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ABSTRACT Objective: For the diagnosis of coronavirus disease-

2019 (COVID-19) using computed tomography (CT) images, disease 
classification from images must be performed with high accuracy. 

This study aims to evaluate the classification success on CT images 

using fine-tuned convolutional neural network (CNN) architectures 
applied to the new dataset with transfer learning method, which pro-

vides accurate and fast diagnosis of COVID-19, by comparing their 

classification success with various performance measures. Material 

and Methods: The classification of the disease was performed with 

CNN architectures Xception, InceptionResNetV2, InceptionV3, 

ResNet50, VGG16, VGG19, MobileNetV2, DenseNet121, 
DenseNet169 and DenseNet201. The performance of the architec-

tures was utilized with accuracy, sensitivity, specificity, precision, F1 

score and Area Under the Curve (AUC). In total, the data included 
7,593 CT images of 466 COVID-19 patients and 6,893 CT images of 

604 nonCOVID-19 patients. Results: The architecture that had the 

highest performance was InceptionResNetV2, with an accuracy of 
98.00%, sensitivity of 98.53%, specificity of 97.53%, precision of 

97.25%, F1 score of 97.88%, and AUC of 98.03%. ResNet50 showed 

the lowest performance with accuracy of 97.14%, sensitivity of 
98.75%, specificity of 95.70%, precision of 95.32%, F1 score of 

97.01% and AUC of 97.23%. Conclusion: All architectures exam-

ined were found to work with performance measures above 95% in 
COVID-19 diagnostics. As a result, it was found that the pre-

processing, fine-tuning, and hyperparameter optimization of the archi-

tectures we used are generalizable for COVID-19 and chest CT imag-
es, and that each of the architectures works with good performance. 
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ÖZET Amaç: Bilgisayarlı tomografi (BT) görüntüleri kullanılarak 

koronavirüs hastalığı [coronavirus disease-2019 (COVID-19)] tanı-
sı için görüntülerden hastalık sınıflandırmasının yüksek doğrulukla 

yapılması gerekmektedir. Bu çalışma, COVID-19’un doğru ve hızlı 

tanısını sağlayan, transfer öğrenme yöntemi ile yeni veri setine uy-
gulanan ince ayarlı konvolüsyonel sinir ağları (KSA) mimarilerini 

kullanarak BT görüntüleri üzerinde sınıflandırma başarılarını çeşitli 

performans ölçütleri ile karşılaştırılarak değerlendirmeyi amaçla-
maktadır. Gereç ve Yöntemler: Hastalığın sınıflandırılması KSA 

mimarilerinden Xception, InceptionResNetV2, InceptionV3, 

ResNet50, VGG16, VGG19, MobileNetV2, DenseNet121, 
DenseNet169 ve DenseNet201 kullanılarak gerçekleştirildi. Mima-

rilerin performansları doğruluk, duyarlık, seçicilik, kesinlik, F1 

skoru ve Eğrinin Altındaki Alan [Area Under the Curve (AUC)] ile 
değerlendirildi. Kullanılan veri, 466 COVID-19 hastasının 7.593 

BT görüntüsünü ve 604 COVID-19 olmayan hastanın 6.893 BT 

görüntüsünü içeriyordu. Bulgular: En yüksek performansa sahip 
mimari, %98,00 doğruluk, %98,53 duyarlık, %97,53 seçicilik, 

97,25 kesinlik, 97,88 F1 puanı ve 98,03 AUC ile 

InceptionResNetV2 oldu. En düşük performansı %97,14 doğruluk, 
%98,75 duyarlık, %95,70 seçicilik, %95,32 kesinlik, %97,01 F1 

skoru ve %97,23 AUC ile ResNet50 gösterdi. Sonuç: İncelenen 

tüm mimarilerin %95’in üzerinde performans ölçüleriyle çalıştığı 
görüldü. Sonuç olarak, kullandığımız mimarilerin ön işleme, ince 

ayar ve hiperparametre optimizasyonunun COVID-19 ve göğüs BT 

görüntüleri için genelleştirilebilir olduğu ve mimarilerin her birinin 
iyi performansla çalıştığı görülmüştür.  
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The coronavirus disease-2019 (COVID-19) pandemic continues, with several variants that cause sig-

nificant damage to health and economies worldwide. The Reverse Transcription-Polymerase Chain Reaction 

