The main principles of anesthesia practice is to develop a plan to determine the characteristics of the difficult airway and to manage the airway problems. Foreseeing difficult airway in children can provide effective airway management. There is limited evidence for the recognition of difficult airways in children. A reasonable approach can be developed by using evidence from the operating room and clinical experience. Patients with Fraser syndrome may have features that may complicate airway management. In this article, anesthesia management in a pediatric patient with Fraser syndrome is presented and discussed under the light of literature.

CASE REPORT

A 3-years-old girl with mental retardation who was born with normal vaginal route as the 3rd child of the mother and father who had no kinship
was brought to the emergency clinic for complaints of nausea, vomiting and abdominal pain. Physical examination, mallampati I, facial asymmetry, the distance between forehead and both eyes was wide and there was fusion in eyelids (Figure 1). Both hands and the right foot were syndactylyated, in genital system vaginalgenesis, clitoromegaly and labial fusion were observed. Biochemical parameters were normal. On radiological examination; air-liquid level in chest x-ray, left ovarian agenesis, left renal agenesis and right renal grade II parenchymal damage on were detected abdomen tomography. There was bowel malrotation and the caecum was detected in the left lower quadrant. Preoperative and preanesthesia examinations were performed and 1 mg midazolam was administered via intra-venous route in the operating room.

Electrocardiography (ECG) monitorization, peripheral oxygenation with pulse oximetry and non invasive blood pressure measurement were done. Number 4 endotracheal tube with cuff was prepared with a guide. Between number 3 to 5 cuffed and non cuffed tubes, LMAs between number 1-2.5 and pediatric fiberoptic bronchoscope were kept in the operating room. After 3 minutes preoxygenation with 10L/min oxygen rapid serial intubation was done with 1 mg/kg propofol, 1 mg/kg rocuronium and 1 μcg/kg fentanyl to the patient who had mallampati I and whose mouth open was comfortable. There were no problems during entubation. 2.5 MAC sevoflurane was used for anesthesia maintenance. 4 mg/kg sugammadex was used for extubation.

Volvulus was observed after midline incision under general anesthesia and bowel obstruction was evaluated. Caecum was seen as mobile. There were ladd bands between terminal ileum and colon. The colon was enlarged to fill the entire part of the pelvis and the middle part of the abdomen and was observed to be filled with dark consistency gaita. Stone fecaloids were seen in the rectum and hypoperistaltic intestines were detected. Stoma was created in the patient who underwent ileocaecal resection. The left kidney and the left ovary could not be seen during surgery.

Informed consent was obtained from the legal guardian of individual participant for publication of the paper.

DISCUSSION

Fraser syndrome is a rare, autosomal recessive disorder characterized by multiple anomalies. It was first described by George Fraser in 1962. Presence in the majority of consanguineous marriages and observation in more than one child in the same family indicates autosomal recessive inheritance.5 Approximately the incidence is 0.043/10,000 in live births and 1.1/10,000 in in-utero deaths.6 It is clinically diagnosed with eye problems such as cryptophthalmus, lacrimal canal problems, hypertelorism and blindness, structural disorders such as ear structures and/or dysfunctions, nasal obstruction, hypoplastic and notched nose wings, facial anomalies such as cleft palate and/or lip, laryngeal anomalies, renal problems, skeletal anomalies, umbilical hernia, and mental retardation.7,8 With no clear pathogenesis, it is thought because of a migration defect of neural crest cells, apoptosis inadequacy, and retinoid metabolism defect.9

Thomas et al. determined the major and minor criteria used in the diagnosis of Fraser syndrome.5 However, these criteria were later revised by Van
Haelst et al. according to the new patient series, not according to the patient scan results. Our patient met 4 major criteria and 3 minor criteria (Table 1).

In the case of Fraser syndrome, prenatal tests are important. DNA analysis and advanced tests are helpful in prenatal diagnosis. Berg et al. stated that some ultrasonographic findings may be indicative of Fraser syndrome. Among the prenatal findings; polyhydramnios in the case of oesophageal atresia, oligohydramnios in the case of renal agenesis, hyperechogenic image in the lungs in the case of laryngeal atresia, syndactyly, suspicious genitalia, microphthalmia, ascites, renal agenesis/dysplasia may be seen.

Cryptophthalmus is the most unique finding of Fraser syndrome and found in 80% of the cases. Cryptophthalmus has complete, incomplete and symblefaron forms and may be symptomatic or asymptomatic. It is the most common complete form. In our case, incomplete form was observed together with discrete eyebrow structure.

