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Clustering High-Dimensional Data:
The Expression of E-cadherin, CD44 and
p53 Molecules in Lip Cancer

Dudak Kanserinde E-cadherin, CD44 ve
p53 Molekiilleri:
Yiiksek Boyutlu Verilerin Kiimelenmesi

ABSTRACT Objective: Clustering techniques can determine which expression patterns are important and
which genes contribute to such patterns. We evaluate performance on data from a lip carcinoma study in Greece.
Lip carcinoma is one of the most common malignant oral and maxillofacial tumours and in advanced clinical
stages has a poor prognosis. E-cadherin, CD44 and p53 molecules are associated with cellular adhesion. Mate-
rial and Methods: To prepare for clustering, we divided each of the median normalized gene expression values
by the range of that gene. Next, we set our prior parameters and we performed the final inference using pooled
sets of Markov chain Monte Carlo (MCMC) runs. After pooling the chains, we grouped the data into clusters
and selected E-cadherin, CD44 and p53 molecules using the marginal median model as cut off. The selection of
a small set of genes is advantageous here. A small number of selected genes is appealing to biologists because they
constitute a manageable set of candidates on which further studies can be performed. Results: E-cadherin, CD44
and p53 molecules were selected as discriminatory. Results highlight the fact that clustering method has suc-
cessfully selected genes that are biologically consistent with current research and that provide strong biologi-
cal validation of the cluster configuration suggested. Conclusion: A clustering method that takes advantage of
known substructure in the data when simultaneously clustering high-dimensional data with an unknown num-
ber of clusters, and selecting the best discriminating variables for those clusters implies the opportunity to han-
dle bigger datasets. When analyzing real data, clustering has found three genes that agree with current biological
research and literature and that provide biological validation of the cluster configuration. Overall, clustering can
provide biologists with both useful and manageable information for further experimental research.

Key Words: Bayesian clustering; bayesian variable selection; carcinoma, cluster analysis;
clustering high-dimensional; reversible-jump markov chain monte carlo; squamous cell

OZET Amag: Kiimeleme teknikleri, hangi ekspresyon modelinin 6nemli oldugunu ve hangi genlerin bu olu-
sumlara katkisi oldugunu belirleyebilir. Bu calisjmamizda Yunanistan’ da dudak kanseri ile ilgili bir ¢alismaya
ait verilerin performansi degerlendirilecektir. Dudak kanseri, oral ve maksillofasiyal tiimorlerin en sik gorii-
len sebeplerinden biridir ve ileri evreleri kétii prognoza sahiptir. E-cadherin, CD44 ve p53 molekiilleri hiicre
adhezyonu ile iligkilidir. Gereg ve Yontemler: Kiimelemeye hazirlik olarak medyan: normallestirilmis gen
degerlerinin her birini, o genin deger araliklarina gére boliimlendirdik. Ardindan énsel degerlerimizi belir-
ledik ve havuzlanmis Markov zinciri Monte Carlo degerleri ile sonuglara ulastik. Serilerin havuzlanmasindan
sonra verileri kiimeler halinde grupladik ve marjinal medyan modelleri kesim degeri alinarak E-cadherin,
CD44 ve p53 molekiillerini sectik. Burada kiigiik bir gen grubunun se¢ilmesi avantaj saglamaktadir. Bir kag
tane genin secilmesi, biyologlara cazip gelmektedir ¢iinkii bu genler ileride gerceklestirilebilecek ¢alismalar
icin kullanimi kolay bir set 6zelligi tasimaktadirlar. Bulgular: E-cadherin, CD44 ve p53 molekiilleri ayirt edici
olarak segildiler. Flde edilen bulgular kiimeleme metodunun mevcut galisma ile biyolojik olarak uyumluluk
gosteren genleri bagariyla setigini ve 6nerilen kiime yapilandirmasinin giiglii biyolojik dogrulama sagladigin
6ne gikarmaktadirlar. Sonug: Verilerdeki bilinen altyapiy: kullanan kiimeleme metodu, yiiksek boyutlu ve-
rileri sayis1 bilinmeyen kiimelerle es zamanl olarak grupladiginda ve bu kiimeler i¢in en iyi ayirt edici degi-
skenleri secildiginde, daha biiyiik veri setlerini elde etme firsat1 anlamina gelmektedir. Gergek veri analizinde,
kiimeleme analizi sonucu mevcut biyolojik aragtirma ile daha 6nce yayinlanan sonuglarla uyumlu ii¢ gen bu-
lunmus ve bu da kiime olusumunun biyolojik teyidini saglamistir. Sonug olarak, kiimeleme daha sonra yap-
ilabilecek deneysel ¢alismalar igin biyologlara kullanimi kolay bilgi saglayabilmektedir.

