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ABSTRACT Objective: The aim of this study is to introduce and 
analyze the Topp-Leone Kumaraswamy Fréchet (TLKFr) distribu-

tion a new probability distribution model. This model extends the 

classical Fréchet distribution by introducing three additional posi-
tive shape parameters to enhance flexibility and robustness. Mate-

rial and Methods: The novel distribution is based on the Topp-

Leone Kumaraswamy generalized distribution family, incorporating 
three shape parameters. This foundation allows for the derivation of 

both the cumulative distribution function and probability density 

function for the new distribution. The study also extensively ex-
plores the mathematical properties of this distribution, including the 

survival, hazard, and quantile functions. Parameter estimation is 

conducted using the maximum likelihood estimation (MLE) tech-
nique. Results: The study introduces the TLKFr distribution, pro-

viding mathematical expressions for key statistical measures. Pa-
rameters were estimated using MLE technique. Plots illustrate the 

distribution's characteristics, showing positive skewness and reli-

able survival analysis predictions. Simulation analysis indicates 
decreasing bias and root mean square error (RMSE) with larger 

sample sizes, emphasizing reliability. Application to two real-life 

datasets, demonstrates the TLKFr distribution consistently outper-
forming rival models, supported by goodness-of-fit statistics. Con-

clusion: The study introduces and analyzes the TLKFr distribution, 

enhancing the traditional Fréchet distribution with three additional 
shape parameters. Mathematical characteristics are explored, em-

ploying MLE for parameter estimation. A simulation study under-

scores the distribution's strong reliability, evident in decreasing bias 
and RMSE with increasing sample size. When tested with real data-

sets, the TLKFr distribution outperforms alternative models, high-

lighting its significance in representing real-world phenomena and 
validating its applicability to the two datasets examined in this 

study. 
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ÖZET Amaç: Bu çalışmanın amacı, yeni bir olasılık dağılım mo-
deli olan Topp-Leone Kumaraswamy Fréchet (TLKFr) dağılımını 

tanıtmak ve analiz etmektir. Bu model, esnekliği ve sağlamlığı ar-

tırmak için üç ek pozitif şekil parametresi uygulayarak klasik 
Fréchet dağılımını genişletir. Gereç ve Yöntemler: Yeni dağılım, 

üç şekil parametresini içeren Topp-Leone Kumaraswamy genelleş-

tirilmiş dağılım ailesine dayanmaktadır. Bu temel yeni dağılım için 
hem kümülatif dağılım fonksiyonunun hem de olasılık yoğunluk 

fonksiyonunun türetilmesine olanak sağlar. Çalışma aynı zamanda 

sağkalım, tehlike ve niceliksel işlevler de dâhil olmak üzere bu da-
ğılımın matematiksel özelliklerini de kapsamlı bir şekilde araştır-

maktadır. Parametre tahmini, maksimum olabilirlik tahmini [the 

maximum likelihood estimation (MLE)] tekniği kullanılarak ger-
çekleştirilir. Bulgular: Çalışma, temel istatistiksel ölçümler için 

matematiksel ifadeler sağlayan TLKFr dağılımını tanıtmaktadır. 
Parametreler, MLE tekniğinin kullanılmasıyla tahmin edilmiştir. 

Grafikler, pozitif çarpıklığı ve güvenilir sağkalım analizi tahminle-

rini gösteren dağılımın özelliklerini göstermektedir. Simülasyon 
analizi, daha büyük örneklem boyutlarıyla azalan sapma ve kök 

ortalama kare hatasına [root mean square error (RMSE)] işaret ede-

rek güvenilirliği vurgulamaktadır. Gerçek hayattan iki veri setine 
yapılan uygulama, TLKFr dağılımının uyum iyiliği istatistikleriyle 

desteklenen rakip modellerden sürekli olarak daha iyi performans 

gösterdiğini ortaya koymaktadır. Sonuç: Bu çalışma, geleneksel 
Fréchet dağılımını üç ek şekil parametresi ile geliştiren TLKFr da-

ğılımını tanıtmakta ve analiz etmektedir. Parametre tahmini için 

MLE kullanılarak matematiksel özellikler araştırılmıştır. Bir simü-
lasyon çalışması, artan örneklem büyüklüğü ile azalan sapma ve 

RMSE ile dağılımın güçlü güvenilirliğinin altını çizmektedir. 

