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A Simulation Study on Tests for
the Behrens-Fisher Problem

Behrens-Fisher Problemi i¢cin Kullanilan Testler
Uzerine Bir Simiilasyon Calismas1

ABSTRACT Objective: The problem of testing the equality of two means from normal populations
with unknown variances is known as Behrens-Fisher (BF) problem. The difficulty with the BF
problem is that exact solutions are not available satisfactorily because nuisance parameters are pres-
ent. The aim is to compare the different methods for BF problem. Material and Methods: Classical
t-test, Welch-Satterthwaite (WS) test, Cochran and Cox (CC) test, Singh-Saxena-Srivastava (SSS)
test based on the jackknife procedure and generalized p-value (GP) test are considered. A Monte
Carlo simulation study is conducted to evaluate type I error probabilities and powers of these meth-
ods. Results: Simulation results showed that when variances are unequal, the classical t-test is not
an appropriate test because its type I error rate poorly deviates from the nominal level, ¢=0,05. The
WS test has satisfactory type I error rate regardless of sample sizes and unequal variances. Its power
appears to be more powerful than the other test when simple sizes are moderate or large. The GP
test seems to be very conservative for small sample sizes. The power of the CC test is smallest among
the five tests. However, its type I error rate has satisfactory as long as sample sizes are large. When
sample sizes are unequal the type I error rate of the SSS test is too conservative or too liberal. Con-
clusion: The SSS test appears to be less powerful than the GP and WS tests as long as simple sizes
are moderate and large. It is concluded that the SSS test is not as good as it has been reported by
Singh et al (2002).

Key Words: Behrens-Fisher problem; Power; Type I error probability; Generalized p-value;
Welch-Satterthwaite test

OZET Amag: Normal dagilan iki anakiitlenin ortalamalarinin karsilagtirlmasinda varyanslarin bi-
linmemesi Behrens-Fisher (BF) problemi olarak adlandirilir. BF problemin zorlugu nuisance para-
metrelerin varhiginda tam olasilikli ¢6ziimlerin elde edilememesindendir. Amacimiz BF problemi
icin farkli metotlan kargilagtirmaktir. Gereg ve Yontemler: Klasik t testi, Welch-Satterthwaite (WS)
testi, Cochran ve Cox (CC) testi, jackknife siirecine dayal Singh-Saxena-Srivastava (SSS) testi ve ge-
nellestirilmis p-degeri (GP) testi ele alinmistir. Bu metotlarin I. tip hata olasiliklar: ve giiglerinin kar-
silagtirilmasi igin bir Monte Carlo simiilasyon ¢aligmasi yapilmigtir. Bulgular: Simiilasyon ¢aligmasi
gosterdi ki varyanslar esit olmadig1 zaman klasik t-test L. tip hata orani nominal seviyeden (a=0.05)
uzaklastig1 i¢in uygun degildir. WS test, 6rneklem bityiikliigii ve varyanslarin farkli olmas: duru-
mundan bagimsiz tatmin edici tip L. tip hata oranina sahiptir. Orneklem biiyiikliikleri orta ve bityitk
oldugu durumlarda onun giicii diger testlerden daha gliclii oldugu goriildii. Kiigiik 6rneklem i¢in GP
test nominal seviyeden daha kiigiik oldugu anlagildi. CC testin giicii diger bes test arasinda en kii-
ciiktiir. Ama onun I. tip hata oram biiyiik 6rneklemlerde tatmin edicidir. Orneklem biiyiikliikleri
esit olmadig1 zaman SSS testin I. tip hata oran1 nominal seviyeden ¢ok kiiciik veya ¢ok biiytiktiir.
Sonug: SSS testin giicii 6rneklem biiyiikliigii orta veya bityiik oldugu durumlarda GP ve WS testten
daha kiigiiktiir. SSS testinin Singh ve ark.min (2002) ifade ettigi kadar iyi olmadig1 sonucuna
ulagilmigtir.

