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he effect of covariates is proportional with respect to survival time in
accelerated failure time (AFT) models. The Weibull regression mo-
del (WRM) is widely used as one of accelerated failure time models.

Comparison of Bayesian and Classical
Analysis of Weibull Regression Model:

A Simulation Study

AABBSS  TTRRAACCTT  OObbjjeeccttiivvee::  The purpose of this study was to compare performances of classical Weibull
Regression Model (WRM) and Bayesian-WRM under varying conditions using Monte Carlo sim-
ulations. MMaatteerriiaall  aanndd  MMeetthhooddss::  It was simulated the generated data by running for each of classi-
cal WRM and Bayesian-WRM under varying informative priors and sample sizes using our
simulation algorithm. In simulation studies, n=50, 100 and 250 were for sample sizes, and inform-
ative prior values using a normal prior distribution with                                             was selected for
β1. For each situation, 1000 simulations were performed. RReessuullttss::  Bayesian-WRM with proper in-
formative prior showed a good performance with too little bias. It was found out that bias of
Bayesian-WRM increased while priors were becoming distant from reliability in all sample sizes.
Furthermore, Bayesian-WRM obtained predictions with more little standard error than the classi-
cal WRM in both of small and big samples in the light of proper priors. CCoonncclluussiioonn::  In this simu-
lation study, Bayesian-WRM showed better performance than classical method, when subjective
data analysis performed by considering of expert opinions and historical knowledge about param-
eters. Consequently, Bayesian-WRM should be preferred in existence of reliable informative pri-
ors, in the contrast cases, classical WRM should be preferred.

KKeeyy  WWoorrddss::  Bayes theorem; survival analysis; markov chains; computer simulation 

ÖÖZZEETT  AAmmaaçç::  Bu çalışmanın amacı, klasik Weibull regresyon modeli (WRM) ile Bayesgil-WRM
yöntemlerini farklı koşullar altında Monte Carlo simülasyonlarıyla performanslarının
karşılaştırılmasıdır. GGeerreeçç  vvee  YYöönntteemmlleerr::  Simülasyon algoritmamız kullanılarak, farklı açıklayıcı
önsel bilgi ve örneklem hacimlerinde türetilen verilerle klasik WRM ile Bayesgil-WRM için
simülasyonlar gerçekleştirildi. Simülasyon çalışmasında n= 50, 100, 250 örneklem hacimleri ve β1
için                                          parametreli normal önsel dağılımdan alınan açıklayıcı önsel bilgiler
seçildi. Her bir durum için 1000 simülasyon gerçekleştirildi. BBuullgguullaarr::  Veriye uygun önsel bilgi
kullanıldığında Bayesgil-WRM biraz daha iyi performans gösterdi. Tüm örnek hacimlerinde önsel
bilgi güvenirlikten uzaklaştıkça Bayesgil-WRM’nin yanlılığının arttığı belirlendi. Ayrıca küçük ve
büyük örnek hacimlerinde ve veriye uygun önsel bilgilerle çalışıldığında Bayesgil-WRM’nin, klasik
WRM’den daha küçük standart hatalı tahminler elde ettiği belirlendi. SSoonnuuçç::  Bu simülasyon
çalışmasında Bayesgil-WRM, parametreler hakkında uzman görüşleri ve daha önceki bilgiler ele
alınarak subjektif veri analizi gerçekleştirildiğinde klasik yöntemden daha iyi performans gösterdi.
Sonuç olarak Bayesgil-WRM’nin, güvenilir açıklayıcı önsel bilgi var olduğunda tercih edilmesi
gerektiği aksi durumda klasik WRM’nin tercih edilebileceği önerilmektedir.

AAnnaahh  ttaarr  KKee  llii  mmee  lleerr:: Bayes teoremi; sağkalım analizi; markov zincirleri; bilgisayar simülasyonu
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ABSTRACT

Objective: The purpose of this study was to compare performances of classical 

Weibull Regression Model (WRM) and Bayesian-WRM under varying conditions using 

Monte Carlo simulations. 

Material and Methods: It was simulated the generated data by running for each of 

classical WRM and Bayesian-WRM under varying informative priors and sample sizes 

using our simulation algorithm. In simulation studies, n=50, 100 and 250 were for 

sample sizes, and informative prior values using a normal prior distribution with  !" =1,

1.5, 2 and #"$= 0.1, 0.5 was selected for  %. For each situation, 1000 simulations were 

performed. 

Results: Bayesian-WRM with proper informative prior showed a good performance 

with too little bias. It was found out that bias of Bayesian-WRM increased while priors 

were becoming distant from reliability in all sample sizes. Furthermore, Bayesian-

WRM obtained predictions with more little standard error than the classical WRM in 

both of small and big samples in the light of proper priors.