(RT-PCR) test is the diagnostic system for COVID-19 with severe acute respiratory syndrome-coronavirus-2 

(SARS-CoV-2) ribonucleic acid detected in a swab or saliva samples from the nose or throat from the pa-

tient. However, the sensitivity of RT-PCR may be low and the result may vary depending on the elapsed 

time.
1
 However, this is a costly procedure requiring manual sampling and a new test kit for each new patient. 

They also have problems with performance measures. In addition, it has been observed that the RT-PCR test 

can give a high rate of false negative results in the early stages of the disease. For this reason, computed to-

mography (CT) and X-ray methods have started to be used for the diagnosis of COVID-19 in the early stages 

of the disease. Since these methods require less contact with the infected patient, they carry less risk of 

transmission.
2
  

CT and X-ray, which are routine imaging tools for the diagnosis of pneumonia, are easy to perform and 

can provide rapid diagnosis. The ground-glass appearance and tissue changes seen in the lung are seen in 

almost all COVID-19 patients and can be easily recognized by CT and X-ray images. These features are also 

observed in patients with negative RT-PCR results but clinical symptoms. Especially for the diagnosis of 

COVID-19, CT and X-ray imaging are considered among the most effective methods. CT scanning is pre-

ferred over X-ray because of its versatility and 3-dimensional pulmonary view.
3-5

 In this context, the use of 

machine learning and deep learning based rapid diagnosis systems over CT images is very important and 

necessary. Deep learning is a specialized and advanced subtype of machine learning. Machine learning 

method requires hand-crafted extraction of necessary features. Therefore, with the use of deep learning based 

methods, feature extraction has become automatic thanks to algorithms that are more practical and faster. 

With the studies carried out, early diagnosis and rapid treatment solutions of COVID-19 disease have been 

further developed with deep learning-based methods, providing clinicians with a more objective interpreta-

tion.
6
 CT scans provide detailed visualization of the lungs and help radiologists diagnose COVID-19 in hos-

pitals. However, a CT scan of a person contains hundreds of slides and diagnosing COVID-19 using such 

images can lead to delays in hospitals. Deep learning methods can help radiologists to quickly and accurately 

diagnose COVID-19 infection from these scans.
7
 

Examination of medical images is done by experts such as radiologists and physicians. As medical data 

vary considerably from patient to patient, depending on the disease, labor becomes crucial in the diagnostic 

task. Moreover, interpretation may vary depending on the fatigue, speed and experience of clinicians with 

limited and subjective capacity. With the current pandemic, the ability of the health system to cope with the 

disease has been significantly tested, making it imperative to diagnose the outbreak quickly and accurately. 

For this, a good solution is to analyse medical images using an automated computing system with neural 

networks that can reach the accuracy of the human brain or even more. Furthermore, given the time factor, 

the amount of medical image analysis that an effective neural network can perform is greater than that of the 

human brain.
8
 In this context, fine-tuned convolutional neural network (CNN) architectures that perform 

well in medical image analyses, are deep learning based, pre-trained, and can be used for new datasets with 

transfer learning methods have become a preferred method. 

CT scans require some corrections to improve image quality during deep learning-based image analysis. 

The use of CNNs is also very important at this point. In this process called pre-processing, methods such as 

bringing the image size to a single standard, normalization, converting the image into sequences, sharpening, 

horizontal and vertical rotation, zooming, adjusting brightness, etc. are applied to ensure the most efficient 

analysis of the images.
9
 Images must be fitted to the input size of CNN architectures in order to be trained 

and predictions can be made on them. For this reason, the input size of the architecture is checked and the 

images are rescaled. 

