ORIJINAL ARAȘTIRMA ORIGINAL RESEARCH

DOI: 10.5336/vetsci.2020-77151

Prevalence of *Cryptosporidium* spp. in Diarrheic Dogs in Van Province

Van Bölgesindeki İshalli Köpeklerde Bulunan Cryptosporidium spp.'nin Yaygınlığı

Adnan AYAN^a, ^DÖzlem ORUNÇ KILINÇ^b

^aDepartment of Genetics, Van Yüzüncü Yıl University Faculty of Veterinary Medicine, Van, TURKEY ^bÖzalp Vocational School, Van Yüzüncü Yıl University, Van, TURKEY

ABSTRACT Objective: Cryptosporidiosis is a zoonotic apicomplexan protozoon that causes significant gastrointestinal problems in humans and animals alike. In the present study, we investigated the prevalence of Cryptosporidium spp. in diarrheic dogs in Van province by using two different methods. Material and Methods: A total of 153 fecal samples were collected from diarrheic stray dogs aging up to 4 months between 2018-2019 at Animal Care and Rehabilitation Center of Van Metropolitan Municipality in Van province. Samples were stained with with Kinyoun's acid-fast method and examined at x100 magnification under the microscope. DNA were extracted from all the 153 samples using RTA stool DNA isolation kit and Nested PCR was carried out using suitable primers. Results: Microscopic examination revealed the presence of Cryptosporidium spp. oocysts in 81 out of 153 (52.94%) samples whereas Cryptosporidium spp. specific 826-864 bp size bands were obtained in 99 (64.7%) of 153 samples using Nested PCR. Conclusion: The prevalence of Cryptosporidiosis in dogs up to 4 months of age is quite high that suggests further research on the species of Cryptosporidium in dogs.

Keywords: Cryptosporidium spp., dog, nested PCR, Turkey, Van province ÖZET Amac: Cryptosporidiosis, insan ve hayvanlarda önemli gastrointestinal sorunlara sebep olabilen apikompleksan bir protozoon tarafından oluşturulan zoonoz bir haştalıktır. Bu çalışmada, Van bölgesindeki ishalli köpeklerde Cryptosporidium spp.'nin prevalansının iki farklı yöntem kullanılarak araştırılması amaçlanmıştır. Gereç ve Yöntemler: Çalışmanın materyalini 2018-2019 yılları arasında Van İlindeki Van Büyükşehir Belediyesi Hayvan Bakımevi ve Rehabilitasyon Merkezindeki 4 avlığa kadar olan 153 adet ishalli sokak köpek dışkısı oluşturmaktadır. Dışkı örnekleri Kinyoun'un acid-fast metodu ile boyanarak mikroskop altında x100'lük büyütmede incelendi. 153 örneğin tamamından RTA dışkı DNA izolasyon kiti kullanılarak DNA ekstraksiyonu yapıldı. Ardından ilgili primerlerle Nested PCR yapıldı. Bulgular: Mikroskobik incelemede 153 örneğin 81'inde %52,94 Cryptosporidium spp. ookistlerine rastlanıldı. Nested PCR sonucuna göre örneklerin 99'unda (%64,7) Crvptosporidium spp. icin spesifik 826-864 bp büyüklüğünde bantlar elde edildi. Sonuc: Van ilindeki 4 aylığa kadar olan ishalli köpeklerdeki Cryptosporidiosis prevalansının oldukça yüksek olduğu ve köpeklerdeki Cryptosporidium türleri hakkında daha fazla araştırma yapılması gerektiği kanısına varılmıştır.