In a study by Gorlin et al. 85% of cryptophthalmic infants were reported to have laryngeal stenosis. Death in Fraser syndrome is usually associated with renal agenesis and laryngeal stenosis. In the case of laryngeal atresia or stenosis the fluid which is released by the fetal lung and has an important role in lung development, can not be thrown sufficiently into the amnion wax and the lung development is not complete. If this transition is possible pulmonary development is partly normal, as is our cases. We have made necessary preparations for the possibility of laryngeal stenosis but this has not happened. However, in this syndrome, colonic stenosis/atroresia, tracheal atresia, hypoplastic epiglottis, subglottic stenosis and diaphragm anomalies have also been reported in the respiratory system.

In Fraser syndrome, adherence of the hands or toes (syndactyly) occurs in 60% of cases. In 50% of the cases, there is a syndactyly in the fingers and toes. In our case, both hand and right foot are attracting attention with syndactyly.

Although Fraser syndrome can be seen in both gender, it is more common among girls. It can be repeated in the ratio of 25% in consecutive pregnancies and 25% post-stillbirth. Ambiguous genitalia is often. Clitoromegaly, hypoplastic uterus, hydrometrocolpos, adhesion on labiums, uterussibicornis, vaginal agenesis or hypoplasia, imperforate vagina; in men micro penis, hypospadias, scrotal hypoplasia can be seen. In our case, vaginal agenesis, clitoromegaly and labial fusion were observed.

Our patient had left renal agenesis and 37% of cases have renal agenesis. However, bladder

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptophthalmos and ocular findings</td>
<td>+ (fusion in the eyelids and distance between the two eyebrows)</td>
</tr>
<tr>
<td>Syndactyly</td>
<td>+ (both hands and right foot)</td>
</tr>
<tr>
<td>Urinary system anomaly</td>
<td>+ (left renal agenesis, right renal grade II parenchymal damage)</td>
</tr>
<tr>
<td>Ambiguous genitalia</td>
<td>+ (clitoromegaly and labial fusion)</td>
</tr>
<tr>
<td>Family history</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ear deformities, auditory problems</td>
<td>-</td>
</tr>
<tr>
<td>Anorectal malformations</td>
<td>+ (bowel malrotation)</td>
</tr>
<tr>
<td>Nose anomaly</td>
<td>+ (flat nasal bridge)</td>
</tr>
<tr>
<td>Respiratory tract anomalies</td>
<td>-</td>
</tr>
<tr>
<td>Umbilical hernia</td>
<td>-</td>
</tr>
<tr>
<td>Cleft palate-lip</td>
<td>-</td>
</tr>
<tr>
<td>Mental retardation</td>
<td>-</td>
</tr>
<tr>
<td>Defects in skull bones</td>
<td>-</td>
</tr>
</tbody>
</table>
agenesis or small bladder, dysplastic kidney, bilateral renal artery agenesis, pelvic single kidney, renal cysts, hydronephrosis have been reported.13

While the most common gastrointestinal anomaly is imperforate anus, bowel malrotation and caecum in the left lower abdomen were seen in our patient. Anal atresia, anal stenosis, umbilical hernia, hiatus hernia, abdominal wall defect, hepatomegaly, ectopic pancreas, duodenal stenosis are the less common findings.3,13 Maruotti et al. reported some unspecified findings of the gastrointestinal tract in a case with Fraser syndrome and informed researchers that all types of malformations could be seen in families with no family trait.15

Approximately 25% of cases with Fraser syndrome lead to death. Life span varies according to the anomalies they have, but 25% are lost in the first year because of renal agenesis or laryngeal stenosis. It has been found that the number of major criteria is very small in cases of more than ten years of life. The survivors have mental retardation at 80% induration.13

In conclusion, it is necessary to follow up in pregnancy with regular intervals and Fraser syndrome should be prepared for clinical situations that may come to mind if there is evidence of stimulant findings (oligohydramnios, polyhydramnios) and major criteria in pregnancy at absolute.

In cases with Fraser syndrome, the possibility of difficult airway should be kept in mind, the anesthesia process must be managed correctly, and the patient should be monitored taking into account the possibility of surgical tracheostomy in the perioperative system.

Source of Finance

During this study, no financial or spiritual support was received neither from any pharmaceutical company that has a direct connection with the research subject, nor from a company that provides or produces medical instruments and materials which may negatively affect the evaluation process of this study.

Conflict of Interest

No conflicts of interest between the authors and / or family members of the scientific and medical committee members or members of the potential conflicts of interest, counseling, expertise, working conditions, share holding and similar situations in any firm.

Authorship Contributions

Idea/Concept: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Design: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Control/Supervision: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Data Collection and/or Processing: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Analysis and/or Interpretation: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Literature Review: Hilmi Demirkiran;

Writing the Article: Hilmi Demirkiran, Arzu Esen Tekeli, Veli Avci;

Critical Review: Hilmi Demirkiran, Veli Avci;

References and Funding: Arzu Esen Tekeli, Veli Avci;

Materials: Veli Avci, Arzu Esen Tekeli.

REFERENCES