In this study, it is aimed to detect the disease by using fine-tuned CNN architectures that provide accu-

rate and fast detection of COVID-19 on chest CT images, which can be used for new datasets with pre-
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trained and transfer learning techniques, and to evaluate the classification success of the architectures by 

comparing various performance measures. 

    MATERIAL AND METHODS 

In this study, an open-source large COVID-19 CT scan slice dataset, accessed via Kaggle, was used. Disease 

classification was performed using CNN architectures Xception, InceptionResNetV2, InceptionV3, Res-

Net50, VGG16, VGG19, MobileNetV2, DenseNet121, DenseNet169, and DenseNet201. The architectures 

were run with graphics processing unit support. Different data pre-processing, augmentation methods and 

hyperparameter adjustments were applied to the dataset and set as follows: rescale=1/255.0, horizontal flip 

and vertical flip=true, zoom range, width shift range, and height shift range=0.2, rotation range=360, batch 

size=32, epoch=100, minimum learning rate=0.0001, dropout=(0.5), input size=224×224, 

class_mode=categorical, number of classes=2, type of loss function=categorical crossentropy, type of activa-

tion function=rectified linear unit (ReLU), optimization method=adam optimizer. Batch normalization added 

between layers. The ReduceLROnPlateau, ModelCheckpoint, and EarlyStopping functions were used as 

callbacks during the training process. The performance of the architectures were utilized in terms of accu-

racy, sensitivity, specificity, precision, F1 score, and Area Under the Curve (AUC). Learning curves, confu-

sion matrices and Receiver Operating Characteristic (ROC) curves of the architectures were obtained. 

Google Colaboratory (Google LLC, California) was used to perform data analyses using Python (Python 

Software Foundation, Amsterdam). Python programming language was used together with TensorFlow 

(Apache Software Foundation, United States) and Keras (Apache Software Foundation, United States) li-

braries. 

Dataset 

Seven public datasets have been merged to form a large lung CT scan dataset for COVID-19 and are avail-

able as open access via Kaggle (Google LLC, San Francisco). The metadata of COVID-19 and nonCOVID-

19 cases for these 7 separate datasets are given in Table 1.  

 

TABLE 1: Metadata of each separate dataset10 
 

Country COVID-19 slices COVID-19 cases NonCOVID-19 slices NonCOVID-19 cases 

Iran 666 68 1,053 274 

Italy 100 43 NA* NA 

Multiple 1,844 20 NA NA 

Multiple 34 17 NA NA 

Russia 785 50 5,080 254 

China, Japan 349 213 NA NA 

Iran 3,815 55 760 76 
 

*NA: Not available 

 

These datasets have been frequently used in the COVID-19 diagnostics literature and have proven their 

effectiveness in deep learning applications. In this respect, this combined dataset is expected to increase the 

generalization success of deep learning methods. In total, the combined open source data included 7,593 CT 

images of 466 COVID-19 patients and 6,893 CT images of 604 nonCOVID-19 patients.
10

 Chest CT samples 

of COVID-19 and nonCOVID-19 patients in the dataset are shown in Figure 1. 
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FIGURE 1: Sample images of 2 classes in the data set 

 

Convolutional Neural Networks 

Artificial intelligence systems based on deep neural networks that can detect, recognize, identify and clas-

sify objects in images are called CNN. CNN is a deep learning method that can learn directly from the in-

put object without the need for a human for feature extraction by giving images as input to the network. 

Since this network is specifically designed to process a series of images, it is used in medical image analy-

sis, image recognition, natural language processing and many other applications. More effectively than a 

normal neural network, it can automatically identify key features in the input without human interven-

tion.
11

  

CNN architecture is a multilayered structure that provides multilevel feature learning. In the first layers 

of the CNN, features such as texture and shape can be extracted, while in the deep layers, features can be ex-

tracted that are combined to accurately locate key elements. A CNN architecture consists of a succession of 

several basic building blocks: a convolution layer, pooling layer, fully connected layer, and an activation 

layer.  

