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ike in many other application areas, in clinical trials and health 

sciences as well, Odds Ratio (OR) is one of the most commonly used 

statistical measure of association between an independent binary 
factor and a binary response. 
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ABSTRACT Objective: For rare events, one or two cells of 2x2 tables may have zero (0) counts or a 
count very close to zero. This issue makes the estimation of Odds Ratio (OR) impossible or leads 
to unstable OR estimates due to complete or quasi-complete separation. In such cases, Exact Lo-
gistic Regression and Firth approach may reduce the bias but these two methods do not resolve 
the issue completely. Material and Methods: In this research, we propose an Empirical Bayesian 
estimation procedure for Odds Ratio of rare events and provide a formal test procedure. We com-
pare our Bayesian approach with Exact Logistic and Firth approaches in terms of statistical power 
achieved through extensive simulations using no event and varying event rate scenarios. Results:
We show that our Bayesian approach retains the Type-I error rate and is much more powerful 
than the currently existing methods such as Exact Logistic Method and Firth approach. We also 
show that an Odds Ratio estimate is possible with our Bayesian approach even in no event or ex-
tremely rare events cases where the other two approaches suffer. Conclusion: Our new Bayesian 
estimation method is more powerful than Exact Logistic Regression and Firth approaches and 
provides an Odds ratio estimate even in no event or extremely rare events cases.  
 
Keywords: Bayesian Odds ratio; zero cell count; rare events; Bayesian approach;  
                    statistical simulation; exact logistic regression   
 
 

ÖZET Amaç: Nadir olaylar için 2x2’lik tablolarda bir ya da iki hücre sıfır (0) ya da sıfıra çok yakın 
olabilir. Bu sorun, Göreli Oranın tahmininin imkansızlığına ya da tam veya yarı-ayrılma nedeniy-
le güvenilir olmayan Göreli Oran tahminlerine neden olur. Bu gibi durumlarda, Kesin Lojistik 
Regresyon ve Firth yaklaşımları yanlılığı azaltabilir fakat bu iki yöntem de sorunu tamamen orta-
dan kaldırmaz. Gereç ve Yöntemler: Bu araştırmada, nadir olayların Göreli Oranı için ampririk 
bir Bayesci tahmin yöntemi ve yeni bir test prosedürü sunuyoruz. Bayesci yaklaşımımızı, Kesin 
Lojistik Regresyon ve Firth yaklaşımlarıyla, istatistiksel güç açısından, sıfır olay ve ileri derecede 
nadir olaylı senaryoların işlendiği geniş kapsamlı simülasyonlarla karşılaştırıyoruz. Bulgular: Bi-
zim Bayesci yöntemimizin 1. Tip hatayı koruduğunu ve Kesin Lojistik Regresyon ve Firth yakla-
şımlarına göre daha güçlü olduğunu gösterdik. Aynı zamanda, Bayesci yöntemimizin Göreli Ora-
nını, diğer iki yöntemin sınıfta kaldığı, sıfır olay ve ileri derecede nadir olaylar durumlarında da 
tahmin edebildiğini gösterdik. Sonuc: Bizim yeni Bayesci tahmin yöntemimiz, Kesin Lojistik Reg-
resyon ve Firth yaklaşımlarından istatistiksel olarak daha güçlüdür ve sıfır olay ile, ileri derecede 
nadir olaylar durumlarında bile, bir Göreli Oranı tahmini verebilir. 
 
Anahtar Kelimeler: Göreli oran; sıfır hücre sayısı; nadir olaylar; Bayesci yaklaşım;  
                                  istatistiksel simülasyon; kesin lojistik regrasyon  
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Suppose we have two treatment arms in a protocol 

and we are interested in the association of Treat-

ment with a binary response variable. We can rep-

resent this by a 2x2 table as in Table 1.  

In such a setup, the probability of Response (i.e., 

Response=YES) is estimated by 

.   , 21 dc

c
p

ba

a
p

+
=

+
= ⌢⌢

 

From this, we estimate OR and logged version of OR as follows: 
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The variance estimate of the logged-OR can also be obtained as 
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From the above formulae, it is clear that if any of the cell in the 2x2 table is zero (0), then, maximum 

likelihood estimates of Odds Ratio and its variance do not exist. When a predictor, like Treatment, pre-

dicts the outcome variable perfectly, this is called a ‘Complete Separation’ and in such cases, Odds Ratio 

estimate does not exist even a given software package still aims at providing an estimate, which would 

not be a reliable estimate. When the separation happens at a lesser degree, then such separations are 

called ‘quasi-complete’ separations and makes the estimation process of Odds Ratios unstable and the re-

sulting estimates unreliable. More on the maximum likelihood estimate of Odds Ratio and the issue of 

complete and quasi-complete separation can be found in Albert et al. (1984), Harrell et al. (1985), So 