Anahtar Kelimeler: Cryptosporidium spp, köpek, nested PCR, Türkiye, Van ili

Cryptosporidiosis is a zoonotic disease caused by an apicomplexan protozoon affecting the gastrointestinal tract in humans and animals.¹⁻³ Transmission of *Cryptosporidium spp.* occurs through fecal-oral route between animals and humans and can cause water and foodborne outbreaks.³ Previous studies reported the host specificity of

Cryptosporidium spp. that has been contradicted by the recent molecular studies. *C. parvum* has been isolated from many pets including dogs despite the fact that it is dominantly seen in humans.^{4,5} Similarly, *C. canis*, assumed to infect the dogs only, has been recently isolated from humans.⁶ Dogs are given the status of potential reservoir host for

Correspondence: Adnan AYAN Department of Genetics, Van Yüzüncü Yıl University Faculty of Veterinary Medicine, Van, TURKEY/TÜRKİYE E-mail: adnanayan@yyu.edu.tr Peer review under responsibility of Turkiye Klinikleri Journal of Veterinary Sciences. Received: 4 Jun 2020 Received in revised form: 16 Jul 2020 Accepted: 17 Jul 2020 Available online: 17 Dec 2020 2146-8850 / Copyright © 2020 by Türkiye Klinikleri. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Cryptosporidiosis due to contact between dogs and humans. The risk of cryptosporidiosis is higher especially in immunocompromised individuals. Several studies have reported the isolation of *C. canis* from humans.⁷⁻⁹ *C. canis* is the dominant etiologic agent in dogs, however, *C. parvum*, *C. meleagridis*, and *C. muris* have also been reported in dogs.¹

Cryptosporidium infection is generally asymptomatic in dogs; however, it can cause severe diarrhea, malabsorption, and weight loss especially in younger puppies.¹⁰ Particularly, infection can be severe in 2-14 days old puppies and less than 6 months of age dogs compared to adults.^{10,11.}

Microscopic, immunological and molecular methods are used in the diagnosis of cryptosporidiosis.^{12,13} In conventional microscopic methods, staining techniques, being inexpensive and fast, are frequently used. Nonetheless, specificity and sensitivity can vary due to technique used and skills of the observer. Molecular techniques like polymerase chain reaction (PCR) accurately diagnose the Cryptosporidium spp., however, it is not preferred in routine screening of patients being labor-intense and expensive. Such techniques are usually used in epidemiological studies.12

In this study, we aimed to investigate the prevalence of Cryptosporidiosis in Van province using two different techniques, it will highlight the importance of this infection from public health perspective.

MATERIAL AND METHODS

COLLECTION OF SAMPLES

Fecal samples were manually collected from the rectum of 153 diarrheic stray dogs aging up to 4 months between 2018-2019 at Animal Care and Rehabilitation Center of Van Metropolitan Municipality in Van province. All dogs had diarrhea. Single-use latex gloves were used for this purpose. The samples were stored at +4°C until further processing.

MICROSCOPIC EXAMINATION

All samples were stained with Kinyoun's acid-fast method and examined under the microscope at x100 magnification.

DNA EXTRACTION

DNA were extracted from all the samples using RTA stool DNA isolation kit (Cat 09028050, Turkey) according to manufacturer-recommended protocol. Extracted DNA were stored at -20°C until further analysis.

NESTED PCR REACTION

Primers identified by Xiao et al.¹⁴ were used in order to amplify the SSU rRNA gene region. The first step involved the of 5'use TTCTAGAGCTAATACATGCG-3' and 5'-CCCATTTCCTTCGAAACAGGA-3'primers to amplify the 1325 bp gene region in Nested PCR. In second stage of Nested PCR, the 5'-GGAAGGGTTGTATTTATTAGATAAAG-3' and 5'-AAGGAGTAAGGAACAACCTCCA-3' primers were used to amplify the 826-864 bp gene region. Following reagents were used in both reactions: 25 µL mastermix, 200 µM dNTPs, 3 mM MgCl₂, 5 pmol forward and reverse primers, 1U Taq Polymerase, and 10X PCR buffer (500 mM Tris-HCl, pH 8.8, 160 mM (NH₄)SO₄ and 0.1% Tween[®]20), nuclease free water, and 2 µL DNA. The procedures involved in both stages of nested PCR were: 15 minutes pre-denaturation at 95°C followed by 35 cycles of processes each consisting of denaturation (at 95°C for 1 minute), binding (at 60°C for 1 minute), and elongation (at 72°C for 1 minute). Following these cycles, final elongation was performed at 72°C for 7 minutes in each stage of the nested PCR.15 These reactions were carried out using Eppendorf Mastercycler® pro brand automatic Thermal cycler. The PCR products were run on 1.5% agarose gel stained with Safe-T-Stain and images were obtained using gel imaging device (Syngene bio imaging system).