The convolution layers and pooling layers perform feature extraction, whereas the fully connected 

layer maps the extracted features to the final output for classification purposes. The convolution layer is 

very important in a CNN, which consists of a series of mathematical and special linear operations (convo-

lution operation, etc.). In digital images, the kernel, a small set of parameters and an optimizable feature 

extractor are applied to each image location, while pixel values are stored in an array of numbers. This 

process, which makes CNNs efficient in image processing, can generate features from anywhere in the 

image. As the output of one layer feeds the next layer, the extracted features can become hierarchical and 

more complex.
12

  

The transformation of input data into output through layers is called forward propagation and the op-

timization of parameters such as kernel is called training. By utilizing backpropagation and gradient de-

scent optimization algorithms, the goal is to minimize the difference between the outputs and true labels. 

The performance of an architecture under specified kernels and weights is calculated by a loss function 

using the forward propagation algorithm on the training dataset, and the learnable parameters, that is, ker-

nels and weights, are updated according to the loss value by backpropagation with the gradient descent al-

gorithm.
13

 

Training a deep learning model from scratch poses some challenges due to the scarcity of well-

described medical images, especially those related to COVID-19. In this respect, pre-trained architectures 

are preferred for the classification task in this study. Fine-tuned Xception, fine-tuned DenseNet121, fine-
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tuned DenseNet201, fine-tuned InceptionResNetV2, fine-tuned InceptionV3, fine-tuned MobileNetV2, fine-

tuned VGG16, fine-tuned VGG19, fine-tuned ResNet50, and fine-tuned DenseNet169 architectures were 

used for the classification of COVID-19.  

Xception 

Xception has an architecture similar to that of VGG. It is based on the inception modules of InceptionV3.
14

 

This is based on deeply separable convolution layers. This was inspired by the inception model. It had ap-

proximately 20 million learnable parameters. There were 36 convolution layers arranged in 14 blocks. All 

blocks except the first and last block have linear residual connections.
15,16 

DenseNet121 

The DenseNet121 input size is a fixed 224×224. DenseNet121 consists of 121 layers containing over 8 mil-

lion parameters. Batch normalization is applied for downsampling by dividing the same feature map dimen-

sions with different filter numbers into Dense Blocks, and the layers between the blocks are called transition 

layers.
17

  

DenseNet201 

DenseNet201 utilizes the densified network, which provides easy-to-train and parametrically high-impact 

models due to the fact that features can be reused by different layers, increasing the diversity of the input of 

the next layer and improving performance. DenseNet201 has worked on various datasets such as CIFAR-100 

(Canadian Institute for Advanced Research, Canada) and ImageNet (ImageNet Large Scale Visual Recogni-

tion Challenge, United States) with effective performances. DenseNet201 consists of 201 layers with 20 mil-

lion parameters.
18

  

InceptionResNetV2 

InceptionResNetV2 is based on a common structure of the inception and the residual connection. In Incep-

tionResNet, the residual links are combined with convolutional filters of different sizes. For InceptionRes-

Net, residual connections are blended with convolution filters. These residual connections avoid distortion 

problems caused by deep structures and reduce the training time. InceptionResNetV2 has 164 layers and can 

therefore classify many images well.
19

 

InceptionV3 

InceptionV3 is an extended version of GoogLeNet (Google AI, United States) that works with good classifi-

cation performances in various medical applications. InceptionV3 reduces computational complexity by pro-

posing an initialization model that assembles convolution filters of different sizes into a new filter by reduc-

ing the number of parameters.
20

  

MobileNetV2 

MobileNet provides a remarkable reduction in the computing power compared to other CNN models. With 

this feature, they have become suitable for use on mobile devices and computers with low computing power. 

MobileNet, similar to ReLU, contains nonlinear depth convolution layers, the fully connected layer and a 

softmax layer.
19

 

VGG16 

VGG16 is a model that shows the effect of network depth on performance. It has a fixed 224×224 image 

shape and 3×3 kernel size, this structure deepens the network, minimizing the number of parameters, so it 

can increase the learning rate.
21
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VGG19 

VGG19 is a CNN architecture consisting of 19 layers, 16 convolution layers, and 3 fully connected layers. In 

this architecture, the number of parameters in the convolution layers is reduced with the help of filters. The 

VGG19 architecture contains approximately 138 million parameters.
22

 

ResNet50 

Having 50 layers, ResNet50 estimates the delta required to reach the final output from one layer to the next. 