Anahtar Kelimeler: Behrens-Fisher problem; Giig; I. tip hata olasilig1; Genellestirilmis p-deger;

Welch-Satterthwaite testi
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ne frequently occurring problem encoun-
Otered by researchers and applied statisti-
cians is the testing of difference between
two population means. The problem of comparing
two distribution /| and F, is one of oldest prob-
lems in statistics. When two independent samples

are available, the goal may be to compare the
means of the distributions, i.e.

Ho:piy = pp vs Hp:py # Uy

where ; is the expectation of F;, i=1,2. In this case,
many different procedures are available depending
on the assumptions the analyst is ready to make
about the data. The usual t -test is the test of choice
when the variable of interest is normally distrib-
uted and its variances are the same for both distri-
butions. But if the assumption of homogeneity of
variances is violated, the usual -test is no more ro-
bust for unequal sample sizes. The type I error
probability is severely affected.

The problem of testing the equality of two
means from normal populations with unknown
variances is known as Behrens-Fisher (BF) problem.
The Behrens-Fisher problem has been well known
since the early 1930’s. In the literature associated
with the Behrens-Fisher problem, there have been
quite a few solutions proposed. One reason for its
popularity is that there is no exact solution satisfy-
ing the classical criteria for good tests. For example,
Fisher, Welch, Aspin, Cochran and Cox, Qin and
Jing have all suggested different solutions.!” The
idea is an extension of the solution for testing the
Behrens-Fisher problem in the presence of nuisance
parameters, which was proposed by Tsui and Weer-
ahandi using the concept of the generalized p-
value.® Tsui and Tang apply the distributional
property of the generalized p-value for the BF prob-
lem to multiple testing.” Kim and Cohen propose a
review of fundamental concepts and applications
used to address the Behrens-Fisher problem under
fiducial, Bayesian, and frequentist approaches.
Singh et al. proposed a new test using Jackknife
methodology." Dong considers the empirical like-
lihood approach for BF problem.!? Chang and Pal
revisit BF problem and apply a newly developed
‘Computational Approach Test’ (CAT).13
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In this paper, we compare five methods for the
difference between means of two normal popula-
tions when equal variances assumptions may be vi-
olated. We consider five methods: classical t-test,
Welch-Satterthwaite (WS) test by Welch (1938
and 1947) and Satterhwaite, Cochran and Cox (CC)
test by Cochran and Cox, Singh-Saxena-
Srivastava (SSS) test based on the jackknife proce-
dure by Singh et al. and generalized p-value (GP)
test by Tsui and Weerahadi.>>8111415

The paper is organized as follows. In Section 2
gives Behrens Fisher problem. Section 3 introduces
the five methods. Section 4 presents the simulation
results to compare the type I error rates and pow-
ers of proposed methods. Section 5 gives discussion.

I THE BEHRENS-FISHER PROBLEM

In practice, scientists interest to provide statistical
inference on the mean difference of the two
groups. For example they may want to detect a
clinically meaningful mean difference or to estab-
lish therapeutic equivalence or bioequivalence be-
tween two drugs. If variances are equal then
statistical inference is well solved. But when there
are unequal variances, no satisfactory approach is
available. Now assume that independent samples
are available from two normal populations as:

Xi1, oo Xim, 1id N(u;, 07),i = 1,2
where all the four parameters {4, fiz. 05,935} are

unknown. Based on the above two independent
samples, problem is to test

Hotply = pa vs Hprpy # Uy (1)

First, we reduce the above data by suffici-
ency, and focus only on X; = ¥7%, X;;/n;,
St =X, (X — %) i=12 where
Xi~N(uy, 0f /n;) and SF~0f X6y, 1y, 0= 1,2 2)

and all the four statistics are mutually independ-
ent. Let X;,X,,52,5% denote the observed values
X.,X,,52,52, respectively. The inferences are to
be based on the set of complete sufficient statistics
whose distributions are given by equation (1).
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I METHODS CONSIDERED

Statistical methods available in the literature can
be roughly divided into either exact methods
or approximation methods. In this section, we will
propose four approximation methods and one
exact method about the difference in the two means

0=, —u,.