Conclusion: In this simulation study, Bayesian-WRM showed better performance 

than classical method, when subjective data analysis performed by considering of expert 

opinions and historical knowledge about parameters. Consequently, Bayesian-WRM 

should be preferred in existence of reliable informative priors, in the contrast cases, 

classical WRM should be preferred.
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ÖZET

Amaç: :J)K"6%#&"?%?)"&"L%()46"894)M79>J66)!7F!78;<?)&<@769)NM0/O)967):";78F96-

M0/);P?$7&67!9?9)Q"!46%)4<#J66"!)"6$%?@")/<?$7)R"!6<)89&56"8;<?6"!%;6")

27!Q<!&"?86"!%?%?)4"!#%6"#$%!%6&"8%@%!S)

Gereç ve Yöntemler: T9&56"8;<?)"6F<!9$&"&%+)4J66"?%6"!"4()Q"!46%)"K%46";%L%)önsel 

bilgi ve örneklem hacimlerinde türetilen verilerle klasik WRM ile Bayesgil-WRM için 

89&56"8;<?6"!)F7!K7467#$9!96@9S)T9&56"8;<?)K"6%#&"8%?@")?U)VG()IGG()WVG)örneklem 

hacimleri ve  % için  !" =1, 1.5, 2 ve #"$= 0.1, 0.5 parametreli normal önsel @"X%6%&@"?)

"6%?"?)"K%46";%L%)önsel bilgiler seçildi. Her bir durum için 1000 simülasyon 

F7!K7467#$9!96@9.

Bulgular: Veriye uygun önsel bilgi 4J66"?%6@%X%?@"):";78F96-WRM biraz daha iyi 

performans gösterdi. Tüm örnek hacimlerinde önsel bilgi F5=7?9!694$7?)J+"46"#$%4K")

Bayesgil-M0/Y?9?);"?6%6%X%?%?)"!$$%X%)>769!67?@9S) ;!%L")45K54)=7)>5;54)P!?74)

hacimlerinde ve veriye uygun önsel bilgilerle K"6%#%6@%X%?@"):";78F96-WRM’nin, klasik 

M0/Y@7?)@"D")45K54)8$"?@"!$)D"$"6%)$"D&9?67!)76@7)7$$9X9)>769!67?di.

Sonuç: :J)89&56"8;<?)K"6%#&"8%?@"):";78F96-M0/()2"!"&7$!767!)D"44%?@")J+&"?)

FP!5#67!9)=7)@"D")P?L749)>96F967!)767)"6%?"!"4)8J>Z74$9Q)=7!9)"?"69+9)F7!K7467#$9!96@9X9?@7)

klasik yöntemden daha iyi performans gösterdi. Sonuç olarak Bayesgil-WRM’nin, 

güveni69!)"K%46";%L%)önsel >96F9)="!)<6@JXJ?@")$7!L9D)7@96&789)F7!74$9X9)"489)@J!J&@")

klasik WRM’nin tercih 7@967>967L7X9)P?7!96&74$7@9!S

Anahtar Kelimeler: :";78)17<!7&9C)T"X4"6%&) ?"69+9C)/"!4<=)-9?L9!67!9C):96F98";"!)

simülasyonu
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Be ca u se, it can ta ke on dif fe rent sha pes and can be
fle xib le to su it va ri o us app li ca ti ons.1

Ba ye si an analy sis of sur vi val da ta has re ce i ved
much re cent at ten ti on du e to ad van ces in com pu -
ta ti o nal and mo del ling tech ni qu es.2 Al so, pa ra met -
ric sur vi val mo dels are app li ed using Ba ye si an
ap pro ach. Ba ye si an ap pro ach pro vi des in fe ren ces
that are exact ac cor ding to clas si cal met hods, and
has the ad van ta ge in de a ling with small samp le
over clas si cal met hods. In the pre sent study, Ba ye -
si an-WRM was car ri ed out using Ba ye si an ap pro -
ach ba sed on var ying con di ti ons.

Ba ye si an met hods con sist of da ta and pri or in-
for ma ti on. It is ge ne ra tes conc lu si ons ba sed on the
synthe sis of new in for ma ti on from an ob ser ved da -
ta and his to ri cal know led ge or ex pert opi ni on. The -
re fo re, Ba ye si an met hods ref lect sub jec ti ve be li efs.
Ba ye si an met hods can not be used for any mo del -
ling wit ho ut using a pri or dis tri bu ti on.2,3

Few works ha ve be en pub lis hed on the Ba ye -
si an-WRM met hod. Cal le et al.4 analy zed da ta from
sen sory shelf-li fe stu di es. Wong et al.5 used Ba ye -
si an-WRM to in ves ti ga te the ef fec ti ve ness of sil ver
di a mi ne flu o ri de and so di um flu o ri de var nish in ar-
res ting ac ti ve den tin ca ri es in Chi ne se pre-scho ol
chil dren. Sa hu et al.6 analy zed da ta from first and
se cond re cur ren ce of in fec ti on in kid ney pa ti ents
on di aly sis using Ba ye si an-WRM with fra il ti es. Ab -
rams et al.7 analy zed da ta from can cer cli ni cal tri al
ba sed on be li efs of cli ni ci ans and re sults ava i lab le of
pub lis hed/un pub lis hed tri als and no nin for ma ti ve
pri or dis tri bu ti ons using Ba ye si an-WRM. 

