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ABSTRACT Objective: The multivariate adaptive regression 

splines (MARS) is very effective in order to model linear or non-

linear relationships. The Cox regression residuals-based MARS 
model, which integrates Cox regression and MARS approaches, 

was created to assess the relationships between efficient risk factors 

on the survival.  The purpose of this study is to introduce the Sur-
vival-MARS (SM) model which uses the Cox-Snell, Martingale, 

and deviance residuals. Also,our aim is to compare the performance 

of the models created with residuals at different sample sizes and 
correlation levels with the simulation study in order to determine 

the most effective residual type that can be used in the SM model. 

Material and Methods: Performances of SM models that use Cox-
Snell,Martingale, and deviance residual types were compared at 

different sample sizes (n = 30, 100, 150, 250, 500, 1.000), with both 
no correlation (r = 0.00) and medium (r = 0.50) and high (r = 0.90) 

correlations between predictors. SM model performances were 

compared via minimum generalized cross-validation and the sum of 
mean squared error values.. Results: In all scenarios, SM models 

with Cox-Snell residuals have the best performance compared to 

other models established with other residuals. Martingale and devi-
ance residuals were affected by high correlation and low sample 

sizes. Conclusion: In case of linear relationship between risk fac-

tors, SM models with Cox-Snell residuals are quite successful in 
explaining these relationship structures and enable the effects on 

the dependent variable to easily interpret. 
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ÖZET Amaç: Çok değişkenli uyumlu regresyon uzanımları tekniği 

[multivariate adaptive regression splines (MARS)], doğrusal ya da 

doğrusal olmayan ilişkileri modellemede oldukça etkilidir. 
Sağkalım üzerinde etkili risk faktörleri arasındaki bu tür ilişkileri 

değerlendirebilmek amacıyla her iki yöntemi birleştiren ve Cox 

regresyon artıklarına dayanan Survival-MARS (SM) modeli gelişti-
rilmiştir. Bu çalışmanın amacı, Cox-Snell, Martingale ve sapma 

artıklarını kullanan Survival-MARS (SM) modelini tanıtmaktır. 

Ayrıca amacımız, SM modelinde kullanılabilecek en etkili artık 
türünü belirlemek için artıklarla oluşturulan modellerin, farklı ör-

neklem genişliklerinde ve korelasyon düzeylerindeki performansla-

rını simülasyon çalışması ile karşılaştırmaktır. SM model perfor-
mansları, minimum genelleştirilmiş çapraz geçerlilik ve minimum 

hata kareleri toplamı değerlerine bakılarak karşılaştırılmıştır. Bul-

gular: SM modellerinde ele alınan tüm senaryolar için Cox-Snell 

artıkları ile kurulan modellerin, diğer artıklarla kurulan modellere 

göre daha iyi performans gösterdiği görülmüştür. Martingale ve 
sapma artıklarının güçlü korelasyon ve küçük örneklem genişlikle-

rinden etkilendiği gözlemlenmiştir. Sonuç: Risk faktörleri arasında 

lineer ilişki olması durumunda, Cox-Snell artıklı SM modeli bu 
ilişki yapılarını açıklamada oldukça başarılı olup bağımlı değişken 

üzerindeki etkilerinin de kolaylıkla yorumlanabilmesini sağlamak-

tadır. 
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Situations when more than one factor simultaneously affects a patient's prognosis are common in sur-

vival studies. Age, gender, tumor size, tumor stage, and kind of treatment (chemotherapy or radiotherapy) 

can all have an impact on survival time, particularly in cancer research. The development of an appropriate 

statistical prediction model is necessary for a thorough examination of these consequences. The expected 

event (death, relapse, recovery, etc.) may not be observed in some patients over the required follow-up pe-

riod for a variety of reasons, making it impossible to determine their survival time in survival studies. These 

patients' data are referred to as censored data.
1
 Classical approach are inadequate for censored data. Cox pro-