CLASSICAL T-TEST

For testing the hypothesis about the equality of
the means under the assumption that ¢, = 0,=0,,
we use the statistic given by

X, — Xy
(nilJ’niz)s 3)

where s? is the pooled unbiased estimate of ¢°. This
statistic has t-distribution with »n, + n, — 2 de-
grees of freedom. This test is robust under viola-
tion of the assumption of normality. But if the
assumption of homogeneity of variances is vio-
lated, t-test is no more robust for unequal sample
sizes. The type I error probability is severely af-
fect.'

WELCH SATTERTHWAITE (WS) TEST

According to Welch and Satterthwaite, the distri-
bution of statistic 7 can be approximated by t-
distribution but this test statistic should be
interpreted with reference to a modified number
of degrees of freedom given by

s2 + s2
ny N

G) () ’

n1—1 n2_1

2

tws =

+

The WS test was originally designed to take
care of unequal variances situation when both dis-
tributions are normal.

COCHRAN-COX (CC) TEST

The most prominent test after the WS test is the
one proposed by Cochran and Cox (1950).> The CC
test is defined by
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51 S2
ti—+t, =
o 1n1+ 27,
cc —
s 52 ©)
_+_

n, N

where ¢ and ¢, are the tabulated critical values of
the t-statistic for n; — 1 and n, — 1 degrees of free-
dom respectively.

SINGH-SAXENA-SRIVASTAVA (SSS) TEST

Singh et al. proposed a new test using Jackknife
methodology.!! This test can be used as an alterna-
tive to the BF problem. This new test is defined by

tsss = Nt (a/2) (6)

where ¢,, has t-distribution with m degrees of free-
dom and

n= ((512/711) + (Szz/nz))/((sf/nz) + (Szz/nl))v
m = ((sf/ng) + (Szz/nz))z/((slz/nz)z/(nl =1+ (s3/n1)%/(n — 1))

This test has some similarity to WS test. Note
that the positions of and have been interchanged.

GENERALIZED P-VALUE (GP) TEST

The idea is an extension of the solution for testing
the Behrens-Fisher problem in the presence of nui-
sance parameters, which was proposed by Tsui and
Weerahandi using the concept of the generalized
p-value.® Their generalized p-value method has
been successfully used to provide small sample so-
lutions for many hypothesis testing problems when
nuisance parameters are present. The generalized
pivotal quantity 7 for = u, —u, can be defin-ed

by

X=X - (- m) ﬁ ﬁ

. 2 2\ _ 5 _ =
T(Xy, X33 %0, %9, iy, 1, 07, 07) = Xy — %y — 2 2
Sy NSy

2 2
9.9
nmomn

2 2 (:)
=X, — X, —Z S_1+S_2
2 B U1 U2

nisi2 2
, U= 7 X1

i

where

£ — Xy — (-
7="2 1= (o — ) ~N(0,1) i=12
of L 9%

n n

and F1.%5,%1,%, are the observed values of

§.5..%,,X,, respectively. Generalized p-value
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based on generalized pivotal quantity for testing
hypothesis in (1);

p=Pr(T>tys \0=0) (8)

where 7, is the observed value of T. This test re-
ject the Hyin (1) if p < @, where « is the nominal
level of testing.

I SIMULATION STUDY

This section provides simulation studies for type I
error probabilities and powers of the five methods
proposed in Section 3. In this study, two configu-
ration factors were taken into account to evaluate
the performances of type I error probabilities and
powers; sample size and variance.

To obtain the results of classical t-test, WS, CC
and SSS tests, we use simulation consisting of
50,000 runs for each of the sample size and param-
eter configurations. The Monte Carlo method is
used for estimating the type I error rates and pow-
ers of the GP test.

To obtain GP test, we use a two-step simulation.
First we generated 2500 observed (%y,%;;57,53),
vectors and used 5000 runs for each observed vec-
tor to estimate the p-value in (8).

The estimates of type I error rates of five tests
are present in Table 1. We have the following nu-
merical results.

1. As long as the variances were homogeneous,
the classical t-test seems to have a type I error rate
quite close to o, the nominal level. But its type I
error rate poorly deviates from the nominal level
for unequal sample size and heteroscedasticity.