In our study, we ai med to com pa re the per for -
man ces of clas si cal WRM and Ba ye si an-WRM by
using Mon te Car lo si mu la ti ons un der var ying con-
di ti ons.

MATERIAL AND METHODS

WEI BULL REG RES SI ON MO DEL

Sur vi val analy sis in ves ti ga tes exa mi nes the re la ti -
ons hip of the sur vi val dis tri bu ti on to co va ri a tes.8

Pa ra met ric sur vi val mo dels are known as the AFT
mo del. The se mo dels can be li ne a ri zed by ta king
lo ga rithm: 

whe re t is a ran dom va ri ab le de no ting the sur vi val
ti me, x is a co va ri a te, β0 and β1 are mo del pa ra me -
ters and ε is an er ror term. The ba se li ne dis tri bu ti -
on of the er ror term can be spe ci fi ed as one of the
ex po nen ti al, log-nor mal, log-lo gis tic, and We i bull
dis tri bu ti ons.1,9

The fun da men tal dis tri bu ti ons that ha ve be en
pro po sed for mo de ling sur vi val are the ex po nen ti -
al, We i bull and Gom pertz dis tri bu ti on. The WRM
ba sed on We i bull dis tri bu ti on is the most wi dely
used sur vi val mo del for in ves ti ga ted the im pact of
ot her fac tors on sur vi val. It is a pa ra met ric sur vi -
val mo del and an AFT mo del that is one in which
sur vi val ti me is as su med to fol low a known dis tri -
bu ti on.1 The ha zard func ti on for the sing le co va ri -
a te WRM is 

whe re λ = 1/σ. The pro por ti o nal ha zards form of
the func ti on is 

whe re the ba se li ne ha zard func ti on is        
and                       Alt ho ugh the

pa ra me ter σ is a va ri an ce-li ke pa ra me ter on the
log-ti me sca le,       is com monly cal led the
sha pe pa ra me ter. Al so γ is a sca le pa ra me ter.1,9

The pa ra me ters of the We i bull pro ba bi lity dis-
tri bu ti on es ti ma te by ma xi mum li ke li ho od. Ma xi -
mum li ke li ho od es ti ma ti on con sists of fin ding the
va lu es of the dis tri bu ti on pa ra me ters that ma xi mi -
ze the log-li ke li ho od of the da ta va lu es. The log-li -
ke li ho od func ti on of the WRM is 

whe re 
and                 The li ke li ho od equ a ti ons are ob ta i ned
by dif fe ren ti a ting the log-li ke li ho od func ti on with
res pect to the unk nown pa ra me ters and set ting the
ex pres si ons equ al to ze ro.1,9

 

based on beliefs of clinicians and results available of published/unpublished trials and 

noninformative prior distributions using Bayesian-WRM. 

In our study, we aimed to compare the performances of classical WRM and 

Bayesian-WRM by using Monte Carlo simulations under varying conditions.

2. Materials and Methods

2.1. Weibull Regression Model

Survival analysis investigates examines the relationship of the survival distribution to 

covariates.8 Parametric survival models are known as the AFT model. These models can 

be linearized by taking logarithm: 

ln(&) =  ' +  %( + )*
where & is a random variable denoting the survival time, ( is a covariate,  ' and  % are 

model parameters and * is an error term. The baseline distribution of the error term can 

be specified as one of the exponential, log-normal, log-logistic, and Weibull 

distributions.1,9

The fundamental distributions that have been proposed for modeling survival are the 

exponential, Weibull and Gompertz distribution. The WRM based on Weibull 

distribution is the most widely used survival model for investigated the impact of other 

factors on survival. It is a parametric survival model and an AFT model that is one in 

which survival time is assumed to follow a known distribution.1 The hazard function for 

the single covariate WRM is

+(&, (,,, -) = -&./%
(0123145).

where - = 1/#. The proportional hazards form of the function is

+(&, (,,, -) = +'(&)0645-7&./%0123145 -&./%
(0123145).

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

based on beliefs of clinicians and results available of published/unpublished trials and 

noninformative prior distributions using Bayesian-WRM. 

In our study, we aimed to compare the performances of classical WRM and 

Bayesian-WRM by using Monte Carlo simulations under varying conditions.

