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Semiparametric Mixed Models for Longitudinal Data:
Wavelets Analysis as Smoothing Approach

Longitudinal Veriler İçin Semiparametrik Karışık Modeller: 
Smoothing Yaklaşımı Olarak Dalgacık Analizi

ABSTRACT Objective: This paper consists on examining a longitudinal data, output of genera-
ted data, via constructing a semiparametric model, the wavelets analysis will be applied as smo-
othing approach for the nonparametric part of the model. Material and Methods: Mixed effects 
models have been largely examined due to their flexibility in handling data without constraints. 
Mixed models could be characterized with their parametric and nonparametric features. Indeed, 
semiparametric mixed models which combine parametric and nonparametric features, started to 
receive more attention notably for examining longitudinal data. Regarding the nonparametric 
features, smoothing approaches should be applied. Recently, the wavelets analysis has been con-
sidered as a powerful mathematic tool to decompose a series due to its multiresolution features 
(frequential and temporal) and some researchers mentioned it as a smoothing approach for large 
data, but the wavelets features for smoothing still not commonly applied on longitudinal data. 
Results: A data is generated referring to a previous published hypertension study by National 
Institute Health. The results show that the wavelets analysis has a strong capacity as smoothing 
approach compared to well-known other smoothing methods; Root Mean Square Errors are 
calculated, and via the constructed semiparametric model, it has been confirmed that the inci-
dent hypertension is related to the high Systolic blood pressure, high diastolic blood pressure 
and low BMI. 

Keywords: Longitudinal data; smoothing approaches; wavelets decomposition;  
                   semiparametric model; mixed models

ÖZET Amaç: Bu makale, türetilmiş bir longitudinal veri seti için, bir yarı parametrik model 
kurularak incelenmesi üzerine olup, modelin parametrik olmayan kısmı için pürüzsüzleştirme 
yaklaşımı dikkate alınarak dalga analizi uygulanacaktır. Gereç ve Yöntemler: Karışık etki mo-
delleri, verilerin kısıtlama olmadan kullanılmasındaki esneklikleri nedeniyle yaygın biçimde 
çalışılmaktadır. Karışık modeller parametrik ve parametrik olmayan özellikleri dikkate alınarak 
incelenebilir. Nitekim, parametrik ve parametrik olmayan özellikleri birleştiren yarı parametrik 
karışık modeller, özellikle longitudinal verilerin analizi için daha fazla çalışılmaya başlanmıştır. 
Parametrik olmayan özellikler ile ilgili olarak, pürüzsüzleştirme yaklaşımları uygulanmalıdır. 
Son zamanlarda, dalga analizi, çoklu çözünürlük özellikleri (sıklık ve zamansal) nedeniyle bir 
dizi ayrıştırmak için güçlü bir matematiksel araç olarak kabul edilmektedir, ancak dalga analizi 
hala longitudinal veri seti için yaygın bir biçimde kullanılmamaktadır. Bulgular: National Insti-
tute Health tarafından daha önce yayınlanmış bir hipertansiyon çalışmasına atıfta bulunan bir 
veri üretilmiştir. Sonuçlar, bilinen diğer pürüzsüzleştirme yöntemlerine kıyasla dalga analizi-
nin, pürüzsüzleştirme yaklaşımı olarak güçlü bir yaklaşım olduğunu göstermektedir; Ortalama 
Kare Kök Hatalar hesaplanmış ve oluşturulan semiparametrik model aracılığıyla, hipertansiyo-
nunun yüksek Sistolik kan basıncı, yüksek diyastolik kan basıncı ve düşük BMI ile ilişkili olduğu 
doğrulanmıştır.
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In the last decades, mixed models have gained a lot of attention in the statistical researches over the 
traditional analyses due to their flexibility to handle multilevel or clustered data without constraints 
(as equal number of observations or non-missing observations). Also, mixed models allow a variety 

of choices for modeling correlations in the data. Mixed models are current in the design which combines 
random and fixed effects and widely used in several fields such as pharmaceutical industry and economi-
cs.1 Mixed effects models could be characterized as parametric and nonparametric; the parametric mixed 
models may take different covariates into account, but they require parametric assumptions, the nonpa-
rametric mixed models are flexible to fit longitudinal data and robust against model misspecification, but 
they involve few numbers of covariates and may be computationally intensive. Recently, semiparametric 
mixed models which combine parametric and nonparametric features, started to receive more attention 
notably for longitudinal data but still under development.2-7