2. The WS test has satisfactory type I error
rate, regardless of sample sizes and unequal vari-
ances. The CC test seems to be very conservative,
when sample sizes are small. The WS and CC tests
have similar result when the sample sizes are large.

3. For unequal sample sizes, the SSS test is far
worse than type I error rates of the WS, CC and GP
tests. But its type I error rate close to when sample
sizes are equal and large.

4. The GP test seems to be very conservative
when sample sizes are small.
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The powers of five tests are present in Table 2.
We once again observe from this table that the
classical t-test appears to be more powerful than
the others test when the variances were homoge-
neous and sample sizes are small. The power of CC
test is smallest among the five tests. The WS and
GP tests exhibit similar power values when simple
sizes are large. In most case, WS test appears to be
more powerful than the GP and SSS tests.

I DISCUSSION

One frequently occurring problem encountered by
researchers and applied statisticians is the testing
of difference between two population means. The
Behrens-Fisher problem is testing the equality of
means from two independent normal populations
without the assumption of equality of variances. In
the literature associated with the Behrens-Fisher
problem, there have been quite a few solutions pro-
posed in the past several decades. The difficulty
with the BF problem is that exact solutions are not
available satisfactorily because nuisance parame-
ters are present. In this paper, a Monte Carlo sim-
ulation was performed to evaluate the performance
of the proposed five tests for the BF problem under
different scenarios. Simulation studies were con-
ducted to compare the type I error probabilities and
powers of these methods. Simulation results show
that when variances are unequal, the classical t-test
is not an appropriate test because its type I error
rate poorly deviates from the nominal level. The
GP test seems to be very conservative for small
sample sizes. However, its type I error rate close to
o =0.05 and its power performs satisfactorily when
sample sizes are equal and large. In most case, the
WS test appears to be more powerful than the GP
and SSS tests. Also it can be concluded that, re-
gardless the sample sizes, its type I error rate, close
to nominal level. The power of CC test is smallest
among the five tests. However, its type I error rate
has satisfactory as long as sample sizes are large.
The WS and CC tests have similar size as well as
power when the sample sizes are large. When sam-
ple sizes are unequal the type I rate error rate of
SSS test is either too conservative or too liberal. The
SSS test appears to be less powerful than the GP