ETHICAL CONSIDERATIONS

All procedures involved in the study were approved by the local ethics committee of Van Yuzuncu Yil University, Van, Turkey vide letter no. VAN YUHADYEK/2018/07 dated 26 July 2018.

RESULTS

PREVALENCE USING MICROSCOPIC EXAMINATION

Oocysts of *Cryptosporidium spp*. were observed in 81 out of 153 (52.94%) fecal samples at x100 magnification (Figure 1).

PREVALENCE USING NESTED PCR

A total of 99 samples of 153 (64.7%) yielded the *Cryptosporidium spp.* specific 826-864 bp sized bands (Figure 2). It confirms that Nested PCR is more reliable in the diagnosis of *Cryptosporidium* spp. than microscopic technique.

DISCUSSION

Cryptosporidiosis is a worldwide zoonotic disease caused by a parasitic protozoon *Cryptosporidium* spp. and C. can is the most common type in dogs. 16,17 Cryptosporidium spp. are monoxenous protozoa that cause food- and water-borne infections in humans and animals. Routine diagnosis of *Crvptosporidium spp*. is made using acid-fast staining technique, however, PCR based techniques are specific and sensitive methods to detect the infection and Cryptosporidium types.¹⁸⁻²¹ The most commonly used molecular test in the diagnosis of Cryptosporidium spp. is nested PCR that uses specific primers to amplify the 18S rRNA gene region. In this study, the prevalence of Cryptosporidium spp. was investigated in diarrheic dogs in Van, Turkey using two different methods as the parasite possesses the potential for zoonotic transmission through environmental contamination. The prevalence of Cryptosporidium spp. in Van, Turkey was determined s 52.94% by using Kinyoun's acid-fast method and 64.7% by nested-PCR.

In Turkey, there are increasing number of studies on Cryptosporidiosis in farm animals and its importance.^{15,22-25} However, no molecular study is available regarding Cryptosporidiosis in dogs. Earlier reports are available reporting the use of PCR in investigating the *Cryptosporidium spp*. to amplify the 18S rRNA gene region. Various researchers have reported the presence of *Cryptosporidium spp*. in

FIGURE 1: Cryptosporidium spp. oocyst in Kinyoun's acid-fast staining method.

FIGURE 2: Cryptosporidium spp. Nested PCR agarose gel images (M: Marker. N: Negative control. P: Positive control. 3,8,15,23,27: Positive samples).

dogs; Avinmode et al.¹ in 2.5% of 203 dogs in Ibadan region of Nigeria, Itoh et al. in 21% of 314 kennel dogs in Japan, Julien et al. in 6.12% dogs in Igaluit region of Canada, Homayouni et al. 0.6% of 315 dogs in Shiraz region of Iran, Tangtrongsup et al. 7.6% of 301 dogs in Chiang Mai region of Thailand, and Li et al. found Cryptosporidium spp. in 6.9% of 641 dogs in Guangdong region of China.^{6,26-29} Zaglool et al. and Quílez et al. in their studies on Cryptosporidium noted the low sensitivity of mZN test as 73.3% and 79.3%, respectively.^{30,31} Miambo et al. reported the presence of Cryptosporidium spp. in 0.6% of 156 puppies in Mozambique using modified Ziehl-Neelsen technique whereas Eze et al. determined the oocysts of Cryptosporidium spp. in 74 out of 203 dogs (36.5%).^{3,32} In contrast, we detected the oocysts in 52.94% of 153 dogs with Kinyoun's acid-fast method. Our findings are consistent with those of Ramirez et al. Hamnes et al. and Jian et al. who