TLKFr dağılımı, gerçek veri kümeleriyle test edildiğinde alternatif 
modellerden daha iyi performans göstererek gerçek dünya olayları-

nı temsil etmedeki önemini vurgulamakta ve bu çalışmada incele-

nen iki veri kümesine uygulanabilirliğini doğrulamaktadır. 
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In the realm of distribution theory, researchers have increasingly shifted their focus towards a compre-

hensive exploration of the tail behavior of various distributions. This evolving research direction is driven by 

the inherent significance and wide-ranging applicability of such distribution models in portraying real-world 

phenomena spanning diverse fields and domains. 

The pivotal Fréchet (Fr) distribution, originally introduced by, holds a central position within the realm 

of extreme value theory.
1
 As underscored by and further elaborated by, the Fr distribution serves as a versa-

tile tool with applications spanning accelerated life testing, the analysis of rainfall patterns, seismic events, 

flood modeling, horse racing predictions, wind speed assessments, and the study of sea wave dynamics.
2,3

 

Over time, the Fr distribution has undergone various generalizations and extensions within the statistical 

literature. These extensions have been put forth by a multitude of authors, including but not limited to, and 

numerous others.
4-19

 

The rich tapestry of these diverse extensions and generalizations has significantly broadened the Fr dis-

tribution's scope of application, extending its relevance across a wide spectrum of disciplines and problem 

domains. This collective effort has played a crucial role in advancing both the theoretical and practical as-

pects of statistical science. Researchers remain committed to further exploration and refinement of these 

models, aiming to more effectively capture the intricate tail behavior of distributions and their enduring rele-

vance in modeling real-world phenomena. 

In recent years, the Fr distribution's widespread adoption has been fueled by advancements in computa-

tional techniques and data availability. With the advent of the proliferation of computational tools, research-

ers can now analyze real-world datasets with unprecedented depth and accuracy. This has opened up new 

avenues for the application of the Fr distribution in fields such as finance, environmental science, insurance, 

and reliability engineering. 

Furthermore, the development of hybrid models that combine the Fr distribution with other probability 

distributions has allowed researchers to capture complex phenomena more accurately. These hybrid models, 

often referred to as mixture distributions or copula-based models, have gained popularity for their ability to 

handle dependencies and non-standard behavior in data. 

The Fr distribution and its myriad extensions continue to be at the forefront of distribution theory, shap-

ing how we understand extreme events and their impact across various domains. As research in this area 

evolves, it promises to provide valuable insights and practical tools for addressing the challenges posed by 

extreme events in an increasingly interconnected and data-driven world. 

The Fr distribution is characterized by its cumulative distribution function (CDF) and probability den-

sity function (PDF) defined as follows: 

( )

b

xG x e

 
 
                  (1) 

and 

1( )

b

b b xg x bx e




 

 
                   (2) 

where 0  is the scale parameter and 0b  is the shape parameter. 

The aim of this paper is to derive and study a new model called Topp-Leone Kumaraswamy Fr (TLKFr) 

distribution. The new model introduces three additional parameters to (1) in order to enhance flexibility and 

improve robustness. Utilizing the TLK-G (TLK-G) family introduced by, the new five-parameter TLKFr 

model is constructed. The TLK-G family of distributions, proposed by, is a powerful framework that extends 

the flexibility of the traditional Kumaraswamy distribution through the Topp-Leone transformation.
20

 This 
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transformation enriches the model's ability to capture various data characteristics, making it a valuable tool 

for statisticians and researchers. The TLK-G family of distributions can be defined as follows: 

 
2

( ) 1 1 ( )F x G x

    
   

              (3) 

where 0  , 0   and 0  are the three additional shape parameters whose role is to govern the skew-

ness and tail weight. The PDF corresponding to (3) is given as 

     
1

2 1 2
1

( ) 2 ( ) ( ) 1 ( ) 1 1 ( )f x g x G x G x G x

   





        
     

         (4) 

    MATERIAL AND METHODS 

TLKFR DISTRIBUTION 

By substituting the expression from (1) into (3), the CDF of the TLKFr distribution is given by 

2

( ) 1 1

b

xF x e


 

 
 

                

             (5) 

where 0  is the scale parameter, 0  , 0  , 0b  and 0  are the shape parameters respectively. 