Turkiye Klinikleri ] Biostat 2014;6(2)
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TABLE 1: Type | error probabilities for the BF problem when 111 = 1, =0 and a = 0.05.
o0’ | ttest | ws | CC | SSS | GP o o | ttest | WS | CC [ sSS | Gp
(n,, ny) = (5.5) (ny, ny) =(5.10)
(1,1) 0.050 | 0.045 | 0.023 | 0.072 | 0.026 (1,1) 0.050 | 0.052 | 0.032 | 0.093 | 0.024
(1,2) 0.051 | 0.044 | 0.025 | 0.069 | 0.026 (1,2) 0.035 | 0.049 | 0.030 | 0.100 | 0.022
(1,3) 0.053 | 0.046 | 0.027 | 0.066 | 0.024 (1,3) 0.029 | 0.048 | 0.030 | 0.103 | 0.026
(1,4) 0.055 | 0.047 | 0.029 | 0.065 | 0.026 (1,4) 0.026 | 0.048 | 0.031 | 0.103 | 0.030
(1,5) 0.057 | 0.049 | 0.031 | 0.063 | 0.028 (1,5) 0.024 | 0.049 | 0.031 | 0.100 | 0.030
(n,, ny) = (10.5) (n,, ny) =(10.10) |
(1,1) 0.050 | 0.047 | 0.031 | 0.094 | 0.034 (1,1) 0.051 | 0.048 | 0.036 | 0.063 | 0.030
(1,2) 0.071 | 0.049 | 0.036 | 0.080 | 0.030 (1,2) 0.052 | 0.049 | 0.037 | 0.063 | 0.032
(1,3) 0.085 | 0.049 | 0.038 | 0.074 | 0.034 (1,3) 0.053 | 0.050 | 0.039 | 0.062 | 0.036
(1,4) 0.095 | 0.049 | 0.041 | 0.069 | 0.036 (1,4) 0.054 | 0.050 | 0.040 | 0.061 | 0.036
(1,5) 0.101 | 0.050 | 0.042 | 0.066 | 0.034 (1,5) 0.055 | 0.050 | 0.041 | 0.060 | 0.036
(n,, n,) =(10.25) (n,, ny) =(25.10)
(1,1) 0.050 | 0.049 | 0.042 | 0.080 | 0.040 (1,1) 0.050 | 0.052 | 0.042 | 0.078 | 0.044
(1,2) 0.030 | 0.050 | 0.041 | 0.108 | 0.044 (1,2) 0.077 | 0.051 | 0.044 | 0.054 | 0.046
(1,3) 0.022 | 0.049 | 0.041 | 0.126 | 0.044 (1,3) 0.094 | 0.051 | 0.045 | 0.043 | 0.040
(1,4) 0.018 | 0.050 | 0.041 | 0.136 | 0.044 (1,4) 0.105 | 0.051 | 0.045 | 0.036 | 0.044
(1,5) 0.015 | 0.051 | 0.041 | 0.144 | 0.048 (1,5) 0.113 | 0.051 | 0.046 | 0.032 | 0.046
(n,, n,) = (25.25) (n,, ny) =(25.50)
(1,1) 0.050 | 0.050 | 0.045 | 0.057 | 0.050 (1,1) 0.049 | 0.050 | 0.048 | 0.060 | 0.054
(1,2) 0.050 | 0.051 | 0.046 | 0.057 | 0.046 (1,2) 0.033 | 0.050 | 0.047 | 0.085 | 0.058
(1,3) 0.051 | 0.051 | 0.046 | 0.057 | 0.050 (1,3) 0.026 | 0.050 | 0.047 | 0.101 | 0.048
(1,4) 0.052 | 0.051 | 0.047 | 0.056 | 0.044 (1,4) 0.023 | 0.050 | 0.047 | 0.111 | 0.042
(1,5) 0.052 | 0.051 | 0.047 | 0.057 | 0.046 (1,5) 0.020 | 0.050 | 0.047 | 0.119 | 0.040
(n,, ny) =(50.25) (n,, ny) =(50.50) 1
(1,1) 0.050 | 0.051 | 0.047 | 0.059 | 0.048 (1,1) 0.050 | 0.051 | 0.048 | 0.053 | 0.038
(1,2) 0.071 | 0.050 | 0.047 | 0.038 | 0.054 (1,2) 0.049 | 0.050 | 0.048 | 0.054 | 0.034
(1,3) 0.084 | 0.051 | 0.048 | 0.029 | 0.054 (1,3) 0.050 | 0.050 | 0.049 | 0.054 | 0.030
(1,4) 0.092 | 0.051 | 0.048 | 0.025 | 0.052 (1,4) 0.049 | 0.050 | 0.049 | 0.054 | 0.032
(1,5) 0.097 | 0.051 | 0.049 | 0.022 | 0.052 (1,5) 0.050 | 0.050 | 0.049 | 0.056 | 0.034
(n,, ny) =(50.100) (n,, ny) = (100.50)
(1,1) 0.050 | 0.051 | 0.050 | 0.056 | 0.040 (1,1) 0.051 | 0.049 | 0.049 | 0.055 | 0.050