(1993), and Agresti (1996).1-4  

Naturally, this issue is easy to observe in univariable analyses like in 2x2 tables; however, the issue 

still exists and may not be easily noticeable in multivariable analyses such as in fitting logistic re-

gression models. In modeling for a binary response variable, a set of one or more variables may per-

fectly predict the outcome, leading to complete or quasi-complete separation issue. This issue has 

been discussed by many among whom we mention Albert et al. (1984), Lesaffre et al. (1989) and 

Zorn (2005).1,5,6 

To address this issue, Firth proposed a penalized maximum likelihood approach by penalizing the score 

equation.7 This method reduces the bias of the odds ratio estimates and provide more reliable standard 

error estimates. Another approach to address this issue is to use the Exact Logistic Regression approach, 

which also reduces the bias with a much more conservative standard error estimates. A third approach 

to deal with quasi-complete or complete separation situation is the Bayesian logistic regression model-

ing, which can be implemented in SAS under GENMOD procedure. In Section 2, using a sample data, 

we will illustrate each of these methods in SAS and compare the results from each method. 

In this paper, we propose an empirical Bayesian approach to estimate the Odds ratio and its correspond-

ing significance test. We show through extensive simulations that our Empirical Bayesian approach is 

much more powerful compared to the Exact method and Firth Method even for rare events in both 

treatment arms which would result in zero (0) event for both arms. In Section 2, we describe two meth-

TABLE 1. A representative 2x2 table. 

  Response  

  Yes No  

Treatment 
Arm-1 a b a+b 

Arm-2 c d c+d 

  a+c b+d n=a+b+c+d 
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ods dealing with the zero cell count issue, namely, 

the Firth, the exact method, and the Bayesian Lo-

gistic Regression approaches. In Section 3, we de-

scribe our Bayesian approach and its testing algo-

rithm. Section 4 presents the simulation setup and 

results followed by Section 5, where we provide an 

application to a real data. We finish with discussion 

and conclusions in Section 6. All computations in 

this research were conducted on SAS® Version 9.4. 

    EXISTING METHODS TO DEAL WITH ZERO CELL COUNT ISSUE 

Suppose we have the following clinical trial results (Table 2): 

data new2x2; 

do id=1 to 0; treatment=1; outcome=1; output; end; 

do id=1 to 36; treatment=1; outcome=2; output; end; 

do id=1 to 6; treatment=2; outcome=1; output; end; 

do id=1 to 30; treatment=2; outcome=2; output; end; 

run; 

proc format; value tx 1='Placebo' 2='New Drug';  

value outcome 1='Favorable Outcome' 2='Unfavorable Outcome'; run; 

Due to the zero (0) favorable response in the Placebo arm, estimating odds ratio and its standard error is 

not possible.  

We first illustrate each available method using this toy example. 

FIRTH APPROACH IMPLEMENTATION 

Firth penalized likelihood approach is used to produce finite and consistent estimates of Odds Ratios in 

Logistic Regression case, when the maximum likelihood estimates may not be exist or consistent due to 

complete or quasi-complete separation. 

Here is how we can implement the Firth approach and obtain the resulting Odds Ratio estimates: 

proc logistic data=new2x2; format outcome outcome.; 

model outcome (ref='Unfavorable Outcome')=treatment/rl firth; run; 

From the Firth approach, we obtain an Odds Ratio estimate of 15.56 (95% CI: 0.809, 299.309) with a p-

value of 0.0689. 

EXACT LOGISTIC REGRESSION APPROACH IMPLEMENTATION 

Exact Logistic Regression utilizes the likelihood of the observed response with respect to all 2n possible 

response vectors. It is used for trials with small sample size and when event size is small, which leads to 

cells with no observation or small number of observations in contingency tables. Even with 30 observa-

TABLE 2: Sample clinical trials data. 

 

Favorable  

Outcome 

Unfavorable  

Outcome 
All Patients) 

Placebo 0 36 36 

New Drug 6 30 36 

All Patients 6 66 72 
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tions, the number of response vectors to be considered reaches beyond one billion, and therefore, the 

procedure may get computationally costly very quickly. 