The PDF of the TLKFr distribution is obtained by substituting the expressions from (1) and (2) into (4), and 

it is given as 

 

1
2 1 2

1( ) 2 1 1 1

b b b

b b x x xf x bx e e e

   
  






     
       

       

                                           

        (6) 

IMPORTANT REPRESENTATON OF THE PDF 

The PDF of the TLKFr distribution in (6) can be expanded as follows         

 

1
2 2

1

1
1 1 1 1

  
 





       
   



                                       



b b
i

ix x

i

e e
i

 

 

 
 

2 1 1

1

2 1 1
1 1

 
 



 

       
   



                         



b b
i

j

jx x

j

i
e e

j
 

 
 

 1

1

, 0

1 2 1 1
( ) 2 1




 



      



      
     
     



b j

i jb b x

i j

i
f x bx e

i j
         (7) 
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In (7), it is evident that the TLKFr density can be expressed as an infinite linear combination of Fr den-

sity functions. Numerous mathematical characteristics of the TLKFr distribution can be readily deduced 

from the analogous properties of the Fr distribution. 

IMPORTANT REPRESENTATON OF THE CDF 

The CDF of the TLKFr distribution in (5) can be expanded as follows 

 

2

( ) 1 1


 

 
 

                

b

h

h xF x e  

 

2 2

0

1 1 1 1

  
 

       
   



                                       



b b

h
k

kx x

k

h
e e

k
 

 

2

0

2
1 1

 
 

       
   



                       



b b
k

p

px x

p

k
e e

p
 

 
, 0

2
( ) 1




       



   
     
     



b p

k p x

k p

h k
F x e

k p
                         (8) 

The PDF and CDF plot of the TLKFr distribution are shown in Figure 1 below. 

 

 

FIGURE 1: Graphs illustrating the distribution's shape through probability density function and cumulative distribution function plots for the Topp-Leone Ku-

maraswamy Fréchet distribution. 
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The PDF plot of the TLKFr distribution indicates that the distribution is positively skewed. This 

skewness is evident from the shape of the PDF curve, which is skewed to the right. The CDF of the proposed 

distribution indicates a satisfactory level of CDF not exceeding 1 on the y-axis. In other words, the CDF 

confirms that the TLKFr distribution covers the entire range of possible values and is properly normalized, 

with the total probability equaling 1. 

PROPERTIES OF TLKFR DISTRIBUTION” 

In this section, various statistical properties of the TLKFr distribution are deduced. These include the sur-

vival function (SF), hazard function (HF), quantile function (QF), moments, moment generating functions 

(MGF), and order statistics. 

SF 

The SF represents the probability that a unit, component, or individual will not fail at a given time.
21

 It is 

typically expressed as: 

1 ( ) sf F x                              (9) 

Therefore, the SF of the TLKFr distribution is derived by substituting (5) into (9), resulting in the fol-

lowing equation:  

2 1

1 1 1






 
 
 

                 

b

xsf e            (10) 

HF 

The HF is the instantaneous rate at which a system fails, and it is defined as the ratio of the PDF to the SF. 

The typical HF as defined by is given as:
22

 

( )


f x
hf

sf
              (11) 

By substituting (6) and (10) into (11), the HF of the TLKFr distribution is given as 

1
2 1 2 1

1

2 1

2 1 1 1

1 1 1

   
  







 

     
              



 
 
 

                                          
                

b b b

b

b b x x x

x

x e e e

hf

e

      (12) 

The SF and HF plots of the TLKFr distribution are shown in Figure 2 below. 
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FIGURE 2: Graphs illustrating the shapes of the Topp-Leone Kumaraswamy Fréchet distribution's SF and HF. 