reported that puppies are more prone to *Cryptosporidium* infections than adults.^{11,33,34} Direct smear and molecular techniques showed the presence of Cryptosporidium in 8% and 12.3%, respectively.35 Similarly, the prevalence of *Cryptosporidium spp.* in HIV patients was 7.6% and 18.3% using modified Ziehl-Neelsen staining and PCR, respectively.¹² Likewise, the prevalence of Crvptosporidium spp. in calves was 5% using modified acid-fast staining, 7% with IFAT, and 7.6% with PCR.³⁶ It explains that PCR is the most favorable test in epidemiological studies involving Cryptosporidium. In the present study, Cryptosporidium spp. was found to be prevalent in 99 of 153 samples (64.7) using PCR whereas 52.94% using Kinyoun's acid-fast method. A higher prevalence in our study might be attributable to younger age of puppies with the signs of diarrhea. The findings also reveal that Cryptosporidium spp. is an important diarrhea causing agent in puppies.

CONCLUSION

In conclusion, the results of our study reiterate that PCR is a very sensitive test in the diagnosis of

Cryptosporidium. The results suggest the necessity of further research on infection causing *Cryptosporidium* species in dogs. The reported prevalence in the literature varies greatly depending on the geographical structure, hygienic condition, animal population, area of study, skills of the people conducting the study, and laboratory conditions.

Source of Finance

During this study, no financial or spiritual support was received neither from any pharmaceutical company that has a direct connection with the research subject, nor from a company that provides or produces medical instruments and materials which may negatively affect the evaluation process of this study.

Conflict of Interest

No conflicts of interest between the authors and / or family members of the scientific and medical committee members or members of the potential conflicts of interest, counseling, expertise, working conditions, share holding and similar situations in any firm.

Authorship Contributions

All authors contributed equally while this study preparing.

- Ayinmode AB, Obebe OO, Falohun OO. Molecular detection of Cryptosporidium species in street-sampled dog faeces in Ibadan, Nigeria. Vet Parasitol Reg Stud Reports. 2018;14:54-8.[Crossref] [PubMed]
- Ranjbar R, Mirhendi H, Izadi M, Behrouz B, Mohammadi Manesh R. Molecular Identification of Cryptosporidium spp. in Iranian Dogs Using Seminested PCR: A First Report. Vector Borne Zoonotic Dis. 2018;18(2):96-100.[Crossref] [PubMed]
- Eze UU, Ezeh IO, Nzeakor TA, Attama SC, Ezenduka EV, Onah DN. Prevalence and risk factors associated with Cryptosporidium spp. infection in local breed of dogs in Enugu State, Nigeria. Vet World. 2019;12(5):729-34. [Crossref] [PubMed] [PMC]
- Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol. 2016;38(9):535-47. [Crossref] [PubMed]
- Feng Y, Ryan UM, Xiao L. Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 2018;34(11):997-1011. [Crossref] [PubMed]

REFERENCES

- Itoh N, Tanaka H, Iijima Y, Kameshima S, Kimura Y. Molecular Prevalence of Cryptosporidium spp. in Breeding Kennel Dogs. Korean J Parasitol. 2019;57(2):197-200.[Crossref] [PubMed] [PMC]
- Lucca Pd, De Gaspari EN, Bozzoli LM, Funada MR, Silva SO, Iuliano W, et al. Molecular characterization of Cryptosporidium spp. from HIV infected patients from an urban area of Brazil. Rev Inst Med Trop Sao Paulo. 2009;51(6):341-3.[Crossref] [PubMed]
- Molloy SF, Smith HV, Kirwan P, Nichols RA, Asaolu SO, Connelly L, et al. Identification of a high diversity of Cryptosporidium species genotypes and subtypes in a pediatric population in Nigeria. Am J Trop Med Hyg. 2010;82(4):608-13.[Crossref] [PubMed] [PMC]
- Elwin K, Hadfield SJ, Robinson G, Chalmers RM. The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales, 2000-2008. Epidemiol Infect. 2012;140(4):673-83.[Crossref] [PubMed]
- Mugala L, Siwila J, Saasa N, Pandey GS. Prevalence of Cryptosporidium spp. oocysts

