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Comparison of Bayesian and Classical
Analysis of Weibull Regression Model:
A Simulation Study

Bayesgil ve Klasik Weibull Regresyon Modelinin
Kargilagtirilmasi: Bir Simiilasyon Caligmasi

ABSTRACT Objective: The purpose of this study was to compare performances of classical Weibull
Regression Model (WRM) and Bayesian-WRM under varying conditions using Monte Carlo sim-
ulations. Material and Methods: It was simulated the generated data by running for each of classi-
cal WRM and Bayesian-WRM under varying informative priors and sample sizes using our
simulation algorithm. In simulation studies, n=50, 100 and 250 were for sample sizes, and inform-
ative prior values using a normal prior distribution with 8, =1, 1.5, 2 and 67=0.1,0.5 was selected for
B For each situation, 1000 simulations were performed. Results: Bayesian-WRM with proper in-
formative prior showed a good performance with too little bias. It was found out that bias of
Bayesian-WRM increased while priors were becoming distant from reliability in all sample sizes.
Furthermore, Bayesian-WRM obtained predictions with more little standard error than the classi-
cal WRM in both of small and big samples in the light of proper priors. Conclusion: In this simu-
lation study, Bayesian-WRM showed better performance than classical method, when subjective
data analysis performed by considering of expert opinions and historical knowledge about param-
eters. Consequently, Bayesian-WRM should be preferred in existence of reliable informative pri-
ors, in the contrast cases, classical WRM should be preferred.
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OZET Amag: Bu galismanin amaci, klasik Weibull regresyon modeli (WRM) ile Bayesgil-WRM
yontemlerini farkli kosullar altinda Monte Carlo simiilasyonlariyla performanslarinin
kargilagtirlmasidir. Gereg ve Yontemler: Simiilasyon algoritmamiz kullanilarak, farkli agiklayici
onsel bilgi ve 6rneklem hacimlerinde tiiretilen verilerle klasik WRM ile Bayesgil-WRM igin
simiilasyonlar gerceklestirildi. Simiilasyon ¢aligmasinda n= 50, 100, 250 6rneklem hacimleri ve
i¢in B, =1,1.5,2ve g3=0.1,0.5 parametreli normal 6nsel dagihmdan alinan agiklayic1 énsel bilgiler
secildi. Her bir durum i¢in 1000 simiilasyon gergeklestirildi. Bulgular: Veriye uygun 6nsel bilgi
kullanildiginda Bayesgil-WRM biraz daha iyi performans gosterdi. Tiim 6rnek hacimlerinde 6nsel
bilgi giivenirlikten uzaklastik¢a Bayesgil-WRM nin yanlihginin arttig1 belirlendi. Ayrica kii¢iik ve
biiyiik 6rnek hacimlerinde ve veriye uygun 6nsel bilgilerle ¢calisildiginda Bayesgil-WRM nin, klasik
WRM’den daha kiiciik standart hatali tahminler elde ettigi belirlendi. Sonug: Bu simiilasyon
caligmasinda Bayesgil-WRM, parametreler hakkinda uzman goriisleri ve daha 6nceki bilgiler ele
alinarak subjektif veri analizi gergeklestirildiginde klasik yontemden daha iyi performans gosterdi.
Sonug olarak Bayesgil-WRM'nin, giivenilir aciklayic1 6nsel bilgi var oldugunda tercih edilmesi
gerektigi aksi durumda klasik WRM’nin tercih edilebilecegi 6nerilmektedir.

Anahtar Kelimeler: Bayes teoremi; sagkalim analizi; markov zincirleri; bilgisayar simiilasyonu
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he effect of covariates is proportional with respect to survival time in
accelerated failure time (AFT) models. The Weibull regression mo-
del (WRM) is widely used as one of accelerated failure time models.
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Because, it can take on different shapes and can be
flexible to suit various applications.!

Bayesian analysis of survival data has received
much recent attention due to advances in compu-
tational and modelling techniques.? Also, paramet-
ric survival models are applied using Bayesian
approach. Bayesian approach provides inferences
that are exact according to classical methods, and
has the advantage in dealing with small sample
over classical methods. In the present study, Baye-
sian-WRM was carried out using Bayesian appro-
ach based on varying conditions.