2. Materials and Methods

2.1. Weibull Regression Model

Survival analysis investigates examines the relationship of the survival distribution to 

covariates.8 Parametric survival models are known as the AFT model. These models can 

be linearized by taking logarithm: 

ln(&) =  ' +  %( + )*
where & is a random variable denoting the survival time, ( is a covariate,  ' and  % are 

model parameters and * is an error term. The baseline distribution of the error term can 

be specified as one of the exponential, log-normal, log-logistic, and Weibull 

distributions.1,9

The fundamental distributions that have been proposed for modeling survival are the 

exponential, Weibull and Gompertz distribution. The WRM based on Weibull 

distribution is the most widely used survival model for investigated the impact of other 

factors on survival. It is a parametric survival model and an AFT model that is one in 

which survival time is assumed to follow a known distribution.1 The hazard function for 

the single covariate WRM is

+(&, (,,, -) = -&./%
(0123145).

where - = 1/#. The proportional hazards form of the function is

+(&, (,,, -) = +'(&)0645-7&./%0123145 -&./%
(0123145).

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

where the baseline hazard function is +'(&) = -7&./%, 7 = 0/12/8 = 062 and 9% =

: %/#. Although the parameter is a variance-like parameter on the log-time 

scale, - = 1/) is commonly called the shape parameter. Also 7 is a scale parameter.1,9

The parameters of the Weibull probability distribution estimate by maximum 

likelihood. Maximum likelihood estimation consists of finding the values of the 

distribution parameters that maximize the log-likelihood of the data values. The log-

likelihood function of the WRM is

;(,) = <=>(:ln ()) + ?>) : 0@A
B

>C%
where ?> = (ln(&>) : DE>,)[\, DF> = G(>', (>%, … , (>"H and (>' = 1. The likelihood 

equations are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters and setting the expressions equal to zero.1,9

2.2. Bayesian Weibull Regression Model

Bayesian analysis generates based on the combining of new information from the 

observed data and previous knowledge or expert opinion.5

In classical approaches such as maximum likelihood for parameter estimation,

inference is based on the likelihood of the data alone. In Bayesian models, the 

likelihood (;( )) of the observed data x F9=7?)2"!"&7$7!8)])98)J87@)$<)!7L"8$)$D7)2!9<!)

I( '), with the updated knowledge summarized in a posterior density (I( J |()).8,10,11

The relationship between these densities is

I( J |() K ;( )L( ) 

Thus, updated knowledge is a function of prior knowledge and the present data.2,3,8,10,11

The density function of Weibull distribution in terms of the parameterization 

^U6<FN_O)98)M(&|-,N) = -&./%exp (N : exp(N) &.)

 

based on beliefs of clinicians and results available of published/unpublished trials and 

noninformative prior distributions using Bayesian-WRM. 
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2. Materials and Methods

2.1. Weibull Regression Model
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covariates.8 Parametric survival models are known as the AFT model. These models can 

be linearized by taking logarithm: 

ln(&) =  ' +  %( + )*
where & is a random variable denoting the survival time, ( is a covariate,  ' and  % are 
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(0123145).

where - = 1/#. The proportional hazards form of the function is

+(&, (,,, -) = +'(&)0645-7&./%0123145 -&./%
(0123145).
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BA YE SI AN WE I BULL REG RES SI ON MO DEL

Ba ye si an analy sis ge ne ra tes ba sed on the com bi -
ning of new in for ma ti on from the ob ser ved da ta
and pre vi o us know led ge or ex pert opi ni on.5

In clas si cal ap pro ac hes such as ma xi mum li ke li ho -
od for pa ra me ter es ti ma ti on, in fe ren ce is ba sed on
the li ke li ho od of the da ta alo ne. In Ba ye si an mo d-
els, the li ke li ho od (L(β)) of the ob ser ved da ta x gi -
ven pa ra me ters β is used to re cast the pri or π(β0),
with the up da ted know led ge sum ma ri zed in a pos-
te ri or den sity (π (β | x)).8,10,11 The re la ti ons hip bet -
we en the se den si ti es is

Thus, up da ted know led ge is a func ti on of pri or
know led ge and the pre sent da ta.2,3,8,10,11

The den sity func ti on of We i bull dis tri bu ti on
in terms of the pa ra me te ri za ti on                 is

The li ke li ho od func ti on of WRM for λ and α
pa ra me ters is spe ci fi ed by

whe re                                                       de no ted We -
i bull sur vi val func ti on, t = (t1, t2, ..., tn)’ is the in de-
pen dent iden ti cally dis tri bu ted sur vi val ti mes, and
v is the in di ca tor va ri ab le.2 If ti>Ti, the ith da ta is
cen so red and thus, in di ca tor va ri ab le is

When λ is as su med known, the con ju ga te pri -
or for exp(α) the gam ma pri or. The jo int con ju ga te
pri or is not ava i lab le when (λ, α) are both as su med
unk nown.2 The jo int pos te ri or dis tri bu ti on of (λ,
α) is as fol lows:

whe re                    has the nor mal pri or for α, and  
has a gam ma pri or for λ.