(1,2) 0.034 | 0.052 | 0.049 | 0.082 | 0.042 (1,2) 0.072 | 0.051 | 0.050 | 0.034 | 0.050
(1,3) 0.026 | 0.053 | 0.050 | 0.099 | 0.048 (1,3) 0.083 | 0.050 | 0.050 | 0.025 | 0.052
(1,4) 0.022 | 0.052 | 0.049 | 0.109 | 0.050 (1,4) 0.091 | 0.050 | 0.050 | 0.020 | 0.052
(1,5) 0.020 | 0.052 | 0.049 | 0.118 | 0.052 (1,5) 0.096 | 0.050 | 0.050 | 0.018 | 0.050
(n,, ny) = (100.100) (n,, ny) =(100.200) |
(1,1) 0.050 | 0.050 | 0.050 | 0.052 | 0.048 (1,1) 0.051 | 0.050 | 0.051 | 0.054 | 0.052
(1,2) 0.051 | 0.049 | 0.050 | 0.052 | 0.044 (1,2) 0.033 | 0.049 | 0.051 | 0.081 | 0.052
(1,3) 0.051 | 0.049 | 0.050 | 0.052 | 0.044 (1,3) 0.026 | 0.049 | 0.051 | 0.099 | 0.048
(1,4) 0.051 | 0.049 | 0.050 | 0.053 | 0.046 (1,4) 0.022 | 0.049 | 0.050 | 0.109 | 0.046
(1,5) 0.051 | 0.049 | 0.050 | 0.053 | 0.048 (1,5) 0.020 | 0.049 | 0.050 | 0.118 | 0.046
(n,, ny) =(200.100) (n,, ny) =(200.200) |
(1,1) 0.050 | 0.048 | 0.050 | 0.053 | 0.050 (1,1) 0.050 | 0.048 | 0.051 | 0.052 | 0.050
(1,2) 0.070 | 0.049 | 0.050 | 0.031 | 0.050 (1,2) 0.051 | 0.049 | 0.051 | 0.052 | 0.044
(1,3) 0.082 | 0.049 | 0.050 | 0.023 | 0.048 (1,3) 0.050 | 0.049 | 0.051 | 0.052 | 0.032
(1,4) 0.089 | 0.049 | 0.050 | 0.018 | 0.048 (1,4) 0.050 | 0.049 | 0.051 | 0.052 | 0.030
(1,5) 0.094 | 0.049 | 0.051 | 0.015 | 0.048 (1,5) 0.051 | 0.049 | 0.051 | 0.052 | 0.030
t-test: Classical t-test, WS: Welch-Satterthwaite test, CC: Cochran-Cox test, SSS: Singh-Saxena-Srivastava test, GP: Generalized p-value approach
Turkiye Klinikleri ] Biostat 2014;6(2) 63
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TABLE 2: Powers for BF problem when nominal « = 0.05.
of of | () | | WS | C€C | SSS | GP | ttest | WS | CC | SSS | GP
(n,, n,) =(5.5) (n,, n,) =(5.10)
(0.3.0) | 0.114 | 0.108 | 0.032 | 0.099 | 0.047 | 0.129 | 0.127 | 0.049 | 0.132 | 0.080
(0.6.0) | 0219 | 0.208 | 0.075 | 0.176 | 0.113 | 0.272 | 0.259 | 0.119 | 0.239 | 0.167
(1.1} (0.2.00 | 0.366 | 0.351 | 0.150 | 0.297 | 0.207 | 0.464 | 0.441 | 0.238 | 0.400 | 0.323
(1.2.0} | 0.533 | 0.517 | 0.260 | 0.448 | 0.349 | 0.663 | 0.631 | 0.401 | 0.578 | 0.503
(1.5.0) | 0.696 | 0.680 | 0.403 | 0.608 | 0.500 | 0.825 | 0.795 | 0.580 | 0.737 | 0.675
(0.3.0) | 0.129 | 0.121 | 0.039 | 0.114 | 0.063 | 0.186 | 0.136 | 0.057 | 0.125 | 0.091
(0.6.00 | 0.264 | 0.248 | 0.098 | 0.219 | 0.136 | 0.375 | 0.284 | 0.140 | 0.238 | 0.193
(1.0.3) | (0.2.0) | 0445 | 0.425 | 0.202 | 0.380 | 0.269 | 0.599 | 0.480 | 0.280 | 0.403 | 0.364
(1.2.0) | 0.637 | 0.614 | 0.351 | 0.561 | 0.449 | 0.791 | 0.679 | 0.460 | 0.584 | 0.562
(1.3.00 | 0.800 | 0.779 | 0.523 | 0.730 | 0.625 | 0.918 | 0.833 | 0.642 | 0.742 | 0.741
(n,, ny) = (10.5) (n,, ny) =(10.10)
(0.3.0) | 0.129 | 0.124 | 0.050 | 0.130 | 0.087 | 0.158 | 0.152 | 0.072 | 0.117 | 0.122