Bayesian methods consist of data and prior in-
formation. It is generates conclusions based on the
synthesis of new information from an observed da-
ta and historical knowledge or expert opinion. The-
refore, Bayesian methods reflect subjective beliefs.
Bayesian methods cannot be used for any model-
ling without using a prior distribution.??

Few works have been published on the Baye-
sian-WRM method. Calle et al.* analyzed data from
sensory shelf-life studies. Wong et al.> used Baye-
sian-WRM to investigate the effectiveness of silver
diamine fluoride and sodium fluoride varnish in ar-
resting active dentin caries in Chinese pre-school
children. Sahu et al.® analyzed data from first and
second recurrence of infection in kidney patients
on dialysis using Bayesian-WRM with frailties. Ab-
rams et al.” analyzed data from cancer clinical trial
based on beliefs of clinicians and results available of
published/unpublished trials and noninformative
prior distributions using Bayesian-WRM.

In our study, we aimed to compare the perfor-
mances of classical WRM and Bayesian-WRM by
using Monte Carlo simulations under varying con-
ditions.

I MATERIAL AND METHODS
WEIBULL REGRESSION MODEL

Survival analysis investigates examines the relati-
onship of the survival distribution to covariates.®
Parametric survival models are known as the AFT
model. These models can be linearized by taking
logarithm:

In(t) = By + B1x + o€
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where ¢ is a random variable denoting the survival
time, x is a covariate, 3, and 3, are model parame-
ters and ¢ is an error term. The baseline distributi-
on of the error term can be specified as one of the
exponential, log-normal, log-logistic, and Weibull
distributions.!®

The fundamental distributions that have been
proposed for modeling survival are the exponenti-
al, Weibull and Gompertz distribution. The WRM
based on Weibull distribution is the most widely
used survival model for investigated the impact of
other factors on survival. It is a parametric survi-
val model and an AFT model that is one in which
survival time is assumed to follow a known distri-
bution.! The hazard function for the single covari-
ate WRM is

Atl—l

h(t,x,B, 1) = (ePotFiryl

where A = 1/o. The proportional hazards form of
the function is

t}.—l

_ [ A- _
h(t,x, B, A) = ho(t)e®* Ayt~ eforhi (ePotBix)2

where the baseline hazard function is ho(t) = Ayt*~!
y =ePo/7 =¢% and 61 = —Pi/0. Although the
parameter G is a variance-like parameter on the
log-time scale, 4=1/0 is commonly called the

shape parameter. Also y is a scale parameter.!?

The parameters of the Weibull probability dis-
tribution estimate by maximum likelihood. Maxi-
mum likelihood estimation consists of finding the
values of the distribution parameters that maximi-
ze the log-likelihood of the data values. The log-li-
kelihood function of the WRM is

n

L(B) = z Ci(—ll’l (0') + Zl') — eZi

i=1

where z; = (In(t;) — x';B)/o, x'; = (xi0, X1, e, Xip)
and X; = 1. The likelihood equations are obtained
by differentiating the log-likelihood function with
respect to the unknown parameters and setting the

expressions equal to zero."’
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BAYESIAN WEIBULL REGRESSION MODEL

Bayesian analysis generates based on the combi-
ning of new information from the observed data
and previous knowledge or expert opinion.’