In the Ba ye si an-WRM, the jo int pos te ri or dis tri -
bu ti on for λ and ββ pa ra me ters is 

whe re                     is a pri or for

In comp lex mo dels, pos te ri or den si ti es can be
dif fi cult to work with di rectly. It is re qu i red that
up da te of know led ge abo ut the pa ra me ters. With
Mar kov Cha in Mon te Car lo (MCMC) met hod, it is
pos sib le to ge ne ra te samp les from a pos te ri or den-
sity and to use the se samp les to ap pro xi ma te ex pec-
ta ti ons of qu an ti ti es of in te rest. Gibbs samp ler is a
MCMC met hod, and a po wer ful si mu la ti on al go -
rithm. Gibbs samp ler can be ef fi ci ent when the pa-
ra me ters are not highly de pen dent on each ot her
and the full con di ti o nal dis tri bu ti ons are easy to
samp le from.3,8,11,12

Gibbs samp ler works as fol lows:2,3,12

1) Set m=0 (m=1,2,...,M), and cho o se an ar bit -
rary ini ti al va lu e of 

2) Ge ne ra te each com po nent of
as fol lows:

Draw

Draw

...  ...  ...

Draw 

3) Set m=m+1 and go to step 1.

In Ba ye si an analy sis, eli ci ta ti on of the pri or
plays al so the most ma jor ro le. Ba ye si an analy sis
can not be used for any mo de ling wit ho ut using a
pri or dis tri bu ti on. Ba ye si an analy sis is used to no -
nin for ma ti ve or in for ma ti ve pri or in in fe ren ce. In-
for ma ti ve pri or ob ta ins from pre vi o us stu di es. It is
not do mi na ted by the li ke li ho od and is ef fec ti ve on
the pos te ri or dis tri bu ti on.3,13,14

SI MU LA TI ON AL GO RITHM

Our in te rest in this study was to com pa re the pa ra -
me ter es ti ma tes from WRM and Ba ye si an-WRM
in dif fe rent con di ti ons. The mo dels de ve lo ped he -
re ha ve the sa me mul tip li ca ti ve struc tu re. We used
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The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

The likelihood function of WRM for - and N parameters is specified by

;(-,N|&) = OM(&>|-,N) JPAQ(&>|-,N) J%/PA
B

>C%
=-R PASAT4 0(L{N(R U>B>C% ) + R (U>(- : 1)log (&>) : &>.0(L(N))}B>C%

where Q(&|-,N) J = exp (: exp(N)&.) denoted Weibull survival function, & =

(&%, &$, … , &B)F is the independent identically distributed survival times, and U is the 

indicator variable.2 If &>>V>, the Wth data is censored and thus, indicator variable is

U> = X1,     &> Y V>
0,    &> > V> J

When is assumed known, the conjugate prior for 0(L(N) the gamma prior. The 

joint conjugate prior is not available when (-,N) are both assumed unknown.2 The joint 

posterior distribution of (-,N) is as follows:

I(-,N|Z, &, UJ) K ;(-,N|Z, &, UJ)I(-|-',[')I(N|\',#'$J)
where ](\',#'$) has the normal prior for N, and ^(-',[') has a gamma prior for -.

In the Bayesian-WRM, the joint posterior distribution for - and , parameters is

I(,, -|Z, &, (, UJ)
K -.23(R PASAT4 )/%0(L _<(U>(F>, + U>(- : 1)log (&>): &>.0(L((E>,))

B

>C%

: ['- : 1

2
(,: `')F< (,: `')

/%
' a

where ]"(`',b') is a prior for , and N> = (>E,.2

In complex models, posterior densities can be difficult to work with directly. It is 

required that update of knowledge about the parameters. With Markov Chain Monte 

Carlo (MCMC) method, it is possible to generate samples from a posterior density and 

to use these samples to approximate expectations of quantities of interest. Gibbs 

 

sampler is a MCMC method, and a powerful simulation algorithm. Gibbs sampler can 

be efficient when the parameters are not highly dependent on each other and the full 

conditional distributions are easy to sample from.3,8,11,12

Gibbs sampler works as follows:2,3,12

1. Set c=0 (m=1,2,…,M), and choose an arbitrary initial value of ,(') =

{ %(')
, $(')

, … , "(')
}F.

2. Generate each component of  ,(d3%) = e %(d3%)
, $(d3%)

, … , "(d3%)fEas follows:
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3. Set m=m+1 and go to step 1.