For nonparametric features, smoothing approaches have been applied, the most famous ones are kernel 
approaches, regression polynomial splines, smoothing splines, penalized splines or p-splines and the wa-
velets technique.5-11 

Longitudinal data is the data which tracks the same type of information for the same subjects at different 
timepoints. It is very popular in the pharmaceutical industry. The most common issue for this type of data 
is the attrition (loss of follow-up, subject discontinuation etc.).12-15

Historically, since the 18th century, Fourier transform has been known as an important mathematical tool 
used in the spectral analysis. Nevertheless, a major flaw was identified in this tool; time information is 
missing. Indeed, the Fourier transform gives the information about the number of frequencies contained 
in the signal but hides the times of the diffusion of these frequencies. The wavelet was the alternative 
approach that breaks down a signal both in time and in frequency. For a musical note, wavelet is the equ-
ivalent of a score signal which provide which frequencies (notes) should be played and what time should 
those notes be played.16

Thus, wavelets have increasingly become a popular tool in various fields such as image processing (digital 
borrowing, medical X-rays, seismic waves etc.), audio processing (voices, musical notes, etc.) and recently 
in the economic and financial areas.17 However, even though the wavelets have been considered as a very 
powerful mathematical tool, they are not commonly used in the longitudinal data. 

To sum up, the objective of this research is to construct a semiparametric model after considering the 
wavelets decomposition as smoothing technic for longitudinal data. 

The remainder of the paper is organized as follows. Second section is devoted to the material and methods 
and it was subdivided into two sections: the semiparametric model and the theoretical framework exp-
loring the smoothing methods notably the wavelets analysis. Then the dataset used in this paper will be 
defined. Section three outlines the findings and the results of this research. The final section summarizes 
this research.

MATERIAL AND METHODS

This section is devoted to the theoretical framework providing a general overview about the semiparamet-
ric models, the smoothing approaches and the wavelets’ analysis.

SEMIPARAMETRIC MODEL

Some researchers showed, a semiparametric mixed-effects model, as a part of the variations in the respon-
se variable can be explained by given parametric models of some covariates in the fixed effect component 
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and/or the random-effect component, while the remaining is explained by a nonparametric function of 
time.18 In a time, varying coefficient mixed-effects model, the coefficients of the fixed-effects and ran-
dom-effects covariates are smooth functions of time. These two kinds of models are very important and 
useful in practical longitudinal data analysis. Semiparametric regression is concerned with the flexible 
incorporation of nonlinear functional relationships in regression analyses and any application area that 
uses regression analysis can benefit from semiparametric regression.19 

Therefore, a SPMEF (Semi Parametric Mixed Effects Model) for longitudinal data will be constructed, 
after the data generation. The following equation presents the general format of the semi-parametric 
model.18
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Therefore, a SPMEF (Semi Parametric Mixed Effects Model) for longitudinal data will be 

constructed, after the data generation. The following equation presents the general format of 

the semi-parametric model.
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The basic idea of these nonparametric approaches is to let the data determine the most suitable 
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parametric model; whereas when h = 0, the resulting estimate essentially interpolates the data points. 
Thus, the boundary between parametric and nonparametric modelling may not be clear-cut if one takes 
the smoothing parameter into account.4

Indeed, kernel smoothing, local polynomial fitting, polynomial regression splines, smoothing splines, pe-
nalized splines, locally weighted scatter plot smoothing (LOWESS), wavelet-based methods and other 
orthogonal series-based approaches could be considered as the frequently used smoothing approaches.4

Four major smoothing approaches to nonparametric modeling could be determined: smoothing splines; 
series-based smoothers, including wavelets; kernel methods, including local regression; and regression 
splines.19-30 The type of data is the reference to choose among those approaches.19 In addition, the pena-
lized splines, labelled also as P-splines, pseudosplines, and low-rank spline smoothers  have been largely 
discussed in the literature.19 

The research related to nonparametric methods applied on longitudinal data had not been largely in-
vestigated until 1988 with Müller.15 Indeed, Müller’s approach consisted on estimating distinctly each 
individual curve, consequently the within-subject correlation of the longitudinal data was not examined 
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in the modelling which make those methodologies essentially like the nonparametric regression methods 
for cross-sectional data.4