In classical approaches such as maximum likeliho-
od for parameter estimation, inference is based on
the likelihood of the data alone. In Bayesian mod-
els, the likelihood (L(B)) of the observed data x gi-
ven parameters f is used to recast the prior 7(f),
with the updated knowledge summarized in a pos-
terior density (7 (8| x)).81*!! The relationship bet-
ween these densities is

n(Blx) < L(B)p(B)

Thus, updated knowledge is a function of prior
knowledge and the present data.23810.11

The density function of Weibull distribution
in terms of the parameterization a=log(y) is

f(tIA, @) = At* texp (a — exp(a) t*)

The likelihood function of WRM for A and o
parameters is specified by

n
Lal) = [rein sz
i=1

=AZi=Viexp{a (i, v;) + Ty (v; (A — Dlog () — tlexp(a))}

where S(t|4, @) = exp (—exp(a)t?) denoted We-
ibull survival function, 1= (¢, t,, ..., t,)’ is the inde-
pendent identically distributed survival times, and
v is the indicator variable.? If #> T, the ith data is
censored and thus, indicator variable is

11
v = {0

When 14 is assumed known, the conjugate pri-

t; > T,

or for exp(c) the gamma prior. The joint conjugate
prior is not available when (A, @) are both assumed
unknown.? The joint posterior distribution of (4,
a) is as follows:

(A, aln,t,v) o« L(4, aln, t, v)m(A|Ag, ko)1 (et| g, 0F)
where N(io,0¢) has the normal prior for o, and
¢(A0,Ko) has a gamma prior for A.

In the Bayesian-WRM, the joint posterior distri-
bution for A and B parametersis (B, An, t,x,v)

10
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n
o Ao+ B0 e {Z(wx’iﬁ + 01— Dlog (t) — tlexp(x'i)

i=1
1 -1
~rod =5 (B=po) ) (B~ uo)j

where Np(Ho,20) is a prior for B and a; = xi’ﬁ-z

In complex models, posterior densities can be
difficult to work with directly. It is required that
update of knowledge about the parameters. With
Markov Chain Monte Carlo (MCMC) method, it is
possible to generate samples from a posterior den-
sity and to use these samples to approximate expec-
tations of quantities of interest. Gibbs sampler is a
MCMC method, and a powerful simulation algo-
rithm. Gibbs sampler can be efficient when the pa-
rameters are not highly dependent on each other
and the full conditional distributions are easy to
3,8,11,12

sample from.

Gibbs sampler works as follows:?312

1) Set m=0 (m=1,2,....M), and choose an arbit-
rary initial value of B® = {[)’1(0), 2(0), 31(10)}"
2) Generate each component of g™V =

(m+1) ,(m+1) (m+1)
(B0, gD, B

B Draw ﬁ1(m+1)fr0m H(ﬁllﬁz(m), o) ,Em),x)

H Draw ﬁz(mH) from n(ﬁ2|ﬁ1(m+1),ﬁ3(m) . f,m),x)

}, as follows:

® Draw 315"”1) from n(ﬁp|ﬁl(m+1),ﬁz(m+1) . ;,T:l),x)

3) Set m=m+1 and go to step 1.

In Bayesian analysis, elicitation of the prior
plays also the most major role. Bayesian analysis
cannot be used for any modeling without using a
prior distribution. Bayesian analysis is used to no-
ninformative or informative prior in inference. In-
formative prior obtains from previous studies. It is
not dominated by the likelihood and is effective on
the posterior distribution.>!314

SIMULATION ALGORITHM

Our interest in this study was to compare the para-
meter estimates from WRM and Bayesian-WRM
in different conditions. The models developed he-
re have the same multiplicative structure. We used

Turkiye Klinikleri J Biostat 2011;3(1)
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a simulation algorithm for analyses. The probabi-
lity models with one explanatory variable were
used in simulations and the following step were ap-
plied to carry out the simulations.

We compared WRM and Bayesian-WRM
with informative prior in this algorithm.

1) Set up a value of the model parameters

(Bo and B,)

2) Set up a value of the sample size.

3) The explanatory variable (x) was generated
from uniform distribution with (0,1) parameters.

4) Two variables (#; and t,) were generated
from exponential distribution with exp(x’;8) and
1 parameters, respectively.

5) Survival time (¢) was denoted as min (#,ty).

6) For uncensored data, if #; < #, uncensored
was 1.

7) WRM and Bayesian-WRM were performed
by using these steps.

8) The parameter estimates were recorded.
3th-7th steps were replicated 1000 times. Thus,
1000 different parameter estimates were obtained
from the analyses.