(0.6.00 | 0.271 | 0.259 | 0.121 | 0.241 | 0.181 | 0.362 | 0.357 | 0.206 | 0.281 | 0.314
(1.1} (0.2.0) | 0.468 | 0.442 | 0.239 | 0.400 | 0.305 | 0.613 | 0.604 | 0.423 | 0.522 | 0.536
(1.2,0) | 0.665 | 0.635 | 0.401 | 0.580 | 0.515 | 0.824 | 0.820 | 0.666 | 0.754 | 0.776
(1.5.0) | 0.826 | 0.795 | 0.582 | 0.738 | 0.695 | 0.942 | 0.939 | 0.853 | 0.905 | 0.918
(0.3.0) | 0.116 | 0.150 | 0.059 | 0.175 | 0.105 | 0.184 | 0.181 | 0.089 | 0.139 | 0.146
(0.6.0) | 0.285 | 0.344 | 0.168 | 0.355 | 0.224 | 0.441 | 0.432 | 0.265 | 0.356 | 0.360
(1,050 | (0.2.00 | 0525 | 0.588 | 0.355 | 0.588 | 0.462 | 0.721 | 0.714 | 0.538 | 0.638 | 0.668
(1.2.0) | 0749 | 0.798 | 0.583 | 0.790 | 0.692 | 0.907 | 0.904 | 0.793 | 0.859 | 0.870
(1.3.00 | 0.901 | 0.926 | 0.784 | 0.915 | 0.857 | 0.981 | 0.978 | 0.936 | 0.963 | 0.966
(n,, n,) = (20.10) (n,, n,) = (10.20)
(0.3.00 | 0.189 | 0.188 | 0.098 | 0.151 | 0.156 | 0.187 | 0.182 | 0.095 | 0.147 | 0.160
(0.6.0) | 0.447 | 0.439 | 0.284 | 0.362 | 0.418 | 0.444 | 0.437 | 0.281 | 0.360 | 0.388
(1.1} (0.2.00 | 0732 | 0.722 | 0.557 | 0.636 | 0.700 | 0.732 | 0.717 | 0.558 | 0.636 | 0.686
(1.2,0) | 0.915 | 0.904 | 0.808 | 0.850 | 0.884 | 0.915 | 0.905 | 0.808 | 0.851 | 0.894
(1.5.00 | 0.983 | 0.977 | 0.942 | 0.956 | 0.966 | 0.984 | 0.980 | 0.943 | 0.957 | 0.974
(0.3.00 | 0.183 | 0.233 | 0.128 | 0.231 | 0.210 | 0.262 | 0.203 | 0.110 | 0.128 | 0.186
(0.6.0) | 0.501 | 0.578 | 0.406 | 0.557 | 0.556 | 0.575 | 0.490 | 0.329 | 0.345 | 0.440
(105 | (0.2.00 | 0.820 | 0.865 | 0.746 | 0.848 | 0.844 | 0.845 | 0.774 | 0.632 | 0.635 | 0.762
(1.2.0) | 0.966 | 0.977 | 0.940 | 0.970 | 0.966 | 0.968 | 0.940 | 0.866 | 0.858 | 0.932
(1.3.00 | 0.996 | 0.998 | 0.993 | 0.997 | 0.996 | 0.996 | 0.991 | 0.969 | 0.963 | 0.990
(n,, ny) = (25.25) (n,, ny) = (25.50)
(0.3.00 | 0275 | 0.272 | 0.169 | 0.194 | 0.250 | 0.331 | 0.334 | 0.216 | 0.243 | 0.310
(0.6.00 | 0.672 | 0.672 | 0.529 | 0.568 | 0.634 | 0.784 | 0.782 | 0.660 | 0.685 | 0.780
(1.1} (0.2.00 | 0.932 | 0.933 | 0.865 | 0.885 | 0.932 | 0.976 | 0.978 | 0.945 | 0.950 | 0.978
(1.2.0) | 0.993 | 0.994 | 0.983 | 0.987 | 0.996 | 0.999 | 1.00 | 0.998 | 0.998 | 1.00
(1.5.0) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
(0.3.0) | 0331 | 0.330 | 0.211 | 0.240 | 0.306 | 0.444 | 0.466 | 0.250 | 0.215 | 0.360
(0.6.01 | 0.778 | 0.778 | 0.653 | 0.688 | 0.776 | 0.884 | 0.922 | 0.735 | 0.685 | 0.848
(1.0.3) | (0.2.00 | 0976 | 0.977 | 0.942 | 0.952 | 0.978 | 0.993 | 0.998 | 0.972 | 0.958 | 0.990
(1.2.0) 1 0999 | 1.00 | 0.998 | 0.998 | 1.00 | 1.00 | 1.00 | 0.999 | 0.999 | 1.00
(1.3.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
continued —
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TABLE 2: Powers for BF problem when nominal « = 0.05. (continued)

