruskall–Wallis test and Chi-Square test. The significance of difference for plasma Hcy levels among four groups was evaluated using Mann-Whitney U test. Afterall, the study population was divided into two subgroups with regard to the presence of pseudoexfoliation, and student t test was used to perform analysis between subgroup differences. A p-value less than 0.05 was considered statistically significant. Statistical analyses were performed using software SPSS version 15.0 (SPSS Inc., Chicago, Illinois, USA).

RESULTS

A total of 80 subjects were participated in this study, including 20 with PEX syndrome, 20 with PEX glaucoma, 20 with POAG and 20 controls. The mean age was 69.11±8.53 years (47-84); 43 of them were females (53.75%) and 37 of them were males (46.25%). There were no significant difference in gender distribution and age among the four study groups (p=0.815 and p=0.776, respectively). Demo- graphic characteristics of the study patients are shown in table 1.

The mean plasma Hcy levels were 19.02±10.66 (median=16.95) µmol/l, 19.13±17.76 (median =14.85) µmol/l, 10.58±3.50 (median=10.00) µmol/l and 9.92±2.59 (median=9.50) µmol/l in patients with PEX syndrome, PEX glaucoma, POAG and control subject s, respectively. Figure 1 demonstrates the significant difference in plasma Hcy levels between the four groups (p=0.000). Mann-Whitney U test indicated that the mean plasma Hcy level was significantly higher in patients with PEX syndrome when compared to POAG patients and control subjects (p=0.001 and p=0.000, respectively). The mean plasma Hcy level was also significantly higher in PEX glaucoma group when compared to POAG and control groups (p=0.025 and p=0.004, respectively). There was no statistical difference between the mean plasma Hcy levels in POAG group and the controls (p=0.365). Mean plasma Hcy levels in patients with PEX syndrome did not show any statistically significant difference from those in PEX glaucoma either (p=0.402).
Table 2 demonstrates the differences of plasma Hcy levels among the study groups.

The mean plasma Hcy level in patients with PEX was 19.08±14.44 (median=15.95) µmol/l and 10.25±3.06 (median=9.60) µmol/l in the ones without PEX. When the study population was divided into two subgroups with regard to the presence of pseudoexfoliation, student t test indicated the mean plasma Hcy level was significantly elevated in patients with PEX (p=0.000), as shown in figure 2.

DISCUSSION

Pseudoexfoliation is an age-related condition caused by the production and accumulation of fibrillar material in the anterior segment of the eye, the connective tissue portions of visceral organs and the skin. Extracellular fibrillar deposits were demonstrated by electron microscopy in autopsy specimens of liver, lung, heart, kidney, gall bladder, cerebral meninges and skin in patients with ocular PEX.24-25

Hyperhomocysteinemia is a well known risk factor of systemic and ocular vascular disorders. Although its pathogenic mechanism and clinical importance remains poorly understood, current evidence suggests that elevated plasma Hcy levels may induce endothelial injury, smooth muscle proliferation, platelet activation and thrombogenesis.15,26-29 Hcy triggers overproduction of oxidative radicals that cause intimal damage and activate
Serin elastase in arterial smooth muscle cells. Activation of matrix metalloproteinases and dysregulation of their inhibitors cause electrolysis of elastin and fibrillar collagen in arterial media. Chronic elevation of plasma Hcy impairs endothelium-dependent vasodilatation via the inhibition of nitric oxide (NO) synthesis by asymmetric dimethyl-arginine (ADMA). Oxidative stress may explain the effect of Hcy in both systemic and ocular vascular disease. Sufficient dietary folic acid intake (0.5-5 mg/day) to scavenge oxygen radicals and improve endothelial function may reduce basal plasma Hcy levels by 25%.30-34

Chronic renal failure, systemic hypertension, diabetes mellitus, recent myocardial infarction, hypothyroidism, folic acid, cobalamin and vitamin B₆ deficiency, aging, gender, smoking, alcoholism, current medications as well as genetic disorders, especially point mutations in the methylene tetrahydrofolate reductase (MTHFR) gene may influence plasma Hcy levels.7,20,23,35-38 Elevated plasma Hcy level is suggested as an independent risk factor for vascular disorders such as cardiovascular disease, stroke, vascular dementia, venous thrombosis and aortic aneurysms as well as ocular vascular disease including central retinal vein occlusion, central retinal artery occlusion, nonarteritic ischemic optic neuropathy and glaucomatous optic neuropathy.1-3,6-18,20,32-34

Although mildly elevated plasma Hcy levels were measured in patients with POAG when compared to the controls, no statistically significant differences were revealed between these two groups in our study. In patients with POAG, Roedl et al.14 found elevated Hcy levels in both aqueous humor and plasma. Clement et al.20 similarly found elevated plasma Hcy levels in patients with PEX glaucoma, POAG or normotensive glaucoma, and demonstrated the association of elevated plasma Hcy levels with glaucoma.

The results of our study demonstrated statistically significant higher plasma Hcy levels in patients with pseudoexfoliation when compared to the cases without PEX. Similar to our findings, elevated Hcy levels in patients with PEX were reported by Leibovitch et al.19 who suggested that the exfoliation material might be a product of Hcy-induced elastolysis of elastin and fibrillar collagen. The relationship between hyperhomocysteinemia and PEX was also found by Vessani et al.21 Cumurcu et al.39 reported significantly higher plasma Hcy concentrations and lower serum folic acid levels in PEX glaucoma patients, however plasma B₁₂ concentrations did not alter. Bleich et al.18 and Puustjarvi et al.22 indicated elevated plasma and aqueous humour levels of Hcy in exfoliation syndrome. Although Turaci et al. reported no association between plasma Hcy levels and PEX in Turkish population, Sarıcaoğlu et al. and Turgut et al. found a significant correlation between them.40-42

CONCLUSION

Hyperhomocysteinemia was found to be associated with pseudoexfoliation syndrome with or without glaucoma. We suggest routine measurement of plasma Hcy levels in patients with PEX for predicting the risk of vascular disease, although it is not clear whether Hcy is a causative factor or only...
a marker for such vascular disorders. Several studies have shown that folic acid supplements, as well as vitamin B₆ and B₁₂ could reduce plasma Hcy levels by 25%. Similar prospective trials will be needed to assess the correlation between hyperhomocysteinemia and pseudoexfoliation.