In Bayesian analysis, elicitation of the prior plays also the most major role. Bayesian 

analysis cannot be used for any modeling without using a prior distribution. Bayesian 

analysis is used to noninformative or informative prior in inference. Informative prior 

obtains from previous studies. It is not dominated by the likelihood and is effective on 

the posterior distribution.3,13,14

2.3. Simulation Algorithm

Our interest in this study was to compare the parameter estimates from WRM and 

Bayesian-WRM in different conditions. The models developed here have the same 

multiplicative structure. We used a simulation algorithm for analyses. The probability 

models with one explanatory variable were used in simulations and the following step 

were applied to carry out the simulations.
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a si mu la ti on al go rithm for analy ses. The pro ba bi -
lity mo dels with one exp la na tory va ri ab le we re
used in si mu la ti ons and the fol lo wing step we re ap-
p li ed to carry out the si mu la ti ons.

We com pa red WRM and Ba ye si an-WRM
with in for ma ti ve pri or in this al go rithm.

1) Set  up  a  va lu e  of  the  mo del  pa ra me ters 

2) Set up a va lu e of the samp le si ze. 

3) The exp la na tory va ri ab le (x) was ge ne ra ted
from uni form dis tri bu ti on with (0,1) pa ra me ters.

4) Two va ri ab les (t1 and t2) we re ge ne ra ted
from ex po nen ti al dis tri bu ti on with                        and
1 pa ra me ters, res pec ti vely.

5) Sur vi val ti me (t) was de no ted as min (t1,t2).

6) For un cen so red da ta, if t1 ≤ t2, un cen so red
was 1.

7) WRM and Ba ye si an-WRM we re per for med
by using the se steps. 

8) The pa ra me ter es ti ma tes we re re cor ded.
3th-7th steps we re rep li ca ted 1000 ti mes. Thus,
1000 dif fe rent pa ra me ter es ti ma tes we re ob ta i ned
from the analy ses.   

In si mu la ti on stu di es, n=50, 100 and 250 we re
for samp le si zes. β0=0.5 and β1=1 we re se lec ted. In
the al go rithm, in for ma ti ve pri or va lu es using a nor-
mal pri or dis tri bu ti on with
0.1, 0.5 was se lec ted for β1, and in for ma ti ve pri or
va lu es using a nor mal pri or dis tri bu ti on with 

0.5 and = 0.1 was se lec ted for β0.

Al so, the gam ma pri or dis tri bu ti on pa ra me ters for
λ we re a

In this al go rithm, the un derl ying as sump ti on
was that, af ter 2000 ite ra ti ons, the cha in wo uld ha -
ve re ac hed its tar get dis tri bu ti on. Thus, we to ok a
burn-in of 2000 samp les and the pos te ri or es ti ma -
tes we re ba sed on 10000 Mar kov cha in samp les.

Si mu la ti ons and analy ses we re per for med by
using SAS mac ro prog ram ming lan gu a ge, and SAS
LI FE REG and BLI FE REG pro ce du res. For each si t-
u a ti on, 1000 si mu la ti ons we re per for med. Af ter the
analy ses ba sed on al go rithm we re per for med, the
me an of the 1000 dif fe rent pa ra me ter es ti ma tes was
cal cu la ted. It was eva lu a ted that how the ave ra ge of
pa ra me ter es ti ma tes clo se to the va lu e de ter mi ned
for β1 in step 1. Bi a ses we re cal cu la ted as

RESULTS
We si mu la ted the ge ne ra ted da ta by run ning for
each of WRM and Ba ye si an-WRM with in for ma ti -
ve pri or using the si mu la ti on al go rithm. The ave -
ra ged va lu es over the 1000 si mu la ti ons we re
re por ted in Tab le 1 and Fi gu re 1 for var ying samp -
le si zes. When samp le si ze was in cre a sed, the pa ra -
me ter es ti ma tes ob ta i ned from WRM and
Ba ye si an-WRM we re small stan dard er ror. On
con di ti on that the best in for ma ti ve pri or 
and                         Ba ye si an-WRM had a bet ter pre-
dic ti ve per for man ce than WRM for all of the sam-
p le si zes. Es pe ci ally, for          stan dard er rors of
pa ra me ter es ti ma tes ob ta i ned from Ba ye si an-WRM
in cre a sed whi le va ri an ce of in for ma ti ve pri or in-

Prior n=50 n=100 n=250

Method Bias p Bias p Bias p

WRM - - 1.1279 1.4838 0.1279 0.545 1.0344 0.9647 0.0344 0.722 1.0131 0.5812 0.0131 0.722

1 0.1 1.0028 0.3004 0.0028 0.948 1.0032 0.2898 0.0032 0.912 1.0150 0.2669 0.0150 0.375

1 0.5 1.0464 0.5713 0.0464 0.568 1.0597 0.5099 0.0597 0.244 1.0506 0.4130 0.0516 0.054