ResNet reduces the vanishing gradient problem with its methods. ResNet helps prevent overfitting by allow-

ing the weighting layer to be skipped.
23

 

DenseNet169 

DenseNet169 is a version of DenseNet. DenseNet merges feature maps from previous levels by transferring 

all feature maps to subsequent levels and combining them with newly created feature maps. DenseNet allows 

features to be reused, thereby alleviating the problem of vanishing gradients.
24 

    RESULTS 

The highest performing architecture was InceptionResNetV2, with accuracy of 98.00%, sensitivity of 

98.53%, specificity of 97.53%, precision of 97.25%, F1 score of 97.88% and AUC of 98.03%. ResNet50 

showed the lowest performance with accuracy of 97.14%, sensitivity of 98.75%, specificity of 95.70%, pre-

cision of 95.32%, F1 score of 97.01% and AUC of 97.23%. The performance results of the architectures are 

listed in Table 2. 

 

 

TABLE 2: Performance measures obtained as a result of classification of CNN architectures 
 

 Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score (%) AUC (%) 

Xception 97.58 98.46 96.81 96.47 97.46 97.63 

InceptionResNetV2 98.00 98.53 97.53 97.25 97.88 98.03 

InceptionV3 97.86 97.94 97.79 97.51 97.73 97.87 

ResNet50 97.14 98.75 95.70 95.32 97.01 97.23 

VGG16 97.17 98.46 96.03 95.65 97.03 97.24 

VGG19 97.69 98.31 97.14 96.82 97.56 97.72 

MobileNetV2 97.17 96.55 97.72 97.41 96.98 97.14 

DenseNet121 97.38 98.24 96.61 96.26 97.24 97.43 

DenseNet169 97.90 96.77 98.89 98.73 97.74 97.83 

DenseNet201 97.93 99.49 96.55 96.24 97.83 98.02 

 

The learning curves of the CNN architectures are given in Figure 2. 
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FIGURE 2: Learning curves of CNN architectures 
(a) Xception; (b) InceptionResNetV2; (c) InceptionV3; (d) ResNet50; (e) VGG16; (f) VGG19; (g) MobileNetV2; (h)DenseNet121; (i) DenseNet169; (j) DenseNet201 

 

The structure of the learning curves can be used to examine the behaviour of the architecture and to 

suggest adjustments that can be made to improve the training performance. When the learning curves were 

analysed, it was found that the training of each architecture was good, the accuracy curves increased together 
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and the loss decreased together in the training and testing processes, and overfitting was prevented by the ad-

justments made.  

The confusion matrices of the CNN architectures are given in Figure 3. 

 

 
 

FIGURE 3: Confusion matrices of CNN architectures 
(a) Xception; (b) InceptionResNetV2; (c) InceptionV3; (d) ResNet50; (e) VGG16;  
(f) VGG19; (g) MobileNetV2; (h) DenseNet121; (i) DenseNet169; (j) DenseNet201  
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The ROC curves of the CNN architectures are given in Figure 4. 

 

 
 

 

 

FIGURE 4: ROC curves of CNN architectures 
(a) Xception; (b) InceptionResNetV2; (c) InceptionV3; (d) ResNet50; (e) VGG16;  
(f) VGG19; (g) MobileNetV2; (h) DenseNet121; (i) DenseNet169; (j) DenseNet201 
ROC: Receiver operating characteristic; AUC: Area under the curve 
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    DISCUSSION 

All architectures examined in the study were found to work well in COVID-19 diagnostics, with per-

formance measures above 95%. The performance results for each architecture were very similar. The 

structure of the learning curves can be used to examine the behavior of the architecture and to make sug-

gestions for corrections to improve training and performance. When the learning curves obtained for 

each architecture are analyzed, it can be said that the dataset and the fine-tunings made are suitable and 

generalizable for this architecture because there is not much deviation in the curves of all architectu res, 

which has achieved high performance measures. In addition, working with large datasets significantly 

improves the ability of architectures to learn patterns, particularly in the training phase in the detection of 

lung anomalies.  