Recently, the development of nonparametric regression methods for longitudinal data analysis including 
utilization of kernel-type smoothing methods have been largely exposed, smoothing spline methods and 
regression (polynomial) spline methods.31-40 

Wavelets analysis have become more used for the nonparametric regression and as a smoothing approa-
ch. Wavelets analysis was applied with S to carry out nonlinear regression and image compression, this 
application emphasized the use of thresholding of wavelet coefficients as method for attempting to extract 
signal from noise.41 A new threshold algorithm was created basically on the wavelet analysis to smooth 
noise for nonlinear time series, by detailing the signals decomposed onto different scales, the details were 
smoothed by using the updated thresholds to different characters of a noisy nonlinear signal. This method 
is an improvement of Donoho’s wavelet methods to nonlinear signals.42 

Also, a wavelet shrinkage was proposed for signal smooth by using a generated data.41,43-45

However, the application of the wavelets in the pharmaceutical industry for the nonparametric models as 
smoothing method still not highly covered. 

WAVELETS AND MULTIRESOLUTION DECOMPOSITION   

Fourier transform was used in the extraction of the frequential information of a variable of interest (for 
example the length of an economic cycle) without the identification of the temporal information (which 
is fixed). To overcome the issue of the fixed temporal resolution, the concept of wavelets was developed.46

Wavelets have been known as an extension of Fourier analysis, developed and extended mainly by Gross-
man, Morlet, Mallat, Daubechies and Meyer.16,47-49 

A wavelet is a small wave, the term small mainly explains in this context that the wave increases and 
decreases in a limited time support. The main feature of a wavelet is the compact support i.e. the wavelet 
function is limited in time and frequency domains. 

Theoretically, a wavelet is simply a time function that follows a basic rule, known as the wavelet eligibi-
lity condition: 
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Indeed, kernel smoothing, local polynomial fitting, polynomial regression splines, smoothing 

splines, penalized splines, locally weighted scatter plot smoothing (LOWESS), wavelet-based 

methods and other orthogonal series-based approaches could be considered as the frequently 

used smoothing approaches.
4
 

Four major smoothing approaches to nonparametric modeling could be determined
19

: 

smoothing splines
20,21,22,23

; series-based smoothers, including wavelets
24,25

; kernel methods, 

including local regression
26,27

; and regression splines
28,29,30

. The type of data is the reference 

to choose among those approaches.
19

  In addition, the penalized splines, labelled also as P-

splines, pseudosplines, and low-rank spline smoothers  have been largely discussed in the 

literature
19

.  

The research related to nonparametric methods applied on longitudinal data had not been 

largely investigated until 1988 with Müller.
15

 Indeed, Müller’s approach consisted on 

estimating distinctly each individual curve, consequently the within-subject correlation of the 

longitudinal data was not examined in the modelling which make those methodologies 

essentially like the nonparametric regression methods for cross-sectional data.
4 

Recently, the development of nonparametric regression methods for longitudinal data analysis 

including utilization of kernel-type smoothing methods have been largely exposed
31,32,33,34

, 

smoothing spline methods
35,36,37

 and regression (polynomial) spline methods
33,38,39,40

.  

Wavelets analysis have become more used for the nonparametric regression and as a 

smoothing approach. Wavelets analysis was applied with S to carry out nonlinear regression 

and image compression, this application emphasized the use of thresholding of wavelet 

coefficients as method for attempting to extract signal from noise.
41

 A new threshold 

algorithm was created basically on the wavelet analysis to smooth noise for nonlinear time 

series, by detailing the signals decomposed onto different scales, the details were smoothed by 

using the updated thresholds to different characters of a noisy nonlinear signal. This method is 

an improvement of Donoho’s wavelet methods to nonlinear signals.
42 

 

Also, a wavelet shrinkage was proposed for signal smooth by using a generated data.
41,43,44,45

 

However, the application of the wavelets in the pharmaceutical industry for the nonparametric 

models as smoothing method still not highly covered.     

 

WAVELETS AND MULTIRESOLUTION DECOMPOSITION 

 

Fourier transform was used in the extraction of the frequential information of a variable of 

interest (for example the length of an economic cycle) without the identification of the 

temporal information (which is fixed). To overcome the issue of the fixed temporal resolution, 

the concept of wavelets was developed. 
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Wavelets have been known as an extension of Fourier analysis, developed and extended 

mainly by Grossman, Morlet, Mallat, Daubechies and Meyer. 
16,47, 48, 49  

A wavelet is a small wave, the term small mainly explains in this context that the wave 

increases and decreases in a limited time support. The main feature of a wavelet is the 

compact support i.e. the wavelet function is limited in time and frequency domains.  