portional hazard (PH) model is a popular method to use for development for modeling by taking into account 

covariates and censored observations that affect survival time.
2
 

When continuous or categorical predictor variables are modeled at the same time in studies involving 

many variables, linear or non-linear relationships or interaction effects may occur between the variables. In 

this case, the Cox hazard function may be misleading, making accurate and effective estimations and inter-

pretation difficult.
3
 For this reason, a model was developed, combining Cox PH and multivariate adaptive 

regression splines (MARS) techniques to evaluation both survival time and complex relationships simulta-

neous called Survival-MARS (SM).
4,5

 

The aim of our study is to introduce the SM model which uses the Cox-Snell (CS), Martingale, and de-

viance residuals. Also, performances of the SM model which have different types of residuals at different 

sample sizes and correlation levels are compared to find the best residual type for modeling SM. 

    MATERIAL AND METHODS 

MARS 

MARS is a non-parametric method developed by Friedman (1991) to investigate the interactions and non-

linear relationships between the response variable and many predictor variables.
5
 In the MARS, there is no 

special distribution assumption for the response and predictor variables, and all variable types can be used. 

MARS does not require the basic assumptions of linear regression methods. MARS is more flexible com-

pared to linear regression methods because it is not affected by the multicollinearity and outliers.
6
 

MARS explains non-linear relationships between independent variables with the help of piecewise 

linear regression. By separating the predictors into different regions, it creates regression slopes called 

fundamental functions (FF) for each region and provides approximate estimates. FFs are curves containing 

piecewise linear functions. The values that describe parts of piecewise linear regression are called “knots” 

for FFs and are denoted by t. MARS allows the slope of the regression line to change from one interval to 

another when two “knot” points intersect.
7
 The general representation of the non-parametric regression 

model is expressed as, y=ƒ(x1, x2, … ,xp)+ε=ƒ(x)+ε where y is response variable, p is explanatory vari-

ables, x is predictors (x=(x1, x2, … ,xp)
T
), and ε is the error term.

 
MARS obtains the ƒ function by using 

FFs. 

Piecewise linear functions are in the form of max (0, x-t) with a t-valued knot. It helps to create a flexi-

ble model using piecewise linear FFs, taking into account the situations in equation 1. 
 

        
       

        
     and              

       

         
        (1) 

 

Finally, the MARS model is formed as an interaction of basic functions and interactions and is ex-

pressed by equation 2 where α0 and αm are FF coefficients and Bm(x) is FF. 
 

               
 
                (2) 
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The MARS algorithm performs model prediction in two steps using forward selection and back-

ward elimination methods. In the forward selection method; creates a model that contains the mean of 

the values of the response variable as a constant term. Then the FFs are determined and added to the 

model in pairs. This process is terminated when the maximum number of FFs is reached, which min i-

mizes the error mean squares. In the backward elimination method, it works according to the effects of 

FFs on the model. The models with the maximum number of FFs created in the first step are trimmed. 

The FF is subtracted from the model until the FF with the minimum prediction error is reached. The 

model with the minimum mean squared error (MSE) is selected as the most appropriate model. Genera l-

ized cross-validation (GCV) statistics are used for the model selection criterion at this stage.
5
 GCV is a 

statistic that helps reduce overfitting by penalizing a large number of FFs. GCV penalizes not only FFs 

but also knots. It allows the evaluation together both the residual error and model complexity by min i-

mizing the MSE.
8
 The model with the minimum GCV value is considered as optimal model.

9
 GCV is 

calculated by (3), 

       
 

 

            
  

   

   
           

 
 
          (3) 

 

In equation 3, M is FF number, d is penalty parameter with a default value of 3, n is number of observa-

tions, ƒ(xi) is predicted values of the MARS model. 