In the literature, there are various studies on the use of CNNs for diagnosing COVID-19 from medical 

images. Matsuyama performed classification on CT data consisting of 720 images with ResNet50 architec-

ture. As a result of the analysis, accuracy of 92.2%, sensitivity of 90.4%, specificity of 93.3%, precision of 

92.6%, F1 score of 91.5% was obtained with the method proposed in the study.
25

 He et al. obtained accuracy 

of 86%, F1 score of 85%, AUC of 94% using DenseNet169 architecture with the Self-Trans method they 

proposed in the diagnosis of COVID-19 on CT images. With the transfer learning method, they achieved ac-

curacy of 76%, F1 score of 76%, AUC of 82% using VGG16; accuracy of 80%, F1 score of 81%, AUC of 

88% using ResNet50; accuracy of 79%, F1 score of 79%, AUC of 88% using DenseNet121.
26

 Serte and 

Demirel ran their proposed deep learning model on CT images and achieved accuracy of 84%, sensitivity of 

100%, specificity of 80%, AUC of 96% with their method based on ResNet50 architecture.
7
 Yang et al. per-

formed classification with DenseNet architecture on high-resolution CT images and obtained accuracy of 

92%, sensitivity of 97%, specificity of 87%, F1 score of 93%, AUC of 98%.
27

 Mishra et al. performed CT 

image classification with VGG16 and ResNet50 and achieved an average accuracy of 99.12%, sensitivity of 

98.8%, specificity of 99.12%, precision of 99.12%, F1 score of 98.8% with VGG16 and accuracy of 99.62%, 

sensitivity of 99.6%, specificity of 99.6%, precision of 99.6%, F1 score of 99.6% with ResNet50.
28

 Shaik 

and Cherukuri conducted their analyses on SARS-CoV-2 CT scan dataset and COVID-CT dataset using 

VGG16, VGG19, InceptionV3, ResNet50, ResNet50V2, InceptionResNetV2, Xception, and MobileNet ar-

chitectures. ResNet50V2 achieved the highest accuracy with 97.79% on SARS-CoV-2 CT scan dataset and 

VGG16 achieved the highest accuracy with 92% on COVID-CT dataset.
29

 Bouzid et al. used ResNet, 

DenseNet and EfficientNet architecture families for COVID-19 diagnosis using CT scans in their study. 

They created a new dataset by combining 7 different datasets for their analyses. They added additional cases 

from 2 different datasets. In their experiments, they obtained accuracy of 97.60%, recall of 96.39%, specific-

ity of 98.20%, precision of 96.74% with ResNet50; accuracy of 98.01%, recall of 97.00%, specificity of 

98.51%, precision of 97.11% with DenseNet121; accuracy of 98.48%, recall of 97.73%, specificity of 

98.86%, precision of 97.75% with DenseNet201.
30

 In their study, Appavu et al. focused on image classifica-

tion with VGG19, ResNet50, VGG19, InceptionV3 architectures using a dataset containing a total of 2400 

CT images, 1,200 slice COVID-19, 1,200 slice normal. They obtained their results as follows: accuracy of 

94.19%, sensitivity of 99.22%, specificity of 88.39%, precision of 88.39% with VGG16; accuracy of 

73.03%, sensitivity of 67.44%, specificity of 79.46%, precision of 79.46% with ResNet50; accuracy of 

88.38%, sensitivity of 99.22%, specificity of 75.89%, precision of 75.89% with VGG19; accuracy of 

87.97%, sensitivity of 86.15%, specificity of 90.09%, precision of 90.09% with InceptionV3.
31

 Keshamoni 

et al. created a COVID-19 diagnostic system integrating X-ray, electrocardiography and CT images using 

CNN architectures and evaluated the performances with VGG19, ResNet50 and ImageNet architectures. 