On the same data, we can implement the Exact Logistic Regression approach as follows: 

proc logistic data=new2x2; format outcome outcome.; 

model outcome (ref='Unfavorable Outcome')=treatment/rl;  

exact treatment/estimate=both; run; 

From the Firth approach, we obtain an Odds Ratio estimate of 9.334 (95% CI: 1.694, infinity) with a p-

value of 0.0249. 

BAYESIAN LOGISTIC REGRESSION IMPLEMENTATION 

Finally, here is how the Bayesian Logistic Regression model can be implemented: 

data myprior; input _type_ $ Intercept treatment; 

datalines; 

Var 1 0.5 

Mean 0 1 

; run; 

proc genmod data=new2x2 order=data; 

model outcome= treatment/dist=binomial link=logit; 

bayes seed=34367 plots=all nbi=20000 nmc=100000 

thin=10 coeffprior=normal(input=myprior); run;  

Here, the Odds Ratio is estimated to be 1.8 (95% CI: 0.35, 9.02). 

As we see, the odds ratio estimates, its standard error, and thus its significance differ so much among the 

three approaches we described. 

    A NEW BAYESIAN APPROACH TO ESTIMATE ODDS RATIO 

Now, we like to introduce our empirical Bayesian approach. 

Let p1 be the success probability for Population-1 (say, ‘placebo’ arm) and p2 the success probability for 

Population-2 (say, ‘treatment’ arm). We then assume the following prior distributions: 

� ��~�����	
(0,1) 
� ��~�����	
(0,1) 
Let n1 be a random sample from Population-1 with X1 successes, and n2 the success probability for Popu-

lation-2 with X2 successes. Assuming that the all observations satisfy the independence and identical dis-

tribution assumption, the likelihood function of (��, ��) given such a data can be given as follows: 

�(��, ��|��, ��, ��, ��) = �
��
��� ��

��(1 − ��)����� . �
��
��� ��

��(1 − ��)����� 

From the above prior selection and the likelihood function, we express the Posterior distribution of 

��, �� given the data as follows:  

 ∏(��, ��|��, ��, ��, ��) ∝ ����(1 − ��)����� .  ����(1 − ��)����� 
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Given ��, we see that ∏(��|��, ��, ��, ��, ��) ∝ ����(1 − ��)�����, which is a Beta-distribution with pa-

rameters (�� + 1, �� − �� + 1). Similarly, given ��, we see that ∏(��|��, ��, ��, ��, ��) ∝ ����(1 −
�2�2−�2, which is a Beta-distribution with parameters �2+1,�2−�2+1. As these two distributions are 

independent-Beta distributions with means of 
��"�

(�����"�)"(��"�)
= ��"�
��"�

 and 
��"�
��"�

, respectively.  

Using the above results on the posterior distribution, we use the following steps to estimate the Odds 

Ratio and provide an Empirical testing procedure: 

• Draw 1,000,000 samples (or more if desired) from #$%&(�� + 1, �� − �� + 1) and #$%&(�� +
1,�2−�2+1, independently.  

• Split these 1,000,000 samples into clusters of 1,000 samples.  

• For each pair of (��' , ��') realization, compute the Log Odds Ratio (LOR) as 

 log +� ,�-
��,�-

�/ � ,�-
��,�-

�/			 

• Within each cluster, compute the median log Odds Ratio and the number of samples with the 2.5th 

percentile of LOR greater than zero (0), or the 97.5th percentile of LOR less than zero (0);  

• Compute the median of the Median Log-Odds Ratios, the 2.5th percentile and 97.5th percentile, as 

well as the proportion of the significant cases in these 1,000 clusters, which will serve as the magnitude 

of significance (equivalent to p-value in frequentist sense); 

All these statistics are computed and saved in a dataset to be used outside the Macro program; Here is a 

quick illustration of our SAS macro on the toy example we used earlier: 

%orbayes(n11=6, n1=30, n21=0, n2=36, postN=10000000, gsize=10000, outname=pvalue); 

proc print data=pvalue; run; 

In the SAS Macro, the parameter ‘postN’ represents the number of samples drawn from the Beta-

distribution components of the posterior distribution, and the parameter ‘gsize’ is the cluster size. 

From the above analysis, we obtain the Median Odds Ratio estimate of 14.43 (95% CI: 1.99, 424.52) with 

a p-value <0.001. 

Now, we like to compare our empirical Bayesian approach with the other three methods. 