Theoretically, a wavelet is simply a time function that follows a basic rule, known as the 

wavelet eligibility condition:  =  |()|


∞
 		 < ∞ with () =  ()∞

∞ 	, 
Fourier transform.  	is a frequency function for Ψ(f),  is called mother wavelet or analyzing wavelet. 

This condition ensure that the mother wavelet	Ψ(f) quickly tends to 0 if  → ∞.
50 

To ensure that 	Ψ < ∞, the following conditions, related to the mother wavelet, must be 

imposed: 

a. ψ(0) = 0 , or  ψ(t)dt = 0∞
∞  

<∞, the following conditions, related to the mother wavelet, must be imposed:

a. 

4 
 

Indeed, kernel smoothing, local polynomial fitting, polynomial regression splines, smoothing 

splines, penalized splines, locally weighted scatter plot smoothing (LOWESS), wavelet-based 

methods and other orthogonal series-based approaches could be considered as the frequently 

used smoothing approaches.
4
 

Four major smoothing approaches to nonparametric modeling could be determined
19

: 

smoothing splines
20,21,22,23

; series-based smoothers, including wavelets
24,25

; kernel methods, 

including local regression
26,27

; and regression splines
28,29,30

. The type of data is the reference 

to choose among those approaches.
19

  In addition, the penalized splines, labelled also as P-

splines, pseudosplines, and low-rank spline smoothers  have been largely discussed in the 

literature
19

.  

The research related to nonparametric methods applied on longitudinal data had not been 

largely investigated until 1988 with Müller.
15

 Indeed, Müller’s approach consisted on 

estimating distinctly each individual curve, consequently the within-subject correlation of the 

longitudinal data was not examined in the modelling which make those methodologies 

essentially like the nonparametric regression methods for cross-sectional data.
4 

Recently, the development of nonparametric regression methods for longitudinal data analysis 

including utilization of kernel-type smoothing methods have been largely exposed
31,32,33,34

, 

smoothing spline methods
35,36,37

 and regression (polynomial) spline methods
33,38,39,40

.  

Wavelets analysis have become more used for the nonparametric regression and as a 

smoothing approach. Wavelets analysis was applied with S to carry out nonlinear regression 

and image compression, this application emphasized the use of thresholding of wavelet 

coefficients as method for attempting to extract signal from noise.
41

 A new threshold 

algorithm was created basically on the wavelet analysis to smooth noise for nonlinear time 

series, by detailing the signals decomposed onto different scales, the details were smoothed by 

using the updated thresholds to different characters of a noisy nonlinear signal. This method is 

an improvement of Donoho’s wavelet methods to nonlinear signals.
42 

 

Also, a wavelet shrinkage was proposed for signal smooth by using a generated data.
41,43,44,45

 

However, the application of the wavelets in the pharmaceutical industry for the nonparametric 

models as smoothing method still not highly covered.     

 

WAVELETS AND MULTIRESOLUTION DECOMPOSITION 

 

Fourier transform was used in the extraction of the frequential information of a variable of 

interest (for example the length of an economic cycle) without the identification of the 

temporal information (which is fixed). To overcome the issue of the fixed temporal resolution, 

the concept of wavelets was developed. 
46

 

Wavelets have been known as an extension of Fourier analysis, developed and extended 

mainly by Grossman, Morlet, Mallat, Daubechies and Meyer. 
16,47, 48, 49  

A wavelet is a small wave, the term small mainly explains in this context that the wave 

increases and decreases in a limited time support. The main feature of a wavelet is the 

compact support i.e. the wavelet function is limited in time and frequency domains.  

Theoretically, a wavelet is simply a time function that follows a basic rule, known as the 

wavelet eligibility condition:  =  |()|


∞
 		 < ∞ with () =  ()∞

∞ 	, 
Fourier transform.  	is a frequency function for Ψ(f),  is called mother wavelet or analyzing wavelet. 

This condition ensure that the mother wavelet	Ψ(f) quickly tends to 0 if  → ∞.
50 

To ensure that 	Ψ < ∞, the following conditions, related to the mother wavelet, must be 

imposed: 

a. ψ(0) = 0 , or  ψ(t)dt = 0∞
∞  

b. 