in dogs in Lusaka district of Zambia. Vet World. 2018;11(5):585-9. [Crossref] [PubMed] [PMC]

- Ramirez NE, Ward LA, Sreevatsan S. A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microbes Infect. 2004;6(8):773-85.[Crossref] [PubMed]
- Uchenna JG, Mercy EI, Stella S, Onyema OI, Ukamaka UE, Chinweoke ONB, et al. Comparison of Molecular and Conventional Methods of Detecting Cryptosporidium parvum in Seropositive HIV Patient's Fecal Specimens. IJMSHR. 2018;2:165-81. [Crossref]
- Cunha FS, Peralta RHS, Peralta JM. New insights into the detection and molecular characterization of Cryptosporidium with emphasis in Brazilian studies: a review. Rev Inst Med Trop Sao Paulo. 2019;61:e28. [Crossref] [PubMed] [PMC]
- Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. Molecular characterization of cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol. 2001;67(3):1097-101.[Crossref] [PubMed] [PMC]

- Ayan A, Orunc Kilinc O, Yuksek N, Basbugan Y. [Detection of Cryptosporidium spp. in Calves through Nested PCR and Kinyoun's Acid-fast Methods in Van, Turkey]. IJEES. 2020;10(2):271-6.[Crossref]
- Uehlinger FD, Greenwood SJ, McClure JT, Conboy G, O'Handley R, Barkema HW. Zoonotic potential of Giardia duodenalis and Cryptosporidium spp. and prevalence of intestinal parasites in young dogs from different populations on Prince Edward Island, Canada. Vet Parasitol. 2013;196(3-4):509-14.[Crossref] [PubMed]
- Itoh N, Oohashi Y, Ichikawa-Seki M, Itagaki T, Ito Y, Saeki H, et al. Molecular detection and characterization of Cryptosporidium species in household dogs, pet shop puppies, and dogs kept in a school of veterinary nursing in Japan. Vet Parasitol. 2014;200(3-4):284-8.[Crossref] [PubMed]
- Johnson DW, Pieniazek NJ, Griffin DW, Misener L, Rose JB. Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl Environ Microbiol. 1995;61(11):3849-55.[Crossref] [PubMed] [PMC]
- Graczyk TK, Cranfield MR, Fayer R. Evaluation of commercial enzyme immunoassay (EIA) and immunofluorescent antibody (FA) test kits for detection of Cryptosporidium oocysts of species other than Cryptosporidium parvum. Am J Trop Med Hyg. 1996;54(3):274-9.[Crossref] [PubMed]
- Zhu G, Keithly JS, Philippe H. What is the phylogenetic position of Cryptosporidium? Int J Syst Evol Microbiol. 2000;50 Pt 4:1673-1681.[Crossref] [PubMed]
- Haque R. Human intestinal parasites. J Health Popul Nutr. 2007;25(4):387-91.[PubMed] [PMC]
- 22. Yasa Duru S, Öcal N, Yağcı BB, Gazyağcı S, Duru Ö, Yıldız K. Die Therapheutische

Wirksamkeit von Tylosin bei der Kälberkryptosporidiose Kafkas Univ Vet Fak Derg. 2013;19:175-80. (Suppl-A): A175-A180, 2013.[Crossref]