SF: Survival function; HF: Hazard function. 

 

 

The SF of the TLKFr distribution suggests that it is well-suited for modeling survival data sets. The 

graph of the survival function starts with an initial constant value of 1, indicating the probability that the 

event has not occurred at the beginning. As time progresses, the survival function decreases, reflecting a 

reduction in the probability of survival. The hazard function plot provides additional insights into the 

distribution. The hazard function is monotonically increasing and decreasing based on the values assigned to 

its parameters. The hazard plot exhibits a unimodal failure rate. 

QF 

The QF according to can be obtained using the mathematical expression:
23

 

1( ) ( )Q u F u  

The QF for the TLKFr distribution is derived as follows: 

Set ( )F x u ,  

Where 

2

( ) 1 1

b

xF x e





 

 
 

                 

, then 

2

( ) 1 1

b

xF x e u





 

 
 

                  
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2

1

1 1

b

xu e








 
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 

  
      
   

 

2
1

1

1 1

b

xu e







 
 
 

 
         

 

 

2

1
1

1
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b

xu e






 
 
 

 
 

    
   

 

2

1
1

1

log 1 1

b

u
x





          

     

 

2

1
1

1

log 1 1

b

u
x





           

     

 

 
2

1
1

1
1

log 1 1

b

x u








 
 

  
          

 

 

Therefore, the QF for the TLKFr distribution is given as 

  
 1

1
1

1 2

( ) log 1 1







 
    

 

b

Q u u           (13) 

MEDIAN 

When u is set to 0.5 in (13), the TLKFr distribution's median is determined as follows: 

  
 1

1
1

1 2

( ) log 1 1 0.5







 
    

 

b

Q u           (14) 

MOMENT 

Moment is used to study many important properties of distribution such as dispersion, tendency, skewness 

and kurtosis.
24

 The r
th
 ordinary moment of the TLKFr distribution can be derived from (7) as follows: 

 1

0




 
r

r x f x dx  

By using the useful expansion of the PDF in (7), 

       
 

 1

1

, 0 0

1 2 1 1
2 1




 



      



      
     
     

 

b j

i jb b r x

i j

i
bx x e dx

i j
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Consider the integral part 

 1

0





 

 
 

 
 
 
 



b j

r xx e dx  

Let,  
 

1

1
1

 


  
      

   

b b bj
y j x

x y
 

 

1

1 






b

b

dyx
dx

b j
 

 

 

1

0

1

1

 

 

 


 
 

 


r
b b b

y

b

j dyx
e

y b j
 

     
   

 

1
1

, 0 0

1 12 1 1
2 1

1

  


 

 
  



      
     

    
 

r
b b b

i jb b y

b
i j

ji dyx
bx e

i y b jj
 

        
 1

, 0 0

1 2 1 1
2 1 1

 
 


  



     
     

  
 

r rr i jr yb bb

i j

i
j y e dy

i j
 

Where 

0

1


   

   
 


r

yb
r

y e dy
b

 

   
 11

, 0

1 2 1 1
2 1 1 1

 
  


 



       
        

   


r r i jrb b
r

i j

i r
j

i bj
      (15) 

MEAN 

By substituting r with 1 in (15), the result is the mean value, which is expressed as follows: 

   
 1 1 11 1

1

, 0

1 2 1 1 1
2 1 1 1

 
  


 



       
        

   


i j
b b

i j

i
j

i bj
      (16) 

“MGF” 

The mathematical expression of the MGF is given as 

 
0

( )



 
tx

xM t e f x dx  

Consider the expansion 
 

0 !






m

tx

m

tx
e

m
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The MGF of TLKFr distribution is given as 

 

 
 

 
1

, , 0

1 2 1 1

1 2 1 1

!

rri j r bb

i j m

x

i
ri j j
b

M t
m

 

 


 



    
    
       
    

  
  





       (17) 

ORDER STATISTICS 

Let 1 2, ,... nX X X  be n “independent random variable from the TLKFr distribution” and let 