COX PH MODEL 

The Cox PH model is developed by Cox (1972) to determine the prognostic factors that affect survival. The 

Cox model investigates the association between covariates and the survival time of patients to predict hazard 

ratio. The hazard is defined as the occurrence of the failure event of interest. The Cox PH model is also a re-

gression method that models the relationships between the hazard function and the covariates and is also 

called the PHs model. It is defined as the failure rate that continues over a short period of time where t is 

survival time h(t) is hazard function. The Cox PH model for the regression coefficients (β1, β2, …, βp) of h(t) 

that measures the relationship between covariates and survival, depending on p covariates (x1, x2, …, xp), is 

represented by equation 4. In the Cox PH model, h0 is expressed as the initial hazard and it shows the hazard 

value when all xi 's are equal to zero.
2
 

                                        (4) 
 

Covariates have a multiplicative effect on hazard in the Cox PH model. This situation reveals the PH as-

sumption of the Cox regression model. According to the PH assumption; The hazard ratio does not change 

over time during follow-up. In other words, it means that the effect of all covariates on survival time is inde-

pendent of time. In order to apply Cox regression, the PH assumption must be met.
10

 

The Cox PH model is a semi-parametric method and it makes no assumptions and the survival time is 

censored. It differs from the linear regression model with this feature.
11

 

RESIDUALS OF THE COX PH MODEL 

CS Residuals 

CS residuals is used as a measure of model fit in survival analysis. They are not distributed symmetrically 

around zero and do not take negative values. The CS     ) is expressed as (5), 

      
      

               
           (5) 

In equation 5,    
       and           is the cumulative hazard function’s and survival function’s predictive 

value of the individual i’s on time ti, respectively. When the model is appropriate, individual i is calculated at 

time ti in a model-based estimation of an individual's survival function close to the true value of the individ-

ual's survival time Si(ti), and rci shows an exponential distribution.
12
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Martingale Residuals 

Martingale (M) residuals are used to determine the number of predictors that will enter the model and the 

model consistency by drawing the graphs against the predictors. Martingale residuals are the difference be-

tween the observed and expected number of failures of a subject. The values obtained by using the of CS re-

siduals are multiplied by -1 and Martingale residuals       are obtained as (6), 

                     (6) 

Martingale residuals are not symmetrical about zero. They take values in the range of - and 1. They 

are unrelated to each other.
13,14

 

Deviance Residuals 

The graphs of the residuals are difficult to interpret because Martingale residuals have skewness makes due 

to their being non-symmetrically distributed around zero. For this reason, by applying a transformation to 

Martingale residuals, deviance residuals are obtained that are symmetrically distributed around zero and 

have approximately 1 standard deviation of the (- ,+ ) range. Deviance residuals are plotted against pre-

dictors. The deviance residuals,       are calculated by (7), 

                                      
1/2 

      (7) 

In equation 7, the unit     i-th Martingale residual and        being the sign function of the Martingale 

residual.
13,15

 

SM MODEL 

SM model was developed to eliminate the negative effects of interaction structures, linear, and non-linear 

relationships between risk factors on survival.
3
 

SM model is based on the use of residuals calculated by Cox regression analysis. Because these residu-

als contain both the censored data and the estimated survival time used in the residual calculations.
12

 The re-

siduals are defined as the model response variable in the MARS. Then, the MARS model is created with 

continuous or categorical predictors. Determining the risk factors affecting survival, linear and non-linear 

relationships are determined and interaction effects can be easily interpreted with the estimation model ob-

tained.
2,3

 

This study was planned as a simulation study. It is aimed to determine the type of residual that shows 

the best SM model performance using different residual types in both linear relations and with different 

sample sizes. 

SIMULATION STEPS 

Step 1: Generating the Correlated Variables 

The binary variable X1 was derived from the univariate distribution, and the continuous variables X2 and X3 

were derived from the normal distribution with 0 mean and 1 standard deviation. 