Bayesian-WRM
1.5 0.1 1.4609 0.3063 0.4609 <0.001 1.4409 0.2972 0.4409 <0.001 1.3823 0.2759 0.3823 <0.001

1.5 0.5 1.3706 0.6000 0.3706 <0.001 1.3448 0.5371 0.3448 <0.001 1.2202 0.4301 0.2202 <0.001

2 0.1 1.9372 0.3104 0.9372 <0.001 1.8906 0.3037 0.8906 <0.001 1.7718 0.2852 0.7718 <0.001

2 0.5 1.7624 0.6279 0.7624 <0.001 1.6262 0.5643 0.6262 <0.001 1.4224 0.4460 0.4224 <0.001

TABLE 1: Posterior parameter estimate       , bias and standard error obtained from 1000 Monte Carlo simulation 
for           and n=50, 100, 250).
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We compared WRM and Bayesian-WRM with informative prior in this algorithm.

1) Set up a value of the model parameters ( ' and  %).

2) Set up a value of the sample size. 

3) The explanatory variable (x) was generated from uniform distribution with (0,1) 

parameters.

4) Two variables (&% and &$) were generated from exponential distribution with 

0(L((E>,) and 1 parameters, respectively.

5) Survival time (&) was denoted as min(&%, &$).

6) For uncensored data, if &% Y &$, uncensored was 1.

7) WRM and Bayesian-WRM were performed by using these steps. 

8) The parameter estimates were recorded. 3th-7th steps were replicated 1000 

times. Thus, 1000 different parameter estimates were obtained from the analyses.   

In simulation studies, n=50, 100 and 250 were for sample sizes.  '=0.5 and  %=1

were selected. In the algorithm, informative prior values using a normal prior 

distribution with  !" =1, 1.5, 2 and #"$= 0.1, 0.5 was selected for  %, and informative 

prior values using a normal prior distribution with  !"2 =0.5 and #"2$ = 0.1 was selected 

for  '. Also, the gamma prior distribution parameters for  - were a ^(10/j, 10/j).

In this algorithm, the underlying assumption was that, after 2000 iterations, the chain 

would have reached its target distribution. Thus, we took a burn-in of 2000 samples and 

the posterior estimates were based on 10000 Markov chain samples.

Simulations and analyses were performed by using SAS macro programming 

language, and SAS LIFEREG and BLIFEREG procedures. For each situation, 1000 

simulations were performed. After the analyses based on algorithm were performed, the 

mean of the 1000 different parameter estimates was calculated. It was evaluated that 
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cre a sed. On con di ti on that the im pro per in for -
ma ti ve pri or                       we fo und that bi as of the 
pa ra me ter es ti ma tes in cre a sed in Ba ye si an-WRM
ac cor ding to si mu la ti on pa ra me ter. Ho we ver,
when samp le si ze and/or va ri an ce of pri or dis tri -
bu ti on in cre a sed, alt ho ugh pri or in for ma ti on was
im pro per, we fo und that the bi as of the pa ra me ter
es ti ma tes dec re a sed.

Whi le pa ra me ter es ti ma tes of WRM and 
Ba ye si an-WRM with                           0.1, 0.5 pri ors
we re con ver gen ce to si mu la ti on pa ra me ter ac cor -
ding to two pro por ti on t test (p>0.05), pa ra me ter
es ti ma tes of Ba ye si an-WRM with         1.5, 2 and 

0.1, 0.5 pri ors we re not con ver gen ce to si mu -
la ti on pa ra me ter (p<0.001).

In the Ba ye si an-WRM, Ge we ke di ag nos tic test
and au to cor re la ti ons in di ca ted a re a so nably go od
mi xing of the Mar kov cha in (p>0.05). 

DISCUSSION
We com pa red ac ross the WRM and Ba ye si an-
WRM met hods un der var ying samp le si zes by

using Mon te Car lo si mu la ti on met hod on the ran-
do mi zed cen so ring si mu la ti on da ta.

The We i bull dis tri bu ti on is a fle xib le right ske -
wed dis tri bu ti on which is es pe ci ally ap prop ri a te for
mo del ling sur vi val da ta.1,4,15 The WRM is the most
wi dely used for the analy sis of sur vi val da ta.

