A 38-years-old woman, who has been followed up with the diagnosis of a left upper eyelid myokymia for more than 10 years was admitted to our outpatient clinic, due to a routine check-up of her myopia. She was diagnosed to have a left frontoorbital encephalocele, determined by an orbital MR scan performed because of atypical eyelid movement for a myokymia but in form of an orbital pulsation instead.

CASE REPORT

Informed consent form was obtained from the patient prior to her involvement in this case presentation. A 38-years-old woman was admitted to our outpatient clinic, for a yearly check-up of her myopia. It was learnt that she had been followed up with the diagnosis of a left upper eyelid myokymia for more than 10 years in various ophthalmological centers.

Since her eyelid movement was atypical for a myokymia, but in form of an orbital pulsation instead she has undergone an orbital magnetic resonance imaging (MRI) scan. She was coincidentally diagnosed to have a left frontoorbital encephalocele detected by MRI. She had no trauma or chronic illness in history, so the condition was diagnosed as a 'congenital encephalocele' which is lately detected since due to the absence of obvious proptosis or an active clinical complaint.

Keywords: Eyelid myokymia; encephalocele; orbital pulsation; proptosis

ABSTRACT

A 38-years-old woman presented to our hospital for routine eye examination. She had no complaints but it was learnt that she has been followed up with the diagnosis of a left upper eyelid myokymia for more than 10 years in various ophthalmological centers. Since her eyelid movement was atypical for a myokymia, but in form of an orbital pulsation instead she has undergone an orbital magnetic resonance imaging (MRI) scan. She was coincidentally diagnosed to have a left frontoorbital encephalocele detected by MRI. She had no trauma or chronic illness in history, so the condition was diagnosed as a 'congenital encephalocele' which is lately detected since due to the absence of obvious proptosis or an active clinical complaint.

Keywords: Eyelid myokymia; encephalocele; orbital pulsation; proptosis

ÖZET

Anahtar Kelimeler: Göz kapağı miyokimisi; ensefalosel; orbital pulsasyon; proptoz

Correspondence: Pınar ALTIAYLİK ÖZER

Ufuk University Faculty of Medicine, Department of Ophthalmology, Ankara, TURKEY

E-mail: drpinar@yahoo.com

Peer review under responsibility of Türkiye Klinikleri Journal of Ophthalmology.

Received: 24 Jan 2020 Received in revised form: 25 Feb 2020 Accepted: 27 Mar 2020 Available online: 16 Apr 2020

2146-9008 / Copyright © 2020 by Türkiye Klinikleri. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
pupils were isocoric, with normal light reflexes (direct and indirect), without any relative afferent pupillary defects. She had no ptosis, proptosis or enophthalmus. But her upper eyelid on left side was observed to move up and down all through the examination involuntarily. She was requested to perform a valsala and the movement was observed to increase in amplitude. This movement was thought to be atypical for a myokymia, but in form of an orbital pulsation instead. It was detected that no MRI or CT (computerised tomography) scan was applied to the patient previously. She was ordered to undergo an orbital MR scan which revealed a 5x5 mm defect in the left superior orbital roof including dura, leptomeninges, and a small portion of frontal lobe parenchyma herniating through the bony defect (Figure 1). The orbitofrontal encephalocele was in close contact with the left globe but without and depression or deformation of the orbital structures. A CT scan was also performed to detect the bony structural defect demonstrating the origin of the meningoencephalocele (Figure 2). She was consulted to otorhinolaryngology and neurology departments and it was reported that this bony defect in orbital floor was not associated to any other maxillofacial pathology or neurological sequelae. The patient was referred to department of neurosurgery for close follow up and surgical management.

DISCUSSION

Eyelid myokymia is a benign condition that is due to the contractions of the orbicularis oculi muscle and is mostly self-limiting.1 It is generally observed unilaterally and intermittently takes not more than several hours. It is transient and disappears in a few days, although a case exists in the literature that lasts for several months.2 It is known to rarely progress to facial myokymia, which might be the presenting sign of a neurological disorder like Multiple Sclerosis. Eyelid myokymia is composed of involuntary, fine, rhythmic contractions of the upper or lower eyelid. Unlike eyelid myokymia, orbital pulsation constitutes a continuous movement and is a phenomenon due to pulsatile lesions of the orbita like orbital varices or encephaloceles.3 Meningoencephaloceles are rare congenital malformations of the skull base, resulting in herniations of the meninges and cerebral tissue through the defects.3 It is reported to occur in 10,000 to 15,000 live births, and can be observed associated to other central nervous system abnormalities like Dandy-Walker anomaly, holoprosencephaly, and neurofibromatosis.4 A congenital defect in the orbital roof generally lead to pulsatile exophthalmus and are diagnosed at young ages.5,7 Our patient was checked for any underlying systemic abnormalities but there were no disorders detected.

The preferred radiological imaging methods in orbital meningoencephaloceles are computed tomography to detect the defects in orbital bony structures and magnetic resonance imaging to diagnose the
composition and relation of herniated tissue to adjacent orbital structures. It’s crucial to exclude pathologies like tumors and vascular abnormalities in these cases. In the presented case, MRI scans revealed clearly the herniation of cerebral tissue without any adjacent abnormalities of central nervous system.

Management of intraorbital meningoencephaloceles depends on the size and structure of the orbital bony defect. The surgical approach includes exposition of the bony defect, removal of the herniated tissues, followed by the reconstruction of the cranium. Either a bone graft from the exposed skull or a synthetic material (e.g. titanium mesh) may be used for the reconstruction.4,8,9

The potential risk of optic nerve damage by compression of the orbital encephalocele can be minimized by early diagnosis and treatment of the condition. It is reported in the literature that the repair procedure is with minimal neurological complications, since the brain tissue within the encephalocele is nonfunctional but sometimes seizures may be observed if the adjacent brain tissue is scarred after the procedure.10

The presented case is unique, since it’s a very late diagnosed case due to the mild pulsations that can easily be overlooked in an unattentive examination. Considering orbital pulsatile lesions in the differential diagnosis of involuntary eyelid movements is vital. A head trauma in history or an obvious proptosis in external examination are not obligations for arising a strong clinical suspicion of congenital orbital encephalocele in suspected cases.

Source of Finance

During this study, no financial or spiritual support was received neither from any pharmaceutical company that has a direct connection with the research subject, nor from a company that provides or produces medical instruments and materials which may negatively affect the evaluation process of this study.

Conflict of Interest

No conflicts of interest between the authors and/or family members of the scientific and medical committee members or members of the potential conflicts of interest, counseling, expertise, working conditions, share holding and similar situations in any firm.

Authorship Contributions

Idea/Concept: Pınar Altaylık Özer; Design: Gökçe Kaan Ataş; Control/Supervision: Ahmet Şengün, Refah Sayın; Data Collection and/or Processing: Serdar Özer; Pınar Altaylık Özer; Analysis and/or Interpretation: Serdar Özer; Literature Review: Pınar Altaylık Özer; Writing the Article: Pınar Altaylık Özer; Critical Review: Ahmet Şengün, Refah Sayın; References and Fundings: Serdar Özer, Pınar Altaylık Özer; Materials: Serdar Özer, Pınar Altaylık Özer; Gökçe Kaan Ataş.

REFERENCES