In simulation studies, n=50, 100 and 250 were
for sample sizes. B;=0.5 and ;=1 were selected. In
the algorithm, informative prior values using a nor-
mal prior distribution with Ep =1, 1.5,2 and o=
0.1, 0.5 was selected for 3;, and informative prior
values using a normal prior distribution with
Bp, =0.5 and g2 = 0.5 and = 0.1 was selected for f,.

imran KURT OMURLU et al

Also, the gamma prior distribution parameters for
Awerea ¢(107%,107%).

In this algorithm, the underlying assumption
was that, after 2000 iterations, the chain would ha-
ve reached its target distribution. Thus, we took a
burn-in of 2000 samples and the posterior estima-
tes were based on 10000 Markov chain samples.

Simulations and analyses were performed by
using SAS macro programming language, and SAS
LIFEREG and BLIFEREG procedures. For each sit-
uation, 1000 simulations were performed. After the
analyses based on algorithm were performed, the
mean of the 1000 different parameter estimates was
calculated. It was evaluated that how the average of
parameter estimates close to the value determined
for 8, in step 1. Biases were calculated as f§ — B-

I RESULTS

We simulated the generated data by running for
each of WRM and Bayesian-WRM with informati-
ve prior using the simulation algorithm. The ave-
raged values over the 1000 simulations were
reported in Table 1 and Figure 1 for varying samp-
le sizes. When sample size was increased, the para-
obtained from WRM and
Bayesian-WRM were small standard error. On

meter estimates

condition that the best informative prior (,gp =1

and 07=0.1, 0.5), Bayesian-WRM had a better pre-
dictive performance than WRM for all of the sam-
ple sizes. Especially, for B, =1, standard errors of
parameter estimates obtained from Bayesian-WRM
increased while variance of informative prior in-

TABLE 1: Posterior parameter estimate (1), bias and standard error obtained from 1000 Monte Carlo simulation
for ;=1 and n=50, 100, 250).
n=50 n=100 n=250
Method ﬁ_p ‘713 I g Bias p b1 g, Bias p b1 63, Bias p
WRM 11279 14838 01279 0545 10344 09647 00344 0722 10131 05812 00131 0722
1 04 10028 03004 00028 0948 10032 02898 00032 0912 10150 02669 00150 0375
1 05 10464 05713 00464 0568 10597 05099 00597 0244 10506 04130 00516 0054
Bayesian AN 15 01 14609 03063 04609 <0001 14409 02972 04409  <0.001 153823 02759  0.3823  <0.001
15 05 13706 06000 03708 <0001 13448 05371 03448  <0.001 12202 04301 02202  <0.001
2 01 19372 03104 09372 <0001 18906 03037 08906 <0.001 17718 02852 07718  <0.001
2 0.5 1.7624 0.6279 0.7624 <0.001 1.6262 0.5643 0.6262 <0.001 1.4224 0.4460 0.4224  <0.001
Turkiye Klinikleri ] Biostat 2011;3(1) 11
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Parameter Estimate
[
]
—0—A
f——
A

B n=50
O n=100
A n=250

+SE
L -SE

I I I
WRM Bayesian-WRM Bayesian-WRM
(1;0.1) (1;0.5)

Bayesian-WRM
(1.5;0.1)

I I I I
Bayesian-WRM Bayesian-WRM Bayesian-WRM
(1.5;0.5) (2;0.1) (2;0.5)

FIGURE 1: ﬁl parameter estimates and standard errors (SE) obtained from 1000 Monte Carlo simulation for' 84 =1 and n=50, 100, 250 of WRM, and Bayesian-

WRM.

creased. On condition that the improper infor-
mative prior (Bp =1.5, 2), we found that bias of the
parameter estimates increased in Bayesian-WRM
according to simulation parameter. However,
when sample size and/or variance of prior distri-
bution increased, although prior information was
improper, we found that the bias of the parameter
estimates decreased.

While parameter estimates of WRM and
Bayesian-WRM with £, =1 and 67=0.1, 0.5 priors
were convergence to simulation parameter accor-
ding to two proportion t test (p>0.05), parameter
estimates of Bayesian-WRM with B, = 1.5, 2 and
op= 0.1, 0.5 priors were not convergence to simu-
lation parameter (p<0.001).