- Göz Y, Gül A, Aydın A. [Prevalence of Cryptosporidium spp. in cattle in Hakkari region]. YYÜ Vet Fak Derg. 2007;18(2):37-40.
- 24. Güven E, Avcıoğlu H, Balkaya İ, Hayırlı A, Kar S, Karaer Z. Prevalence of Cryptosporidiosis and Molecular Characterization of Cryptosporidium spp. in Calves in Erzurum. Kafkas Univ Vet Fak Derg. 2013;19(6): 969-74.[Crossref]
- Yildirim A, Adanir R, Inci A, Yukari BA, Duzlu O, Onder Z, et al. Prevalence and genotyping of bovine Cryptosporidium species in the Mediterranean and Central Anatolia Region of Turkey. Comp Immunol Microbiol Infect Dis. 2020;69:101425.[Crossref] [PubMed]
- Julien DA, Sargeant JM, Guy RA, Shapiro K, Imai RK, Bunce A, et al. Prevalence and genetic characterization of Giardia spp. and Cryptosporidium spp. in dogs in Iqaluit, Nunavut, Canada. Zoonoses Public Health. 2019;66(7):813-25.[Crossref] [PubMed]
- Homayouni MM, Razavi SM, Shaddel M, Asadpour M. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia intestinalis in household dogs and cats from Shiraz, Southwestern Iran. Vet Ital. 2019;55(4):311-8.[Crossref] [PubMed]
- Tangtrongsup S, Scorza AV, Reif JS, Ballweber LR, Lappin MR, Salman MD. Seasonal distributions and other risk factors for Giardia duodenalis and Cryptosporidium spp. infections in dogs and cats in Chiang Mai, Thailand. Prev Vet Med. 2020;174:104820. [Crossref] [PubMed]
- Li J, Dan X, Zhu K, Li N, Guo Y, Zheng Z, et al. Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasit Vectors.

2019;12(1):571.[Crossref] [PubMed] [PMC]

- Zaglool DA, Mohamed A, Khodari YA, Farooq MU. Crypto-Giardia antigen rapid test versus conventional modified Ziehl-Neelsen acid fast staining method for diagnosis of cryptosporidiosis. Asian Pac J Trop Med. 2013;6(3):212-5.[Crossref] [PubMed]
- Quílez J, Sánchez-Acedo C, Clavel A, del Cacho E, López-Bernad F. Comparison of an acid-fast stain and a monoclonal antibodybased immunofluorescence reagent for the detection of Cryptosporidium oocysts in faecal specimens from cattle and pigs. Vet Parasitol. 1996;67(1-2):75-81.[Crossref] [PubMed]
- Miambo RD, Laitela B, Malatji MP, De Santana Afonso SM, Junior AP, Lindh J, et al. Prevalence of Giardia and Cryptosporidium in young livestock and dogs in Magude District of Maputo Province, Mozambique. Onderstepoort J Vet Res. 2019;86(1):e1e6.[Crossref] [PubMed] [PMC]
- Hamnes IS, Gjerde BK, Robertson LJ. A longitudinal study on the occurrence of Cryptosporidium and Giardia in dogs during their first year of life. Acta Vet Scand. 2007;49(1):22.[Crossref] [PubMed] [PMC]
- Jian F, Qi M, He X, Wang R, Zhang S, Dong H, et al. Occurrence and molecular characterization of Cryptosporidium in dogs in Henan Province, China. BMC Vet Res. 2014;10:26.[Crossref] [PubMed] [PMC]
- Tavalla M, Kord E, Abdizadeh R, Asgarian F. Molecular Study of Cryptosporidium spp. in Dogs from Southwest of Iran. Jundishapur. J Microbiol. 2017;10:e43412.[Crossref]
- Inpankaew T, Jiyipong T, Sunanta C, Kengradomkij C, Pinyopanuwat N, Jittapalapong S. Prevalence and molecular characterization of bovine Cryptosporidium from dairy cows in Northern Thailand. Acta Parasitol. 2017;62(4):772-4.[Crossref] [PubMed]