Sample sizes (n) are 30, 100, 150, 250, 500 and 1,000, and 6 different scenarios with 1,000 replications 

were created for each sample size. 

Correlations between predictors were r=0.0 (no correlation), r=0.50 (medium), and r=0.90 (high). 

Step 2: Data Generation for Survival Analysis 

Survival time was derived from the Weibull distribution. Scale parameter was λ=10 and shape parameter 

was ν>0 for Weibull distribution. The censored data was generated randomly and censored from the right 

with a censoring rate of 25%. Survival status was derived from the Bernoulli distribution. 
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Step 3: Estimating of the Residuals 

Cox PH regression analysis was performed on the generated data for each sample size. CS, Martingale, and 

deviance residuals were calculated and recorded for the SM model. All of these analyzes are performed us-

ing the in MATLAB 6.0 (The MathWorks, Inc.,United States) package program. 

Step 4: The SM Model 

The residuals obtained in step 3 are defined as the “response variable” in the MARS model, and for each 

sample size, the CS SM model (SMC-S), Martingale SM model (SMMar), and Deviance SM model (SMDev) 

were created with STATISTICA version 13.3 (TIBCO Software Inc.,USA). 

Step 5: Comparison of Performances 

GCV and MSE values are calculated for the three SM models created in step 4. For GCV, the number  

of folds is taken as 10. Minimum GCV and minimum MSE values were used as model selection  

criteria. 

    RESULTS 

The mean values of the MSE and GCV values obtained for each sample size from 1,000 simulations are pre-

sented in Table 1 when there is no correlation between the predictors. We observed that when the sample 

size increased, MSEs of all SM models were increased. The highest MSE values belong to the SMDev mod-

els, and the smallest MSE values belong to the SMC-S models. The MSE values of the SMC-S models were 

0.30 and below in the uncorrelated condition. 

According to Table 1, when the predictors had uncorrelated, GCV results were similar to MSE. While 

the GCV values of the SMDev and SMMar models increased, the GCV values of the SMC-S model decreased 

as the sample size increased. In the SMC-S model, GCV=0.325 for n=30 and GCV=0.308 for n=1,000. On 

the other hand, in the SMDev model, GCV=0.972 for n=30, GCV=1.135 for n=1,000, and in the SMMar 

model, GCV=0.434 for n=30 and GCV=0.496 for n=1,000. While there was no linear relationship be-

tween the variables, CS SM model was more successful than other SM models in both small and large 

sample sizes. 

It is observed that MSE values had small increases with increasing sample size in the SMC-S for moder-

ate correlation (r=0.50) between the predictors. MSE values for n=100-150-250 were equal or close to each 

other. On the other hand, GCV values decreased with increasing sample size. GCV was 0.329 for n=30, and 

GCV was 0.314 for n=1,000 (Table 2). For moderate correlation, the increase in sample size had a positive 

effect on the performances of the CS residual models. 

 

TABLE 1: SM model performances in the uncorrelated condition. 
 

r=0.00 Cox-Snell SM Martingale SM Deviances SM 

Sample size MSE GCV MSE GCV MSE GCV 

30 0.290 0.325 0.402 0.434 0.898 0.972 

100 0.286 0.309 0.459 0.475 1.048 1.084 

150 0.289 0.311 0.470 0.483 1.070 1.103 

250 0.292 0.310 0.479 0.489 1.095 1.119 

500 0.297 0.310 0.488 0.495 1.114 1.130 

1,000 0.301 0.308 0.493 0.496 1.126 1.135 

 
SM: Survival-MARS; MARS: Multivariate adaptive regression splines; r: Correlation; MSE: Mean squared error; GCV: Generalized cross-validation. 
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TABLE 2: SM model performances for r=0.50. 
 

r=0.50 Cox-Snell SM Martingale SM Deviances SM 

Sample size MSE GCV MSE GCV MSE GCV 

30 0.298 0.329 0.406 0.439 0.904 0.976 

100 0.302 0.318 0.460 0.476 1.041 1.080 

150 0.302 0.316 0.470 0.483 1.074 1.101 

250 0.306 0.316 0.480 0.490 1.098 1.115 

500 0.308 0.315 0.488 0.494 1.116 1.127 

1,000 0.311 0.314 0.493 0.496 1.128 1.134 

 
SM: Survival-MARS; MARS: Multivariate adaptive regression splines; r: Correlation; MSE: Mean squared error; GCV: Generalized cross-validation. 
 