Anahtar Kelimeler: Bayesci kiimeleme; bayesci degisken se¢imi; karsinoma; kiimeleme analizi;
yiiksek boyutlu kiimeleme; ters-atlamali markov zinciri monte carlo; skuamoz hiicreli

Turkiye Klinikleri J Biostat 2010;2(1):42-8

Turkiye Klinikleri J Biostat 2010;2(1)



CLUSTERING HIGH-DIMENSIONAL DATA: THE EXPRESSION OF E-CADHERIN, CD44 AND p53...

n biostatistics, often the number of p variables

far exceeds the number of samples. These

scripts lead to the problem of dimensionality,’
that substantially means that the data appear rare
across the p - dimensional interval, and the ordi-
nary asymptotic hypotheses tests usually are not in
effect. A lot of researchers consequently have tur-
ned into Bayesian techniques for the analysis of
these high-dimensional data to search for differen-
tially expressed genes.??

A lot of studies that they include microarrays
have the substructure innate in the data. This hap-
pens, for example, with the designed experiments
that group the data within treatments. Recently,
Bayesian methods have been presented in the lite-
rature that propose an approach in the discovery of
genes in designed experiments. 7 Efron et al* deve-
loped a nonparametric approach for the microar-
ray analysis that uses transformation methods in
order to estimate the null distribution of summary
statistics on the expression of genes.

The non-parametric transformation methods,
however, can be contradictory with a restricted
number of counterparts by group. Ibrahim et al®
present a parametric model of mixture of two com-
ponents which combines a point mass at a thresh-
old value with a component of normal distribution.
This method applies to only two groups. Newton
et al® also applied a model of mixture of two com-
ponents for the gene expression, supposing that the
components approach gamma distributions. Their
original method applied to two groups and was re-
cently prolonged to compare the differentially ex-
pressed genes when considering multiple groups.’
This method works well in identifying models of
differential expression, but it requires enumerati-
on of all the possible models or a certain external
justification to reduce the models.

Other methods for the microarray data witho-
ut substructure use cluster analysis. In these studi-
es, the aim is classifying the individuals based on
their values of expression of the gene. To cluster
the individuals effectively, researchers must redu-
ce the number of expression values because inclu-
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ding large numbers of uninformative variables can
remarkably interfere with recovering of the true
structure of the clusters.®® In consequence, the
methods of clustering for microarrays must com-
prise all the information in the data in order to se-
lect the values of expression of the gene that guide
the clusters. The Bayesian variable selection tech-
niques applied to clustering offer a complete met-
hod to select the most informative genes (variables)
and recover the structure of the clusters.

Two recent techniques combine the Bayesian
techniques of selection of models based on the mo-
del clustering. The first technique that is described
in Tadesse et al’ imports a new Bayesian approach
in the clustering of high dimensional data. This
process estimates jointly the cluster models in the
data and selects the variables that determine the
best models via the use of Markov chain Monte
Carlo (MCMC) method. The second approach that
is described in Raftery and Dean' uses the same
mixture model approach with the model selection
approach that is led from Bayes factors and a search
algorithm. This algorithm is simplified with the
utilization of the BIC to approximate Bayes factors.
Both methods recover simultaneously the structu-
re of clusters in the data and select the individual
variables that determine better the structure of
clusters.