(0.3.00 | 0.337 | 0.344 | 0.219 | 0.246 | 0.306 | 0.440 | 0.453 | 0.312 | 0.329 | 0.444

(0.6.0) | 0.784 | 0.790 | 0.659 | 0.686 | 0.786 | 0.910 | 0.913 | 0.838 | 0.849 | 0.904

(1.1} (0,200 | 0977 | 0976 | 0.944 | 0.949 | 0.970 | 0.997 | 0.997 | 0.994 | 0.994 | 1.00
{1.2.0) 1.00 1.00 | 0.998 | 0.998 | 1.00 1.00 1.00 1.00 1.00 1.00

(1.5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.3.0) | 0.365 | 0.456 | 0.305 | 0.406 | 0.448 | 0.533 | 0.545 | 0.396 | 0.415 | 0.524

(0.6.0) | 0.871 | 0.910 | 0.832 | 0.888 | 0.916 | 0.963 | 0.961 | 0.924 | 0.931 | 0.966

(1.0.5) (0.2.01 | 0995 | 0.997 | 0.992 | 0.997 | 0.998 | 0.999 | 1.00 | 0.999 | 0.999 | 1.00
{(1.2.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

{1.5.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(ny, ny) =(50.100) (ny, ny) =(100.50)

(0.3.0) | 0.533 | 0.543 | 0.400 | 0.415 | 0.560 | 0.531 | 0.531 | 0.399 | 0.416 | 0.522

(0.6.0) | 0964 | 0.961 | 0.926 | 0.929 | 0.960 | 0.963 | 0.964 | 0.925 | 0.928 | 0.962

1.1} (0.5.0) 1.00 1.00 | 0.999 | 0.999 | 1.00 1.00 1.00 1.00 | 0.999 | 1.00
(1.2.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.3,0) 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00

(0.3.00 | 0.661 | 0.602 | 0.464 | 0.393 | 0.612 | 0.606 | 0.678 | 0.553 | 0.645 | 0.684

(0.6.0) | 0990 | 0.982 | 0.960 | 0.940 | 0.986 | 0.991 | 0.994 | 0.986 | 0.993 | 0.990

(1.05) | 020 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
(1.2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.2.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(ny, ny) =(100.100) (ny, ny) =(200.200)

(0.3.0) | 0.682 | 0.682 | 0.558 | 0.567 | 0.685 | 0.911 | 0.911 | 0.847 | 0.850 | 0.934

(0.8.0) | 0995 | 0.995 | 0.987 | 0.988 | 0.992 | 1.00 1.00 1.00 1.00 1.00

1.1} {0.9.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.2.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.3.00 | 0.787 | 0.787 | 0.681 | 0.690 | 0.790 | 0.965 | 0.965 | 0.930 | 0.932 | 0.975

(0.6.0) | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 | 1.00 1.00 1.00 1.00 1.00

(1.0.3) | @200 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
{1.2,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

{1.5.0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t-test: Classical t-test, WS: Welch-Satterthwaite test, CC: Cochran-Cox test, SSS: Singh-Saxena-Srivastava test, GP: Generalized p-value approach.
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