(1) (2) ( ), ,... nX X X  be their corresponding order statistic. Let : ( )r nF x and : ( )r nf x , 1,2,3,...,r n  denote 

the CDF and PDF of the r
th

 order statistics :r nX  respectively. “The PDF of the r
th

 order statistics of :r nX ” is 

given as 

1

:

0

1
( ) ( 1) ( ) ( )

( , 1)

n r
i r i

r n

i

f x F x f x
B r n r


 



 
 

          (18) 

Substituting “the CDF and PDF of TLKFr distribution” into (18), the “r
th

 order statistics for the TLKFr 

distribution is obtained as”  

1

1

:

0 0 0

2 ( 1) ( ) (2 ( 1))
( )

( , 1) ! ! ( ) (2 ( 1) )

b k
b i j kn r

b x

r n

i j k

b r i j
f x x e

B r n r j k r i j j k




  

 


         

  

     
 

         
 

                  

(19) 

MAXIMUM ORDER STATISTICS 

To derive the PDF for the maximum order statistics of the TLKFr distribution, you can set r equal to n in 

(19) as follows: 

1

1

:

0 0

( 1) ( ) (2 ( 1))
( ) 2

! ! ( ) (2 ( 1) )

b k
j k

b b x

n n

j k

n i j
f x n b x e

j k n i j j k




 


 


       

 

     
 

       
 

      (20) 

MINIMUM ORDER STATISTICS 

To derive the PDF for the minimum order statistics of the TLKFr distribution, you can set r equal to 1 in (19) 

as follows: 

1

1
1

1:

0 0 0

( 1) (1 ) (2 ( 1))
( ) 2

! ! (1 ) (2 ( 1) )

b k
i j kn

b b x

n

i j k

i j
f x n b x e

j k i j j k




 


 


         

  

     
 

       
 

                         (21) 



 

Sule Omeiza BASHIRU Turkiye Klinikleri J Biostat. 2024;16(1):1-15 

 

 10 

 

ESTIMATION METHOD 

Within this section, the unknown parameters of the TLKFr distribution using the maximum likelihood esti-

mation (MLE) method are estimated. Consider a set of random variables, denoted as X1, X2, ..., Xn, each fol-

lowing the TLKFr distribution with a sample size of n. Consequently, the sample log-likelihood function for 

the TLKFr distribution is derived as follows: 

 

               

   

1

2

1 1 1

log 2 log log log log log 1 log

log 2 1 log 1 1 log 1 1

b bb

i i

n

i

i

n n n
x xx

i i i

logL n n n n nb n b b x

e e e


 

 

   

  



          
     

  

       

                                               



  
    (22) 

 

2 2

2
1 1

1 log 1

2 log 1 1

1 1

b b

i i

b

i

b

i

x x

n n
x

i i

x

e e

L n
e

e

 
 








 

   
    
   

 
 
 

   
 
 

      
                                               

   

                    (23) 

   

2 1

1 1

1 loglog

log 2 1 2 1

1

b b b
b b

i i i
i i

b

i

b

i

x x x
x x

n n
x

i i

x

e e ee e

L n
e

e


 


  

 






  
 



     
                     
   

 
 
 

  
 
 

                                                 
   
   

 
 

  2
1

1 1

b

i

n

i

x
e




  
 
 

  
     
   

                   (24) 

2

1

log 1 1

b

i

n
x

i

L n
e




 

 
 
 



                    

                        (25) 
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 

 

1
1

1

1 1

2 1

1
1

2 1

1

2 1

1

b b

b

i i

i

b
b

i
i

b b

i i

b
b

x x
x

n n i i
i i

i i
x

x

x x

e e b
e b x x

x xL nb

e e

e e


 











 


 

 
 

 




   

     
     
 

 
      
 



   
    
   

 
     

           
  

 
 
 

   
      
     

 

1
1

2
1

1

1 1

b

i

b

i

b

x

i in

i

x

e b
x x

e












 

 
 

  
 
 


 
 

  


  
     
   



                  (26) 

     

 