 
 

TABLE 3: SM model performances for r=0.90. 
 

r=0.90 Cox-Snell SM Martingale SM Deviances SM 

Sample size MSE GCV MSE GCV MSE GCV 

30 0.298 0.329 0.406 0.439 0.905 0.979 

100 0.300 0.316 0.459 0.475 1.045 1.081 

150 0.302 0.316 0.470 0.484 1.072 1.100 

250 0.304 0.315 0.479 0.489 1.096 1.116 

500 0.308 0.315 0.487 0.493 1.116 1.127 

1,000 0.312 0.316 0.494 0.497 1.128 1.134 

 

SM: Survival-MARS; MARS: Multivariate adaptive regression splines; r: Correlation; MSE: Mean squared error; GCV: Generalized cross-validation. 
 

 

 

In SMMar, both MSE and GCV values increased with sample size (MSE=0.406, GCV=0.439 for n=30 

and MSE=0.493, GCV=0.496 for n=1,000). A similar situation was observed in SMDev (Table 2). It can be 

said that moderate correlation negatively affects the performance of models with Martingale and deviance 

residuals. Contrary to expectations, increasing the sample size did not improve the performance of the Mar-

tingale and deviance SM models. 

When the three residual types were compared, the deviance SM models were most affected by the mod-

erate correlation, while the CS SM models showed the best model performance. The weakest model per-

formances belonged to the deviance SM models when compared to other models. Especially for small sam-

ple size, MSE=0.298 for SMC-S while it is 0.904 for SMDev (Table 2). 

A high level of correlation caused an increase in MSE and GCV values (Table 3). When a high  

correlation (r=0.90) between the predictors, the best results were obtained from the SMC-S models.  

In the SMC-S model, the GCV value was calculated as very small even for a small sample size  

and high correlation. It was observed that SMC-S model was not affected by sample size and high corre-

lation. 

CS SM models performed best in all conditions. Minimum MSE (Figure 1A, Figure 2A) and minimum 

GCV (Figure 1B, Figure 2B) values were obtained from CS residual models for all correlated or uncorrelated 

cases. 
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FIGURE 1A: MSE plot of Survival-MARS models for r=0.00. 

MSE: Mean squared error; MARS: Multivariate adaptive regression splines. 

 

 

 

FIGURE 1B: GCV plot of Survival-MARS models for r=0.00. 

GCV: Generalized cross-validation; MARS: Multivariate adaptive regression splines. 
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FIGURE 2A: MSE plot of Survival-MARS models for r=0.90. 

MSE: Mean squared error; MARS: Multivariate adaptive regression splines. 

 

 

FIGURE 2B: GCV plot of Survival-MARS models for r=0.90. 

GCV: Generalized cross-validation; MARS: Multivariate adaptive regression splines. 
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    DISCUSSION 

CS, Martingale, Deviance, Schoenfeld, and score residuals can be calculated by means of the Cox  

regression PH model. These residuals are plotted against predictors or time. They are used to examine 

the adequacy of the model, to decide on the variables to be included in the model and to be removed 

from the model, to determine whether the variable to be included in the model needs to be transformed 

and to check the PHs assumption.
11 

In addition, residuals can also play a role in eliminating the defi-

ciencies of statistical methods that are insufficient to explain complex structures among variables. In 

our study, the performances of SM models with CS, Martingale, and deviance residuals at different cor-

relations and sample sizes were evaluated for cases with or without a linear relationship between the 

variables. 