5 
 

b.  |ψ(t)|dt = 1∞
∞ , representing the energy unit. 

The Discrete wavelet transforms (DWT) use low pass and high pass digital filters in cascade. 

Indeed, at each level of decomposition, the output signal of the low pass is again filtered and 

separated into two frequency bands which is sub-sampled, retaining only one sample out of 

two. Thus, the number of coefficients is constant from one stage to another. The bands 

denoted by 	are said to be detailed since they comprise the elements with higher frequency 

content and the bands 	are called the approximations. 

The equations summarized in table 1. show the decomposition from the discrete signal 	at 

the level  into a high frequency part presented by 	(details) and a low frequency part 

explained by 	 (approximation), via the numeric filters low pass and high pass. 

DWT is based on two so-called discrete wavelets; mother wavelet ψ	 = (ψ,… ,ψ	) and 

father wavelet	Φ	 = (Φ, … ,Φ	). The mother wavelet is characterized by three properties: 

First the condition showing that the mother wavelet also called differentiation function is a 

high pass filter	∑ ψ	 = 0 . Then, ∑ ψ	 = 1  and the last propriety ∑ ψ	ψ	 =0	for each integer  ≠ 0. 

The three properties ensure that the mother wavelet preserves the variance of the original data 

and a multi-resolution analysis can take place. The scale wavelet or the father wavelet aims to 

capture the long scale i.e. the low frequencies, it must respect this property: ∑ Φ	 = 0 . 

The application of the mother and father wavelet allows the separation between the low and 

high frequencies. In addition, a bandpass can be constructed from a successive recursive 

application low pass and high pass filters. Mathematically, the following table summarizes the 

above section:
51,52,53 

 

TABLE 1: Signal constructed by successive refinement 

Signal constructed by successive refinement 

Approximation + detail 

Father Φ() Mother ψ() 
																,() = 2(2 − ) 
Approximation coefficients at scale j  

(, ) =  ()∞

∞ ,() 
 

,() = 2(2 − ) 
Detail coefficient at scale j 

(, ) ≅ (),∗ () = , 

Approximation      + Detail 

() = () =  (, ),()
∞

∞
 () =,

∞

∞
,() 

The approximation coefficients presented in the table 1. will be used as smoothing 

coefficients in this paper.   

DATASET 

The applied data in the empirical section of this research is a generated data. The parameters 

used to generate the longitudinal data are based on a previous study published by (NIH, 
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TABLE 2: Variables definitions.
Variable Abbreviation Description

Incident Hypertension HYPERTEN Hypertensive. Defined as the first exam treated for high blood pressure or second exam in 
which either Systolic is ≥ 140 mmHg or Diastolic ≥ 90mmHg.

Age Age Age (years) at examination. 

Systolic BP SYSBP Systolic Blood Pressure (mean of last two of three measurements) (mmHg).
Range of count: 83.5-295.

Diastolic BP DIABP Diastolic Blood Pressure (mean of last two of three measurements) (mmHg) 
Range of count: 30-150 

Body Mass Index BMI Weight in kilograms/height meters squared

Source: NIH institute  

The approximation coefficients presented in the table 1. will be used as smoothing coefficients in this paper.  

DATASET

The applied data in the empirical section of this research is a generated data. The parameters used to 
generate the longitudinal data are based on a previous study published by (NIH, 2018). Data generation, 
referring previous clinical studies, was based on previous researches.54,55 

The Framingham Heart Study was published by the National Institutes of Health (NIH). It is a long-term 
cohort study of the etiology of cardiovascular disease among subjects from the community of Framing-
ham, Massachusetts. 

For this paper, the Incident Hypertension was selected as outcome of interest. To get the predictive va-
riables of the model, most of the defined variables in the study were selected. After a mixed model cons-
truction, the following list of variables had significant relationship with the incident hypertension; age, 
Systolic Blood Pressure (SYSBP), Diastolic Blood Pressure (DIABP) and Body Mass Index (BMI). The 
following Table 2 resumes the variables definition:
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/*Define the coefficients*/
proc glimmix data=hypert; /*generalized mixed model*/
model HYPERTEN = BPMEDS PERIOD SEX TOTCHOL AGE SYSBP DIABP CURSMOKE
CIGPDAY BMI DIABETES HDLC LDLC BPMEDS*PERIOD/s solution;
random PERIOD;
/* The OUTPUT statement saves the predictions of the mean of each observations to the data set gmxout.*/
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;
run;