1

1 1 1

log
log

log log 2 1

1

2 1

1

b b

b

i i

i

b
b

i
i

b

i

b
b

x x
x

n n n i i
i i

i

i i i
x

x

x

e e
e x x

x xL n
n x

b b

e e

e


 











 
  

  






   

     
     
 

 
       
 

 
 
 

 
           

                   
  

 
 
 

  
  

 
  

  

2 1

2
1

log

1 1

b b

i i

b

i

b

x x

i in

i

x

e e
x x

e




 






 




   
    
   

  
 
 

  
     
             

  
     
   



    (27) 

 

By equating expressions (23) through (27) to zero and solving them concurrently, the MLE are ob-

tained. It's worth noting that these equations pose a non-linear challenge and do not lend themselves to 

straightforward analytical solutions. To address this, statistical software can be effectively employed to nu-

merically solve these equations using iterative methods, such as the Newton-Raphson algorithm in R. 

APPLICATION 

Simulation Study 

To evaluate the performance of the newly proposed TLKFr distribution, a simulation study is carried out. 

The simulation generates synthetic data by utilizing the QF defined in (13) for various sample sizes, includ-

ing n=20, 50, 100, 200, 500, and 1000. Table 1 presents the estimation results, bias, and root mean square 

error (RMSE) obtained from the new distribution for the following combinations of parameters: (α, γ, λ, b , 

θ)=1.4, 0.4, 1, 0.9, 1.1). The results are replicated 10,000 times and the average result are presented in Table 

1 below. 
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TABLE 1: Simulation results for varying sample sizes and parameters of the Topp-Leone Kumaraswamy Fréchet distribution. 
 

N Properties α=1.4 γ=0.4 λ=1 b=0.9 θ=1.1 

20 

Est 

Bias 

RMSE 

1.4474 

0.0474 

0.2530 

0.4277 

0.0277 

0.2044 

1.0896 

0.0896 

0.3065 

1.0358 

0.1358 

0.3704 

1.0871 

-0.0128 

0.2991 

50 

Est 

Bias 

RMSE 

1.4396 

0.0396 

0.2088 

0.4166 

0.0166 

0.1469 

1.0514 

0.0514 

0.2490 

0.9576 

0.0576 

0.2368 

1.0860 

-0.0139 

0.2541 

100 

Est 

Bias 

RMSE 

1.4283 

0.0383 

0.1747 

0.4055 

0.0055 

0.1042 

1.0320 

0.0320 

0.1836 

0.9313 

0.0313 

0.1612 

1.0788 

-0.0212 

0.2044 

200 

Est 

Bias 

RMSE 

1.4172 

0.0376 

0.1517 

0.4043 

0.0047 

0.0790 

1.0173 

0.0274 

0.1321 

0.9100 

0.0100 

0.1146 

1.0756 

-0.0214 

0.1525 

500 

Est 

Bias 

RMSE 

1.4068 

0.0368 

0.1184 

0.4035 

0.0035 

0.0532 

1.0025 

0.0025 

0.0925 

0.9038 

0.0038 

0.0784 

1.0683 

-0.0117 

0.1062 

1000 

Est 

Bias 

RMSE 

1.4013 

0.0318 

0.0980 

0.4027 

0.0027 

0.0390 

1.0009 

0.0006 

0.0680 

0.8977 

-0.0023 

0.0021 

1.0634 

-0.0616 

0.0819 
 

RMSE: Root mean square error. 
 

The simulation results in Table 1 indicate that as the sample size (n) increases, both bias and RMSE de-

crease, demonstrating improved accuracy in the estimation process. This suggests that the TLKFr model is a 

consistent distribution. 

REAL LIFE APPLICATIONS 

In this section, the versatility of the TLKFr distribution is illustrated through two practical applications to 

real-world datasets. The goodness-of-fit statistics of the model are evaluated, and comparisons are made with 

other competing models, specifically the KFr model introduced by, the exponentiated Fréchet model pro-

posed by, as well as the Fr and inverse Rayleigh models by and.
1,5,9,25

 

Dataset 1: 

The first dataset, sourced from a prior study by, represents the daily count of confirmed coronavirus disease-

2019 (COVID-19) cases in Pakistan from March 24 to April 28, 2020. The values denote the number of 

cases reported each day during this period (unit: count).
26

 

[Dataset 1: Daily Count of Confirmed COVID-19 Cases in Pakistan] 

108, 102, 133, 170, 121, 99, 236, 178, 250, 161, 258, 172, 407, 577, 210, 243, 281, 186, 254, 336, 342, 

269, 520, 414, 463, 514, 427, 796, 555, 742, 642, 785, 783, 605, 751, 806. 