The lowest MSE and GCV values were obtained from CS SM model in the non-linear relationship. The 

highest MSE and GCV values belonged to the deviance SM models. 

CS SM model had the lowest MSE and GCV values in a medium and high correlation. According to 

these results; it is seen that CS SM models are not affected by correlation and give successful results with 

increasing sample size. 

The Martingale SM model showed the best model performance, secondly. The MSE values were calcu-

lated below 1 in all scenarios. The GCV values were also quite small and close to each other. It is thought 

that the Martingale SM model will produce valid and reliable results in cases CS residuals cannot be calcu-

lated. 

Researchers may have a tendency to decrease variables when using multivariate statistical methods with 

small sample sizes to prevent multicollinearity. Generally, it is recommended that the required sample size 

should be 10 times the number of variables in order to get the most beneficial result from these methods.
16

 

According to the results from the SM models with three variables, it was observed that the sample size did 

not affect the MSE and GCV values, even if the correlation increased. For CS and Martingale SM models, 

while the correlation level was 0.90 in a small sample size (n=30); MSE was 0.298, 0.402; While correlation 

level was 0.00, MSE was 0.290 and 0.406, respectively. Similar results are also noticeable in GCV values. 

Since no similar study has been found with small sample sizes in the literature, we think that this study is a 

guide for future research. 

Simulation studies have revealed the superiority of the SM models over the classical Cox PH model 

in non-linear relationships and interactions. In one study comparing the Martingale and deviance SM 

model using exponential and Weibull distributions, it was emphasized that the Martingale SM model is 

quite useful, superior, and powerful in explaining these effects.
3
 The deviance SM model is the weakest to 

explain the relationships in this study like our study. In another study at different censoring rates (25%, 

50%, 85%) and with exponential distribution, it was emphasized that the CS SM model was more effec-

tive than both the Martingale SM model and the classical Cox model. They also obtained similar results 

from the Weibull and Gompertz distributions.
17

 Both the results obtained from our simulation study and 

similar studies showed that the distribution of survival time and censoring rates do not significantly affect 

the performance of the SM models. It draws attention that the CS SM models have the best model per-

formance than the others. 

The applicability of the SM model to real-life data is also available in various studies except from simu-

lation studies. It observed that CS and Martingale residuals are often used in practice for SM models. These 

models were also compared with the Cox PH model. These studies gave similar results to simulation studies. 

According to this study, the MSE values of the CS SM model were smaller than the Martingale SM model 

and the Cox PH model.
18 
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    CONCLUSION 

The SM model, which takes into account the complex relationships and interactions of predictors on survival 

times, facilitates the interpretation and intelligibility of the results. In addition, the use of this method is more 

flexible than Cox regression as it does not require robust assumptions. We recommend using the CS residual 

first and the Martingale residual second in the SM model rather than removing variables when there are nu-

merous variables affecting the survival time. 

The main framework in health research is to identify new or possible prognostic factors on a disease. If the 

researcher includes many variables that affect survival time and assesses each one's effects separately, assumes 

only linear relationships between predictors, and ignores interactions, the study results might not match predic-

tions.
19

 By eliminating the linear, non-linear, and interaction effects of predictors that have an impact on sur-

vival times, the recently created SM model presents a new perspective that makes interpretation easier. 

It seems that the SM model was frequently used for non-linear and interactive effects in the literature. 

However, none of these studies evaluated the linear relationships for small sample sizes. We conducted a 

simulation study to find best SM model performance in small, moderate and large sample sizes. As a result, 

we observed that the sample size did not affect the SM model performances. This study is limited to the 

Weibull distribution with a 25% censor rate for survival time, three different correlations, and six different 

sample sizes. We recommend that these models be studied with different distributions and different censor-

ing rates for linear relationships for as a future research subject. 
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