    SIMULATION SETUP AND RESULTS 

We have conduced our simulations with the following setup: 

• P1(Probability of Success in Population-1): 0.01 to 0.05 by 0.01 

• ODDS RATIO: 1, 5, 9 (P2 is computed from the P1 and OR pair) 

• GROUP SAMPLE SIZE (Balanced group size): N1=N2=50 to 500 by 50 

• GROUP SAMPLE SIZE (Unbalanced group size): N1=500, N2=50 to 450 by 50 

• Total of 290 combinations 

• 1,000 random samples generated under each scenarios 

• 1,000,000 posterior samples are generated for each simulation run. 

For each simulation sample, we computed and recorded the OR estimate, its standard error, the result-

ing empirical p-value, and the number of times the estimation was possible. 
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    RESULTS 

We present the Type-1 error rate, empirical power, and Odds Ratios estimates from each model in Fig-

ures 1-5. The first observation we make is that the GENMOD approach has a positive bias in estimating 

the null Odds Ratio (OR=1), especially in extreme rare events scenarios with small sample size, which 

improves as the sample size and/or event rate increase. This issue of overestimation in the null case re-

sults in inflated Type-1 error rates (Figure 3) for the GENMOD approach. The Exact Logistic Regression 

approach also suffers from inflated Type-I error. Our Bayesian approach and the Firth approach estimate 

the OR close to 1.0, and thus, retain the Type-I error at or below 0.05. 

All four methods we compared underestimate OR, which improves, as expected, when the event rate 

and sample size go up. Surprisingly, again, the GENMOD approach consistently underestimate OR com-

pared to the other methods even with large sample sizes. Due to the inflated Type-1 error in the 

GENMOD approach, which would lead to artificial power increase naturally, we compare the empirical 

power only among the three remaining approaches, namely, Empirical Bayesian, Firth, and Exact Lo-

gistic Regression approaches.  

Empirical power from the Bayesian approach is much superior to the Firth approach for small sample 

size cases, approaching to each other as sample size go up (Figure 4). Although the exact Logistic Regres-

sion approach seem to have reasonably competitive power for small sample sizes, it is inflated due to in-

flated Type-I error rate for this approach. 

Simulations from the unbalanced sample size scenarios show the same conclusions with a magnified 

support for the Empirical Bayesian approach (Results not shown). Comparisons of the performances of 

the methods or a non-rare scenario was also provided in Table 3, where we conclude that the empirical 

Bayesian approach is the most conservative in retaining Type-1 error rate and has competitive perfor-

mance in estimating the targeted Odds ratio.  

 

 
FIGURE 1: Odds Ratio estimate from the competing methods when the true Odds Ratio=1. 
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FIGURE 2: Odds Ratio estimate from the competing methods when the true Odds Ratio is 5 or 9. 

 

 
FIGURE 3: Type-1 Error Rate of the competing methods when the true Odds Ratio=1. 
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FIGURE 4: Empirical Power of the competing methods when the true Odds Ratio is 5 or 9. 

 

 
FIGURE 5: No. of simulations where estimation was not possible for Firth and Exact approaches. 
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    APPLICATION 

In CANDLE study, which is a birth-cohort study, 

1020 mother-child dyads had 2-year cognitive as-

sessment.8 Of these, the alcohol consumption dur-

ing pregnancy by race is given in Table 4. We wish 

to compute the odds ratio of alcohol consumption 

during pregnancy in African American (AA) co-

hort versus Caucasian (CA) cohort. 

Table 5 presents the Odds Ratio estimates compar-

ing African Americans with Caucasians for the 

likelihood of alcohol consumption. 

We see that our Empirical Bayesian approach has 

the narrowest confidence interval followed by 

Firth and Direct approaches. Bayesian Logistic ap-

proach through GENMOD has the widest interval 

and an unreasonable Odds Ratio estimate quite far from the other four, with the least significance due to 

bigger standard error. 

    DISCUSSION 

In this research, we proposed a Bayesian approach to estimate the Odds Ratio in rare event and zero-

event cases and through extensive simulations, we have shown that our Bayesian approach is able to es-

timate an Odds Ratio even when one or both arms of the study has zero events, more powerful and has 

narrower confidence interval compared to its commonly used counterparts. 

Being a Bayesian approach, it is more computationally expensive as expected; however, in today’s com-

putational power, this limitation becomes burdensome only when high number of Odds Ratio estima-

tions are desired. We compared all these competing approaches regarding the CPU time on a Windows-

7 PC with Intel® Core™ i7-4790 CPU @ 3.60GHz with 16 GB RAM on our sample data. Our approach 

took 13 cpu seconds, while the Genmod approach took 30 cpu seconds for the same problems. The other 

TABLE 3: Power of the competing methods for a non-rare scenario with success probability of 0.90,  
sample size in each arm of 500. 