Swartz et al'' extended the work of Tadese et
al’ in the modeling of data with a known substruc-
ture, such as the structure that is imposed by an ex-
perimental drawing. They jointly cluster the data
and select discriminatory variables, so their met-
hod determines which experimental treatments are
important, and also which genes have the most dif-
ferentiating expression values affected by the treat-
ments. With substantial approximation of the
within group covariance, their approach facilitates
the clustering without it upsets the groups that are
determined by the experimenter. This extension
applies to any data with substructure, and more
specifically to microarrays that are used in the pre-
clinical medical research, where frequently the dif-
ferentiating genes are more interesting than the
clusters that they determine.
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I MATERIAL AND METHODS

In this article we apply the method of Swartz et al!
to an experimental design of a microarray dataset
from a lip carcinogenesis study. 33 cases with lip
carcinoma (squamous cell carcinoma, SCC) were
studied, either with low or high histological grade
of carcinoma invasion and presentation of positive
lymph nodes. Thus, by design we have four groups
of patients: low invasion, control; high invasion,
control; low invasion, SCC with metastasis; high
invasion, SCC with metastasis. The original micro-
arrays consisted of 270 genes. The objective of this
study is to discover a small subset of genes that is
connected to cervical lymph node metastasis and
that can be investigated further using biological tri-
als.

The developed Bayesian method for mixture
models that simultaneously cluster the data and se-
lect discriminatory variables consists of the follo-

wing:>!!

Let X = [xy,X3,...X,) denote n-independent p-
dimensional observations from G underlying sub-

populations. Clustering the n samples can be

modeled as a mixture of the G subpopulation mo-
dels:

Fln = Y Fl 6 | 2.1)

where f'(x{w,0) is the density for the observation
from the kth subpopulation and w is the vector of
nonnegative component weights w;, that sum up to
1, and 6 denotes the distribution parameters. The
model is completed with a latent vector y=
1.y5....y,) with elements indicating to which sub-
population component each observation belongs
to. If the y/s are iid, with p(y;= k) = w;, and define
the subpopulation distributions to be multivariate
normal with mean vector y; and variance matrix
>, then each sample i, can be modeled conditional
on y; as

(ERTEIN TR PA (2.2)
In order to account for substructure in the da-
ta, the covariance structure of the data is conside-

red. If there are known subgroups within the data,
as in a designed experiment, there will be within-
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group covariance and between-group covariance.
The within-group and between-group covariances
will obviously be different. The original method
described by Tadesse et al’ treats the covariance be-
tween the individuals as the same, regardless of
whether the individuals are in the same group or
in different groups. Therefore Swartz et al'! impro-
ve the method by accounting for this within-group
and between-group difference in covariance. One
way to do this is to construct a formal Bayesian mo-
del using blocked covariance matrices in the like-
lihood and/or priors that adequately reflect the
within- and between-group variance structures.
This approach, however, requires at least a p x p
blocked covariance matrix and introduces a large
number of parameters, especially in scenarios whe-
re p [In, bringing instability into the model. To
avoid this, the within-group covariance structure
is approximated and the cluster allocation which
reflects subgroups in the data is modified.

Here the structure on the data via the defini-
tion of the cluster allocation vector, y, is imposed.
This vector now has elements indicating subgro-
ups, that is, blocks of observations, rather than in-
dividual observations. Thus, all individuals in a
given subgroup will be always assigned to the sa-
me cluster. When clustering the data, the original
subgroups may collapse into bigger groups but
they cannot be further divided into smaller gro-
ups.

In order to do variable selection a latent indi-
cator to select the discriminatory gene expression
values that best cluster the data is employed. Let ¥
be such an indicator vector, where y=1 if the jth
expression level (variable) contributes to differen-
tiating the clusters and =0 if the jth variable is
nondiscriminatory. This generates a likelihood that
is a product of the mixture model (2.1) and a sing-
le multivariate normal distribution that models the
nondiscriminating variables. Parameters (¥) and (¥)
are used to index the discriminating variables and
those that do not discriminate, respectively.