In the Bayesian-WRM, Geweke diagnostic test
and autocorrelations indicated a reasonably good
mixing of the Markov chain (p>0.05).

I DISCUSSION

We compared across the WRM and Bayesian-
WRM methods under varying sample sizes by

12

using Monte Carlo simulation method on the ran-
domized censoring simulation data.

The Weibull distribution is a flexible right ske-
wed distribution which is especially appropriate for
modelling survival data."*!> The WRM is the most
widely used for the analysis of survival data.

The Bayesian-WRM cannot be used for any
modeling without using a prior distribution. Prior
information plays the most crucial role in Bayesi-
an-WRM. Calle et al. * and Ibrahim et al.? reported
that Bayesian and classical approaches usually re-
sult in similar conclusions, when additional external
information is not available. Abrams et al.” compa-
red data from patients with tumours of the pelvic
region using Bayesian-WRM based on clinical beli-
efs, the results of previous studies and reference pri-
or distributions. They reported that Bayesian
approach based on the results of previous studies ex-
tremely close to the results of the current study, but
led to a reduction in the variance. Also they said
that Bayesian approach yields a realistic assessment
of the current evidence for a treatment.

Turkiye Klinikleri J Biostat 2011;3(1)
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Yin and Ibrahim'® analyzed using Bayesian
analysis with a simulation study for varying samp-
le sizes, 1000 replications, 5000 Gibbs samples and
200 burn-in samples and a real data set from a me-
lanoma clinical trial. They determined that the pos-
terior standard deviation increases, as the censoring
rate increases. Calle et al.* reported that the results
obtained from the fat-free yogurt were used to con-
struct a prior information in calculating the who-
le-fat yogurt posterior distributions, and they led
to small improvements in the posterior distributi-
ons. Wong et al.’ used Bayesian-WRM to investi-
gate the effectiveness of silver diamine fluoride and
sodium fluoride varnish in arresting active dentin
caries in Chinese pre-school children. They repor-
ted that there is a danger that the additional com-
plexity of Bayesian methods could lead to improper
data analysis if it is not used correctly. In our sim-
ulation study, we showed that prior information
played the very crucial role in predicting simulati-
on parameter. We showed that performance of Ba-
yesian-WRM
information with small variance was used. In Baye-

increased when proper prior

sian-WRM, the bias of parameter estimate increa-
sed for using improper prior information and
varying sample sizes. However, when improper
prior information with small variance was used, the
bias of parameter estimate increased. Gelman'* sa-
id that prior distribution is a key part of Bayesian
inference. They reported that with well-identified
parameters and large sample sizes, reasonable cho-

imran KURT OMURLU et al

ices of prior distributions will have minor effects
on posterior inferences, and if the sample size is
small or available data provide only indirect infor-
mation about the parameters of interest, the prior
distribution becomes more important. Gelfand and
Mallick!” said that Bayesian approach would be ex-
pected to provide more believable estimates of va-
riability than under likelihood analysis for smaller
data sets. Similarly, in our study, we found that the
Bayesian approach had the best performance if pro-
per informative prior was used for smaller data sets.

Although Bayesian-WRM is more advantage
than WRM, in terms of flexibility of model-buil-
ding for complex data, in our simulations, Bayesi-
an-WRM used informative and proper prior
information was more advantage than WRM. In
every condition, informative and proper prior in-
formation should be used for analyzing data with
Bayesian-WRM. In the situation that there was not
available proper prior information, researchers sho-
uld prefer a big sample size and prior distribution
parameters with a big variance within prior distri-
bution parameters from previous studies. As a re-
sult, Bayesian-WRM showed better performance
than WRM, when subjective data analysis perfor-
med by considering of expert opinions and histori-
cal knowledge about parameters. Consequently,
Bayesian-WRM should be preferred in existence of
reliable or proper informative priors, in the con-
trast cases, WRM should be preferred.
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