/*Estimation coefficients*/
%let beta0=-1.1; %let beta1=0.0037; %let beta2=0.0081; %let beta3=0.0041; %let beta4=0.007;
%let n = 100;
%let age_av= 55;
%let age_max = 81;
%let age_min = 32;
%let age_sd = 9.564;
%macro sim(iterations);
%do i = 1 %to &iterations;
Data hypert;
do id = 1 to &n;
b0    = &sigma0.*rannor(6427);
b2    = &sigma2.*rannor(1234);
r0    = &delta0.*rannor(4875);
Age   = &age_av. + &age_sd.*rannor(4875); 
SYSBP = &SBP_av. + &SBP_sd.*rannor(1245);
DIAPB = &dbp_av.+ &dbp_sd.*rannor(5484);
BMI   = &BMI_av.+ &BMI_sd.*rannor(67848);
do CYCLE = 0 to 10;
y = (&beta0. + b0) + &beta1.*age + &beta2.*SYSBP+ &beta3.*SYSBP +&beta4.*DIAPB + &beta5.*BMI ;
output;
end;
end;
run;
%end;
%mend;
Options macrogen symbolgen mlogic mprint mfile;
%sim(10000);

To generate the data, a previous proposed Statistical Analysis Software (SAS) macro for sample size cal-
culation based on a previous clinical trial was updated to feat the study case of this research, 100 subjects 
were considered, each subject was generated 10 times (each subject has 10 timepoints).54

First step of SAS macro consists on defining the coefficients of the variables.

Second step of SAS macro is to use the output coefficients from the above glimmix in data generation. The 
following program is an extraction of the full SAS macro.
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FIGURE 1: Wavelets decomposition of Diastolic BP.

After running the SIM SAS macro, the generated data will be used to construct the model. The next sec-
tion will provide the results. 

RESULTS 

This section presents the empirical findings of this research. 

Before constructing the semiparametric model, the scatter plots of the variables were graphed to examine 
which variable will be considered in the nonparametric part of the model. 

Two variables will be used in the nonparametric part of the model, Systolic BP and Diastolic BP from the 
generated data of incident hypertension. 

Figure 1 and Figure 2 show the wavelet decomposition of the variables Systolic BP and Diastolic BP.  The 
wavelets analysis allows the decomposition of the series into details (to extract the detailed information of 
the variable) and approximation (to see the tendency of the variable). Through the wavelet’s decomposi-
tion, the coefficients of the details and the approximation could be extracted.

The approximation coefficients after the wavelet’s decomposition will be used as smoothed variable.  

Table 3 compares the Root Mean Square Error (RMSE) associated to the smoothing approaches applied 
for this paper. RMSE was calculated as following: RMSE = sqrt (mean ((Raw variable value – smoothed 
variable value) ^2)). MATLAB software was used in this section.
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FIGURE 2: Wavelets decomposition of Systolic BP.
Source: Own elaboration

TABLE 3: Comparison of RMSE between smoothing approaches.
Smoothing approach* RMSE (DIABP) RMSE (SYSBP)

Wavelets 1.9583 3.9148

movmedian 2.4942 0

movmean 4.5991 9.4958

loess 2.5075 5.0061

lowess 3.4718 6.9313

rloess 1.8979 4.2089

rlowess 3.2293 6.7460

sgolay 3.1262 6.4511

gaussian 3.2955 6.9424

Smoothing spline 3.049 5.2122

*’moving’: Moving average (default). A lowpass filter with filter coefficients equal to the reciprocal of the span.
‘lowess’: Local regression using weighted linear least squares and a 1st degree polynomial model
‘loess’: Local regression using weighted linear least squares and a 2nd degree polynomial model
‘sgolay’: Savitzky-Golay filter. A generalized moving average with filter coefficients determined by an unweighted linear least-squares regression and a 
polynomial model of specified degree (default is 2). The method can accept nonuniform predictor data.
‘rlowess’: A robust version of ‘lowess’ that assigns lower weight to outliers in the regression. The method assigns zero weight to data outside six mean 
absolute deviations.
‘rloess’: A robust version of ‘loess’ that assigns lower weight to outliers in the regression. The method assigns zero weight to data outside six mean abso-
lute deviations. (MATLAB website)