The VGG19 architecture they proposed on CT data achieved accuracy of 99%, recall of 98.9%, precision 

of 99.23%, F1 score of 98.34%.
32

 Mousavi and Hosseini used a dataset containing 10,239 CT images and 

evaluated the performances with EfficientNetB4, InceptionResNetV2, InceptionV3 architectures. They 



 

Işıl ÜNALDI et al. Turkiye Klinikleri J Biostat. 2025;17(1):16-27 

 

 26 

obtained accuracy of 99.073%, precision of 99%, recall of 99%, F1 score of 99% with EfficientNetB4; ac-

curacy of 99.414%, precision of 99%, recall of 99%, F1 score of 99% with InceptionResNetV2; accuracy 

of 99.366%, precision of 99%, recall of 99%, F1 score of 99% with InceptionV3.
33

 Rajpoot et al. used the 

SARS-CoV-2 CT scan dataset containing 2,482 images accessed from Kaggle in their study. On this data-

set, they used VGG16 with accuracy of 92.77%, sensitivity of 92.77%, specificity of 92.77%, F1 score of 

93.77%, AUC of 93.00%; ResNet50 with accuracy of 95.78%, sensitivity of 95.80%, specificity of 

95.80%, F1 score of 95%, AUC of 96%; Xception with accuracy of 92.97%, sensitivity of 92.99%, spec i-

ficity of 92.99%, F1 score of 92.97%, AUC of 93%; DenseNet169 with accuracy of 93.98%, sensitivity of 

94.11%, specificity of 94.11%, F1 score of 93.97%, AUC of 94% were obtained.
34

 Tello-Mijares et al. 

used AlexNet (Berkeley Software Distribution, United States), GoogleNet, ResNet50, VGG16 and VGG19 

architectures to evaluate lung damage in COVID-19 patients with CNN using CT images. As a result of 

their analysis, accuracy of 94.97%, sensitivity of 96.23%, specificity of 94%, precision of 94%, F1 score 

of 95.09%, AUC of 94.96% with AlexNet; accuracy of 93.59%, sensitivity of 92.98%, specificity of 94%, 

precision of 94%, F1 score of 93.62%, AUC of 93.59% with GoogleNet; accuracy of 94.28%, sensitivity 

of 90.58%, specificity of 98%, precision of 98%, F1 score of 94.13%, AUC of 94.33%; accuracy of 

95.84%, sensitivity of 95.38%, specificity of 96%, precision of 96%, F1 score of 95.87%, AUC of 95.85% 

with VGG16; accuracy of 92.89%, sensitivity of 98.46%, specificity of 87%, precision of 89%, F1 score 

of 93.34%, AUC of 93% with VGG19.
35

 

When this study is compared with the reviewed studies, it is found that InceptionResNetV2 achieves 

higher or similar performance measures than most architectures. The reasons for this difference were inter-

preted as the use of different datasets, different fine-tuning and hyperparameter adjustments, and the effects 

of dataset sizes on performance. As a result, it was found that the pre-processing, fine-tuning, and hyper-

parameter optimization of the architectures we used are generalizable for COVID-19 and chest CT images, 

and that each of the architectures works with good performance.  

 

    CONCLUSION 

The results of the study showed that the CNN architectures used, the pre-processing methods applied to the 

image, the fine-tuning and the selected classifiers significantly affect the performance of the architectures. 

The most important feature that affects the success of deep CNN architectures is working with large datasets. 

Having more labelled training data and having a balanced dataset are the most important regulations affect-

ing the success of deep learning methods. In this study, a balanced dataset was used. The data was of suffi-

cient size. In addition, dropout layer addition, batch normalization, data augmentation, training with call-

backs were preferred to control overfitting. As a result, learning curves were analysed and it was found that 

overfitting could be prevented.  

In this study, it has been shown that the CNN method is an effective method that will help clinicians in 

the diagnosis of COVID-19 with CT images, and that the disease can be detected as soon as possible, the ef-

fectiveness of treatment can be increased and the negativities caused by the disease can be prevented if suffi-

cient data and fine-tuned architectures suitable for the data are worked with. 
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