The Ba ye si an-WRM can not be used for any
mo de ling wit ho ut using a pri or dis tri bu ti on. Pri or
in for ma ti on plays the most cru ci al ro le in Ba ye si -
an-WRM. Cal le et al. 4 and Ib ra him et al.2 re por ted
that Ba ye si an and clas si cal ap pro ac hes usu ally re-
sult in si mi lar conc lu si ons, when ad di ti o nal ex ter nal
in for ma ti on is not ava i lab le. Ab rams et al.7 com pa -
red da ta from pa ti ents with tu mo urs of the pel vic
re gi on using Ba ye si an-WRM ba sed on cli ni cal be li -
efs, the re sults of pre vi o us stu di es and re fe ren ce pri -
or dis tri bu ti ons. They re por ted that Ba ye si an
ap pro ach ba sed on the re sults of pre vi o us stu di es ex-
tre mely clo se to the re sults of the cur rent study, but
led to a re duc ti on in the va ri an ce. Al so they sa id
that Ba ye si an ap pro ach yi elds a re a lis tic as sess ment
of the cur rent evi den ce for a tre at ment.
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parameter estimates increased in Bayesian-WRM according to simulation parameter.
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prior information was improper, we found that the bias of the parameter estimates 
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While parameter estimates of WRM and Bayesian-WRM with  !" =1 and #"$=0.1, 
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Yin and Ib ra him16 analy zed using Ba ye si an
analy sis with a si mu la ti on study for var ying samp -
le si zes, 1000 rep li ca ti ons, 5000 Gibbs samp les and
200 burn-in samp les and a re al da ta set from a me -
la no ma cli ni cal tri al. They de ter mi ned that the pos-
te ri or stan dard de vi a ti on in cre a ses, as the cen so ring
ra te in cre a ses. Cal le et al.4 re por ted that the re sults
ob ta i ned from the fat-fre e yo gurt we re used to con-
s truct a pri or in for ma ti on in cal cu la ting the who -
le-fat yo gurt pos te ri or dis tri bu ti ons, and they led
to small im pro ve ments in the pos te ri or dis tri bu ti -
ons. Wong et al.5 used Ba ye si an-WRM to in ves ti -
ga te the ef fec ti ve ness of sil ver di a mi ne flu o ri de and
so di um flu o ri de var nish in ar res ting ac ti ve den tin
ca ri es in Chi ne se pre-scho ol chil dren. They re por -
ted that the re is a dan ger that the ad di ti o nal com-
p le xity of Ba ye si an met hods co uld le ad to im pro per
da ta analy sis if it is not used cor rectly. In our si m-
u la ti on study, we sho wed that pri or in for ma ti on
pla yed the very cru ci al ro le in pre dic ting si mu la ti -
on pa ra me ter. We sho wed that per for man ce of Ba -
ye si an-WRM in cre a sed when pro per pri or
in for ma ti on with small va ri an ce was used. In Ba ye -
si an-WRM, the bi as of pa ra me ter es ti ma te in cre a -
sed for using im pro per pri or in for ma ti on and
var ying samp le si zes. Ho we ver, when im pro per
pri or in for ma ti on with small va ri an ce was used, the
bi as of pa ra me ter es ti ma te in cre a sed. Gel man14 sa -
id that pri or dis tri bu ti on is a key part of Ba ye si an
in fe ren ce. They re por ted that with well-iden ti fi ed
pa ra me ters and lar ge samp le si zes, re a so nab le cho -

i ces of pri or dis tri bu ti ons will ha ve mi nor ef fects
on pos te ri or in fe ren ces, and if the samp le si ze is
small or ava i lab le da ta pro vi de only in di rect in for -
ma ti on abo ut the pa ra me ters of in te rest, the pri or
dis tri bu ti on be co mes mo re im por tant. Gel fand and
Mal lick17 sa id that Ba ye si an ap pro ach wo uld be ex-
pec ted to pro vi de mo re be li e vab le es ti ma tes of va -
ri a bi lity than un der li ke li ho od analy sis for smal ler
da ta sets. Si mi larly, in our study, we fo und that the
Ba ye si an ap pro ach had the best per for man ce if pro -
per in for ma ti ve pri or was used for smal ler da ta sets.

Alt ho ugh Ba ye si an-WRM is mo re ad van ta ge
than WRM, in terms of fle xi bi lity of mo del-bu il -
ding for comp lex da ta, in our si mu la ti ons, Ba ye si -
an-WRM used in for ma ti ve and pro per pri or
in for ma ti on was mo re ad van ta ge than WRM. In
every con di ti on, in for ma ti ve and pro per pri or in-
for ma ti on sho uld be used for analy zing da ta with
Ba ye si an-WRM. In the si tu a ti on that the re was not
ava i lab le pro per pri or in for ma ti on, re se arc hers sho -
uld pre fer a big samp le si ze and pri or dis tri bu ti on
pa ra me ters with a big va ri an ce wit hin pri or dis tri -
bu ti on pa ra me ters from pre vi o us stu di es. As a re-
sult, Ba ye si an-WRM sho wed bet ter per for man ce
than WRM, when sub jec ti ve da ta analy sis per for -
med by con si de ring of ex pert opi ni ons and his to ri -
cal know led ge abo ut pa ra me ters. Con se qu ently,
Ba ye si an-WRM sho uld be pre fer red in exis ten ce of
re li ab le or pro per in for ma ti ve pri ors, in the con-
trast ca ses, WRM sho uld be pre fer red.