Source: Own elaboration 
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FIGURE 3: Residuals of Y.                    
Source: Own elaboration

TABLE 4: Semiparametric modelling.
             Incident Hypertension as dependent variable

Term Coefficient P-Value

Intercept -2.2237 <.0001

Age 0.004583 0.0888

BMI -0.05498 <.0001

Diastolic BP 0.01804 <.0001

Systolic BP 0.01306 <.0001

Source: Own elaboration

As shown in Table 3, the wavelets decomposition has the least RMSE for both variables Systolic BP and 
Diastolic BP except the movmedian for the case of SYSBP and rloess for the case of DIABP (no notable 
difference). Indeed, the wavelets approach showed interesting performance for both variables, therefore 
the coefficients of the approximation results of the wavelets decomposition will be used in the modelling.

A semiparametric model will be performed in the modeling section. For the nonparametric part, the wa-
velets analysis was applied as smoothing approach. The cycle (timepoints) is included in the parametric 
part as random effect variable and the variables age and BMI are included in the parametric part as vari-
ables with fixed effect. 

A generalized mixed model was used to estimate the coefficients, the estimation method is pseudo-like-
lihood technic. 

The results of the semiparametric model are presented in the following Table 4:

The model results confirm that high systolic blood pressure, high diastolic blood pressure and low BMI cause 
the incident hypertension. However, the age has not a significant impact on the incident hypertension. 

The normality of residuals and the homoscedasticity of the residuals were rechecked and proved after the 
model construction (Figure 3). 
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DISCUSSION

Longitudinal data have been largely discussed and used in several researches notably in the pharmaceu-
tical industry. Modelling this type of data still challenging due to the attrition issue and the violation of 
some parametric hypothesis. Many researches constructed semiparametric models to analyze longitudinal 
data, as this type of model combine the parametric and the nonparametric features. Smoothing methods 
are required in the nonparametric part of the model, different smoothing approaches have been found as 
performant such as splines, Pseudo spline and kernel. In the literature, one method was noted as smoot-
hing approach but not highly examined, which is the wavelets. This research paper consists on figuring 
out the performance of the wavelets analysis as smoothing method. Indeed, this mathematical tool was 
largely used in imaging analysis, and signal treatments and started to gain more attention in the financial 
and economic fields, due to its ability to denoise a signal (or a series), to decompose it and reconstruct it 
again without loosing information. Longitudinal data provided by the NIH was used to get the parameters 
of a model to explore the relationship between incident hypertension and variables such as age, BMI, 
diastolic blood pressure and systolic pressure. Those parameters were used to generate a data which will 
be analyzed via a semiparametric model. After the data generating, systolic blood pressure and diastolic 
blood pressure were found to be in the nonparametric part of the model due to the normality assumption 
violation. Matlab was used to apply a smoothing approach for both variables. Here, different smoothing 
approaches were applied and RMSE was calculated to choose the most performant approach. Although, 
wavelets were ranked as the second approach having RMSE, but the results were quite interesting for both 
of variables. So, wavelets method was picked in this analysis. SAS software was used to generate longitudi-
nal data and then to construct the semiparametric model. The modelling results showed that high systolic 
blood pressure, high diastolic blood pressure and low BMI cause the incident hypertension.

CONCLUSION

Recently, Wavelets analysis has been considered as a powerful mathematical tool to decompose time se-
ries and to avoid the non-stationarity problem. This research consists on applying this tool as smoothing 
approach for longitudinal data. A generated data, based on a previous clinical study, was used for the 
application section.  

The results of wavelets decomposition demonstrated a strong capacity of this method, for this applica-
tion case, vis a vis the other smoothing approaches notably the splines method. Therefore, the wavelets 
analysis as smoothing method was used in the nonparametric part of the semi parametric model. The 
advantage of the semiparametric model is its capacity to include nonparametric effects and parametric 
effects, however due to the modeling complexity this type of model still not highly covered. The results 
confirmed that the incident hypertension is highly related to the systolic blood pressure, diastolic blood 
pressure and the BMI.

This research attempted to cover two complex pillars (wavelets analysis and semiparametric models) and 
highlight their capacity which can be more applied to analyze longitudinal data. This paper is the start of 
further applications as the wavelets’ analysis can be applied to handle outliers before the modeling and 
this is will be the objective of future work. 
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