Recall that p(yi = k)=wk. In the likelihood cal-
culation there is a need to compute the exponent of

Turkiye Klinikleri J Biostat 2010;2(1)
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the term corresponding to the weights w, based on
the number of subgroups belonging to cluster k
(denoted my), rather than on the number of indivi-
duals in cluster & (denoted ;). The likelihood func-
tion is as follows:

a .:{:__.- w o Eq i 2o R (2.3)
x::-:p{ ’!E. LA I".“:I i Kin)

‘n'.'TI' : |:'._, | W

'\-'_'":r'I 20 LT PN (b TR A0 ,-.-,I_}:

In the Equation (2.3), C, denotes the kth mix-
ture component, u; denotes its mean, and n the
mean of the nondiscriminatory distribution. Like-
wise, 2k and QO denotes the variance-covariance
matrices. Notice that this likelihood depends on 7,
the total number of samples, 1, the number of
samples allocated to cluster k and also on m, the
total number of subgroups allocated to component
k, unlike the likelihood of Tadesse et al,” which is
only a function of # and n,.

The indicator variables are modeled as inde-
pendent Bernoulli random variables, with common
probability parameter ¢. The ¢ is elicited as the ex-
pected proportion of the variables that will be dis-
criminating a priori. A natural prior for the number
of clusters, G, is a truncated Poisson, with rate pa-
rameter A:

ST
=& -,8=2, ..., Gmax.(2.4)

-l (aelie > At

M= g}

For the vector of component weights, we use
a symmetric Dirichlet prior, w| | sk bdain. .

For the component means and variances, as
well as the mean and variance of the non discrimi-
nating variables, the usual conjugate priors are
used.

Moy T G2 B0t 0B, ). (2.5)
i f .""j._h:_:.'.';]..

P, lal'|-‘:'l:.l._:|.

q,, miso,,)

Here, (&4, | denotes the inverse-Wishart
distribution, with shape parameter 6=n — py+ 1,
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dimension py, degrees of freedom n, and mean
Qi (y)5-2- Also, as in Tadesse et al,” 6 = 3 is used to
denote an uninformative prior and define
Q=l/xiL,,
defined respectively as proportional to the upper

and Q0=1/KOIpo, where x; and k; are

and lower deciles of the n — 1 nonzero eigenvalues
of cov(X). These choices follow the guidelines gi-
ven by Tadesse et al. matrix. Some sensitivity to
the parameter choices is typical of any model-based
clustering method. For the mean parameters, each
element of p, was set to the midpoint of the range
of the variable, and hj and h; were chosen arbitra-
rily large, between 10 and 1 000, for flat priors. For
more details on regarding the hyper-prior parame-

terS.9 oM - I..'r..'l:.l.r.ﬂ ,.{_lq.

The mean and variance parameters were ex-
pertly integrated out in Tadesse et al.,” and the mo-
dification described above, is constant with respect
to these parameters, and therefore does not change
the integration calculations. Thus, even after acco-
unting for substructure, it is only necessary to upda-
te the parameters (y,w, y, G). The simulation from
the posterior is done by using a hybrid Gibbs samp-
ler and Metropolis—Hastings algorithm that iterates
sampling from the following distributions:

FEjE X SR, (2.6)
g :;\-'ll,'.,l.l\.,:r, :I':l L b L el I_:l: (27)
ks I:':, o N ket a - o= | (28)

The vector is updated via (2.7) using the Met-
ropolis search algorithm that has now become qu-

ite standard in variable selection.>!?