Dataset 2: 

The second dataset, employed in previous studies by and, pertains to the fatigue fracture duration of Kevlar 

373/epoxy specimens. These durations were observed under sustained pressure at the 90% stress threshold 

until the point of failure (unit: hours).
27,28

 

[Dataset 2: Fatigue Fracture Duration of Kevlar 373/Epoxy Specimens] 

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 

0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 

1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 

1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 

2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 

3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960. 
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The goodness-of-fit tables, presented as Table 2 and Table 3 below, provide a comparison of the TLKFr 

distribution with other distributions for the first and second data sets. Similarly, Figure 1 and Figure 2 below 

offer visual comparisons. 

 

TABLE 2: Goodness-of-fit metrics for the first dataset. 
 

Models ̂  b̂  ̂  ̂  ̂  ll  AIC BIC 

TLKFr 6.3355 0.5718 3.7898 12.1010 2.8980 -243.6300 497.2689 505.1865 

KFr 0.0193 0.1716 0.2201 0.0237 - -351.6338 711.2676 717.6017 

EFr 59.5055 - 14.1287 0.0404 - -261.1443 528.2886 533.0391 

Fr 228.9160 1.6367 - - - -247.8928 499.7856 505.5712 

IRa - 91.4086 - - - -278.5113 559.0226 560.6062 
 

TLKFr: Topp-Leone Kumaraswamy Fréchet; EFr: Exponentiated Fréchet; IRa: Inverse Rayleigh; AIC: Akaike Information Criterion; BIC: Bayesian Information 
Criterion. 
 
 

TABLE 3: Goodness-of-fit metrics for the second dataset. 
 

Models ̂  b̂  ̂  ̂  ̂  ll  AIC BIC 

TLKFr 1.9789 0.2142 7.2732 1.6798 6.7791 -136.9194 283.8389 291.1618 

KFr 0.2384 2.6052 0.4666 3.0083 - -201.1086 410.2172 415.0472 

EFr 1.1463 - 0.7180 1.4409 - -148.6271 303.2465 310.2465 

Fr 0.8209 0.7588 - - - -153.5392 311.0784 315.7399 

IRa - 0.1988 - - - -345.9147 693.8293 696.1601 
 

TLKFr: Topp-Leone Kumaraswamy Fréchet; EFr: Exponentiated Fréchet; IRa: Inverse Rayleigh; AIC: Akaike Information Criterion; BIC: Bayesian Information 
Criterion. 

 

 

 
 

 

 

FIGURE 3: Histograms and density plots depicting “Data Set 1 and Data Set 2”. 

 

It is observed that the TLKFr model consistently yields the lowest goodness-of-fit scores, as indicated 

by the negative log-likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion 

(BIC) metrics, across the two datasets, as shown in Table 2 and Table 3. This suggests that the TLKFr distri-

bution performs better than the other competing distributions in terms of fitting the data. Furthermore, the 
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histogram plots displayed in Figure 3 provide additional support for this conclusion, indicating that the 

TLKFr distribution exhibits greater flexibility compared to its competitors. 