 True OR Or Estimate Power Method 

 1 1.000 0.037 New Bayesian Method 

 1 1.000 0.053 Firth Approach 
 1 0.990 0.057 Exact Logistic Approach 
 1 0.986 0.045 Bayesian Logistic through GENMOD 
 5 4.910 1.000 New Bayesian Method 
 5 4.921 1.000 Firth Approach 
 5 4.970 1.000 Exact Logistic Approach 
 5 4.128 1.000 Bayesian Logistic through GENMOD 
9 9.229  1.000 New Bayesian Method 
 9 8.952 1.000 Firth Approach 
 9 9.131 1.000 Exact Logistic Approach 
 9 6.517 1.000 Bayesian Logistic through GENMOD 

 

 

TABLE 4: Real-data application from the  
CANDLE study. 

 Alcohol No Alcohol All Patients 

African Americans 34 623 657 

Caucasians 52 311 363 

All Patients 86 934 1020 

 

TABLE 5: Odds Ratio estimates comparing  
African Americans with Caucasians for  
the likelihood of alcohol consumption. 

Method OR 95% CI P-value 

Direct Estimate 0.326 0.207-0.514 <0.0001 
Firth 0.328 0.209-0.515 <0.0001 

Exact Logistic 0.327 0.201-0.525 <0.0001 
Bayesian Logistic through GENMOD 0.503 0.203-0.749 0.0007 

Empirical Bayes Estimate 0.329 0.208-0.513 <0.0001 
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two approaches namely, Firth and Exact Logistic, naturally took much shorter cpu time, 0.09 and 0.07, 

respectively.  

There are a couple of limitations to our Bayesian Odds Ratio estimation approach. Currently, the Empirical 

Bayesian method is only available in SAS and we plan to generate an R-version of this procedure in near 

future. In its current algorithm, no stratification is built-in as a possibility and the method should be 

expended to have such flexibility to control for a factor of interest in estimating Odds ratios. In addition, 

currently, the Bayesian algorithm assumes Uniform priors for the probability of events and more flexible 

priors like Beta-distribution can be explored to increase the power when such priors can be justified from 

earlier studies. Like in any other modeling framework, just having Odds ratios would not be sufficient and 

any methodology should be extended to include other control variables and covariates to test whether or 

not the primary comparison, say, between two treatment arms, remains significant in the presence of other 

known factors. Therefore, we plan to expand our Bayesian method such that a type of Bayesian Logistic 

Regression modeling framework can be established. 
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APPENDIX: We present our SAS Macro program, which can be implemented using  
the sample data we shared above. 

%macro orbayes (n1=, n2=, n11=, n21=, postN=1000000, gsize=1000, outname=pvalue, rseed=123); 
*** N1: Sample size from Population-1 
*** N11: Number of successes (i.e., events) from Population-1 
*** N2: Sample size from Population-2 
*** N21: Number of successes (i.e., events) from Population-2 
*** postN: Number of samples drawn from the posterior distribution 
*** gsize: Size of the clusters 
*** Outname: Name of the output data to be captured 
*** Rseed: Random seed that will allow to replicate the same simulation if needed 
***; 
data postsamp; n1=&n1; n11=&n11; n2=&n2; n21=&n21; call streaminit(&rseed); 
do id=1 to &postN; 
p1=round(rand('beta',n11+1, n1-n11+1),0.00000000001); 
p2=round(rand('beta',n21+1, n2-n21+1),0.00000000001); 
logor=log((p1/(1-p1))/(p2/(1-p2))); 
output; end; run; 
data postsamp; set postsamp; ngroup=ceil(_n_/&postN*&gsize); run; 
 
proc univariate data=postsamp noprint; by ngroup; var logor;  
output out=samplebound pctlpre=P_ pctlpts= 2.5 50 97.5; run; 
data samplebound; set samplebound; if p_2_5>0 or p_97_5<0 then significant=0;  
else significant=1; run; 
 
proc sql; create table &outname as  
select distinct &n1 as n1, &n11 as n11, &n2 as n2, &n21 as n21, exp(mean(p_50)) as or_median, exp(mean(p_2_5)) as or_LB,  
exp(mean(p_97_5)) as or_UB, mean(significant) as pvalue from samplebound; quit; 
proc sql; drop table postsamp, samplebound; run; 
%mend; 
%orbayes(n1=30, n2=36, n11=6, n21=0, outname=pvalue, postN=10000000, gsize=10000, rseed=1236); 
proc print data=pvalue; run; 
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