At asingle iteration the vector yis updated ei-
ther by swapping two of its elements or by ran-
domly selecting one element and changing its value
from O to 1 or 1 to 0. The cluster allocation vector
y is updated element by element using a Gibbs sam-
pling strategy via Equation (2.6). According to our
modified model, each element of y corresponds to
an experimental group. The full conditional proba-
bility that the ith experimental group is in the kth
cluster is therefore calculated as

Flo A w20 X g by Gy 2.9)
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Here, y(_; is the standard notation denoting
the vector of cluster assignments for all subgroups
except the ith subgroup.

The weights are updated by Gibbs sampler vi-
a Equation (2.8). The calculations are simplified by
sampling independent gamma random variables
with common scale and shape parameters (a+ ny,
..., @ T ng), and scaling the random variates to sum
to 1. As in the original model formulation of Ta-
desse et al’ the number of clusters, G, is unknown
and updated using reversible jump Markov chain
Monte Carlo (RJIMCMC) technology.'*'* The RJM-
CMC construction updates G using a split/merge
cluster move, and a birth/death move as in Tades-
se et al.” However, to calculate the acceptance ra-
tio, the new likelihood (2.3) is used, and accounts
for using the experimental subgroups as items to be
clustered.

In order to make inference from the posteri-
or samples, first the method proposed by Step-
hens' is used to resolve cluster identifiability.
Once the clusters are suitably relabeled to be con-
sistent across all iterations, frequency approxima-
tions are calculated to the posterior probabilities
since the quantities of interest are multinomial or
binomial random variables. From experience, the-
se frequency estimates are more robust to correla-
tion that may be present in the Markov chain than
calculating the marginal posterior probabilities—
especially when analyzing real data.'® For inferen-
ce on cluster memberships, the most probable
number of clusters is conditioned and counts how
many iterations each experimental group appear
in each cluster. For inference on the variables, the
numbers of iterations that each variable is selec-
ted are counted and divide that by the total num-
ber of iterations kept after burn in. For the
simulations below, similar distributions using the
posterior probability calculations detailed in Ta-
desse et al.” and modified frequency approximati-
ons are found.

I RESULTS

Recall that our data consist of four groups of pati-
ents: low invasion, control; high invasion, control;
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low invasion, SCC with metastasis; high invasion,
SCC with metastasis, and the original microarrays
consisted of 270 genes. For preprocessing, data we-
re normalized by using the global median method.
That is, for each array, the expression value of each
gene was divided by the median expression value of
the expressions on the array. Here we apply our
method to these 270 expression values, with the
purpose of further refining the gene discovery.

To prepare for clustering, we divided each of
the 270 median normalized gene expression values
by the range of that gene. Next, prior parameters
were set as follows: Parameters xy = 0.0232 and x;
=0.0972 were chosen, proportional to the first and
last decile of the nonzero eigenvalues as our cova-
riance parameters. The prior means for both clus-
ter mixtures and the nondiscriminating distri-
butions were set as &, =} 2rmgel ¢ praunis | The sym-
metric Dirichlet distribution prior parameter was
set as a = 1, the truncated Poisson distribution pri-
or rate parameter as A = 5; and the prior probability
for the Bernoulli distribution pg = 10. Here the pri-
or covariance matrices . and % were defined to
be diagonal matrices with diagonal elements equal
to the variances of each gene. Incorporating empi-
rical variances has been shown to improve variab-
le selection.'” Two MCMC chains were run. Both
chains were run for 1 000 000 iterations, using the
last 60 000 iterations for inference and the rest we-
re considered burn-in. The first chain started with
100 randomly selected genes, and using each sub-
group as an initial cluster. The second chain started
with 50 randomly selected genes, and using two
clusters: low invasion control with SCC metastasis,
and high invasion control with SCC metastasis pa-
tients.

The final inference was performed using the po-
oled sets of samples from the two MCMC chains. Af-
ter pooling the chains, the data were grouped into two
clusters and selected 17 genes using the marginal me-
dian model as cutoff. Cluster membership probabili-
ties for each patient are reported in Table 1. These
clearly separate control patients from the others.