    RESULTS 

The TLKFr distribution is introduced in this study, accompanied by the derivation of its cumulative distribu-

tion function (CDF) and probability density function (PDF) in Equations 5 and 6. Various statistical proper-

ties of the TLKFr distribution, such as the survival function, hazard function, quantile function, median, 

moments, mean, and linear representation, are established. Parameters for the TLKFr distribution are esti-

mated through the maximum likelihood estimation method. Figure 1 presents the PDF and CDF plots for the 

TLKFr distribution, demonstrating positive skewness in the PDF and a CDF that maintains a satisfactory 

level, not exceeding 1 on the y-axis. The hazard graph of the TLKFr distribution displays a monotonically 

increasing and decreasing hazard function based on assigned parameter values. Furthermore, the survival 

function graph starts with an initial constant value of 1, representing the probability that the event has not 

occurred, and gradually decreases over time. A simulation analysis is conducted to assess the performance of 

the TLKFr distribution. The analysis involves simulating random variables with different parameter values 

and sample sizes (20, 50, 100, 200, 500, and 1000) using the expression in (13). Table 1 presents the maxi-

mum likelihood estimates along with their respective Bias and Root Mean Squared Error (RMSE). Notably, 

the maximum likelihood estimates for the TLKFr distribution consistently exhibit decreasing bias and 

RMSE with increasing sample sizes, indicating their reliability. 

    DISCUSSION 

The results of the study highlight the effectiveness of the TLKFr distribution in various aspects. The distri-

bution's positive skewness, demonstrated in the PDF plot, suggests a valuable characteristic for modelling 

datasets that are positively skewed. The satisfactory behavior of the CDF further supports the applicability of 

the TLKFr distribution. The hazard function's pattern, showing both increasing and decreasing phases, adds 

nuance to the understanding of how events unfold over time under the TLKFr distribution. Similarly, the 

survival function's initial constant value and subsequent decrease provide insights into the probability of 

event occurrence over time. The simulation analysis reinforces the reliability of the maximum likelihood es-

timates for the TLKFr distribution, with decreasing bias and RMSE as sample sizes increase. This indicates 

the robustness of the distribution's parameter estimation, enhancing its practical utility. Application of the 

TLKFr distribution to real-life datasets, specifically those related to COVID-19 cases in Pakistan and fatigue 

fracture duration of Kevlar 373/epoxy specimens, showcases the distribution's superior performance com-

pared to rival models. The consistently lower values of information criteria, such as the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), and negative log-likelihood function (NLL), further 

support the TLKFr distribution's efficacy. 

    CONCLUSION 

The introduction of the TLKFr distribution in this study represents a noteworthy contribution to the field of 

probability distribution modeling. This novel distribution extends the classical Fr distribution by introducing 

three positive shape parameters, a transformation made possible through the innovative application of the 

Topp-Leone-G family of distributions, as originally proposed by.
20

 This augmentation not only breathes new 

life into the foundational Fr distribution but also augments its flexibility, rendering it even more adaptable to 

a wide range of statistical applications. Throughout the investigation, fundamental properties of the novel 

distribution were derived, spanning ordinary moments, generating functions, SFs, HFs, QFs, and medians. 

These analytical examinations have revealed that the TLKFr distribution possesses tractable mathematical 

properties, which greatly enhance its utility in real-world scenarios. A simulation study was carried out to 
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assess the reliability of the distribution. The results of the simulation study further underscore the distribu-

tion's high reliability, as evidenced by the reduction in bias and RMSE with increasing sample size Further-

more, this research has demonstrated the practical viability of this model through parameter estimation using 

the MLE technique. This methodological approach facilitates the accurate estimation of distribution parame-

ters, ensuring that the model aligns closely with empirical data. To underscore the practical relevance of the 

TLKFr distribution, it was applied to two real-world datasets, a crucial step in gauging its performance. The 

outcomes of these empirical applications have affirmed the superiority of the new model when compared to 

existing alternatives. Importantly, the TLKFr distribution demonstrated a superior fit to the two real-world 

datasets considered in this study, validating its effectiveness and appropriateness for representing complex 

phenomena. This study highlights that the TLKFr distribution stands as a robust and valuable addition to the 

family of probability distribution models. Its flexibility, mathematical tractability, and superior performance 

make it a promising tool for researchers and practitioners seeking to model and analyze real-world phenom-

ena with precision and effectiveness. The distribution's validity for the two datasets considered in this study 

further emphasizes its potential and value. The journey of exploring and harnessing the potential of this dis-

tribution is ongoing, promising exciting developments and applications in the field of statistical science. 
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