For comparison, we applied FDR multiple tes-
ting correction Benjamini and Hochberg'® to the
p-values for each gene. This is a standard method

Turkiye Klinikleri J Biostat 2010;2(1)
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TABLE 1: Real data: Probability of cluster memberships.
p (member of p (member of
Patients group cluster 1) cluster 2)
low invasion control 0.6044 0.3956
low invasion control 0.6044 0.3956
low invasion control 0.6044 0.3956
low invasion SCC with metastasis 0.2270 0.7730
low invasion SCC with metastasis 0.2270 0.7730
low invasion SCC with metastasis 0.2270 0.7730
high invasion control 0.8340 0.1660
high invasion control 0.8340 0.1660
high invasion control 0.8340 0.1660
high invasion SCC with metastasis 0.1673 0.8327
high invasion SCC with metastasis 0.1673 0.8327
high invasion SCC with metastasis 0.1673 0.8327

commonly used in microarray analysis. Three of
the 17 identified genes, E-cadherin, CD44 and p53
were also selected by the FDR method. A level of
0.1 detected a larger number of genes, and inclu-
ded the three genes we identified. The selection of
a small set of genes is advantageous here. A small
number of selected genes is appealing to biologists
because they constitute a manageable set of candi-
dates on which further studies can be performed
via biological assays. Of course, if necessary, more
genes can be selected by the Bayesian method by
lowering the threshold of the 50% median model
that was used.

Lip carcinoma is one of the most common ma-
lignant tumors in oral and maxillofacial region. In
advanced stages with regional metastasis it has a
poor prognosis. E-cadherin and CD44 molecules
play a role in cell-to-cell adhesion; p53 is associated
with cellular proliferation and cell death.!*»

Since these patients had a poor prognosis, it se-
ems that decreased E-cadherin and CD44 expressi-
on and over expression of p53 in cancerous tissue
correlates with this outcome in lip carcinoma pati-
ents. Detection of the expression of these proteins
is useful to confirm the risk for cervical lymph no-
de metastasis; further studies are encouraged to re-
veal the detail mechanisms in formation of lymph
node metastatic focus.

Turkiye Klinikleri J Biostat 2010;2(1)

Kyriaki KITIKIDOU et al

The description above highlights the fact that
the three selected genes, E-cadherin, CD44 and
p53, are biologically consistent with current rese-
arch and that provide strong biological validation
of the cluster configuration suggested.

I DISCUSSION

A method that takes advantage of known substruc-
ture in the data when simultaneously clustering
high-dimensional data with an unknown number
of clusters, in order to select the best discrimina-
ting variables for those clusters, was applied. Given
the structure of designed experiments, breaking the
basic experimental structure would have no inter-
pretation with regard to the experiment. This met-
hod approximates stronger within design group
covariance by defining the cluster member indica-
tor vector y to assign all members of a design gro-
up to the same cluster. The approach is similar to
the idea of forcing the elements of the original vec-
tor y, indexed over individuals rather than subgro-
ups, into subsets where all entries in the same
subset have the same value. In this approach the li-
kelihood is adjusted to compute the proper proba-
bility that corresponds with the reduced variation.
Additionally, by jointly finding structure in the da-
ta and selecting variables, here genes, we answer
the researchers’ questions of, first, whether the de-
sign groups affect the subjects differently and, sec-
ond, which genes define those differences.

The true correlation of gene expression values
is quite complex, and modeling this correlation
structure is an interesting research question in its
own right. The underlying covariate selection mec-
hanism used for the selection of the discriminating
variables has been shown to be effective in analy-
zing correlated covariates in studies with genetic
markers, which is simpler to model than gene ex-

pression correlation.!”-2

When analyzing real data, three genes, E-cad-
herin, CD44 and p53, which agree with current bi-
ological research and literature and that provide
biological validation of the cluster configuration
were found. Overall, the method applied can pro-
vide biologists with both useful and manageable in-
formation for further experimental research.
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