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ABSTRACT Objective: Breast cancer is a leading cause of can-

cer-related death among women worldwide, with approximately 2.3 

million new cases and 685,000 deaths reported in 2020 alone. One 
critical step in developing effective classification and prediction 

models is variable selection, which involves identifying a subset of 

relevant variables from a larger set of potential predictors. Accurate 
variable selection is crucial for building interpretable and robust 

models that are not overfit to noise, leading to improved model per-

formance and generalization ability. In this paper, we proposed an 
alternative objective approach for comparing two Akaike Informa-

tion Criterions (AIC) that originated from two competing models, 

such that the magnitude of the difference is subjected to the statisti-
cal test of significance. Material and Methods: We developed a 

new backward elimination variable selection procedure similar in 

spirit to the existing “stepAIC” within the environment of R statis-
tical software. We used both simulated and Wisconsin breast cancer 

diagnostic datasets to compare the proposed method's variable se-

lection and predictive performances with “stepAIC” and LASSO. 
Results: The simulation showed that the proposed AIC procedure 

achieved higher variable selection sensitivity, specificity and accu-

racy when compared to stepAIC and LASSO. Also, the proposed 
AIC method's prediction results are relatively comparable with ste-

pAIC and LASSO at various simulated data dimensions. Similar 

supremacy results were observed with the breast cancer dataset 
used. Conclusion: The AIC-based variable selection approach pro-

posed is a promising method that integrates AIC with statistical 
testing for improved variable selection in breast cancer classifica-

tion and prediction. 

 
Keywords: Breast cancer; Akaike Information Criteria;  

                     variable selection; backward selection; LASSO 

ÖZET Amaç: Göğüs kanseri, yalnızca 2020 yılında bildirilmiş 

yaklaşık 2,3 milyon yeni vaka ve 685.000 ölüm ile dünya çapında 

kadınlar arasında kanser ilişkili ölümlerin başında gelen sebeplerin-
den biridir. Etkili sınıflandırma ve tahmin modelleri geliştirmede 

kritik bir adım, daha geniş bir potansiyel öngörücü setinden, ilgili 

değişken alt seti tanımlamayı içeren değişken seçimdir. Doğru de-
ğişken seçimi, gürültüye fazla uyum sağlamayan, yorumlanabilir ve 

sağlam modeller oluşturmada çok önemlidir. Bu durum gelişmiş 

model performansı ve generalizasyon becerisi sağlar. Bu makalede, 
2 rakip modelden oluşan 2 Akaike Bilgi Kriterleri’ni [Akaike 

Information Criterions (AIC)] karşılaştırdığımız alternatif objektif 

bir yaklaşım sunduk, öyle ki farkın büyüklüğü istatistiksel anlamlı-
lık testine tabi tutulmuştur. Gereç ve Yöntemler: R istatistik yazı-

lımı ortamında bulunan “stepAIC”ye benzer yeni bir geriye dönük 

eleme değişken seçme prosedürü geliştirdik. Sunulan metodun de-
ğişken seçimi ile “stepAIC” ve LASSO ile tahmini performanslarını 

karşılaştımak için simüle edilmiş, Wisconsin meme kanseri tanı 

veri setlerini kullandık. Bulgular: Simülasyon, sunulan AIC prose-
dürünün stepAIC ve LASSO’ya kıyasla yüksek değişken seçim 

hassasiyeti, spesifitesi ve doğruluğu kazandığını göstermiştir. Ayrı-

ca, sunulan AIC yönteminin tahmin sonuçları, simüle edilen çeşitli 
veri boyutlarında stepAIC ve LASSO ile görece karşılaştırılabilir-

dir. Kullanılan meme kanseri veri setinde de benzer üstünlük sonuç-

ları gözlemlenmiştir. Sonuç: AIC temelli değişken seçim yaklaşı-
mı, meme kanseri sınıflandırması ve tahmininde AIC’yi gelişmiş 

değişken seçimi için istatistiksel testlere entegre eden, umut verici 
bir metottur. 
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Breast cancer is a leading cause of cancer-related death among women worldwide, with approximately 

2.3 million new cases and 685,000 deaths reported in 2020 alone.
1
 Early and accurate detection of breast 

cancer is crucial for effective treatment and improved patient outcomes. Machine learning techniques, spe-

cifically classification and prediction models, have shown great promise in assisting healthcare professionals 

in the early diagnosis and prognosis of breast cancer. A common machine learning predictive model that is 

often applied in breast cancer prediction is logistic regression. Logistic regression is a widely used statistical 

method for breast cancer prediction. It is a binary classification algorithm that models the relationship be-

tween a set of independent variables (features) and the probability of a binary outcome, such as the presence 

or absence of breast cancer. 

One critical step in developing effective logistic regression models is variable selection, which involves 

identifying a subset of relevant variables or variables from a larger set of potential predictors. Accurate vari-

able selection is crucial for building interpretable and robust models that are not overfit to noise, leading to 

improved model performance and generalization ability. 

One popular method for variable selection is the Akaike Information Criterion (AIC), which Akaike in-

troduced in 1974.
2
 AIC is a widely used model selection criterion that balances the trade-off between model 

complexity and goodness of fit, making it suitable for both model selection and prediction tasks. AIC is 

based on the principle of information theory and penalizes models with higher complexity, encouraging the 

selection of simpler models with fewer variables. The goal of AIC variable selection is to identify the subset 

of predictors that provides the best trade-off between goodness of fit and model complexity. Variable or 

model selection with AIC involves identifying variable(s) or model(s) with the least AIC value. In simple 

terms, the lower the AIC value for a model, the better the model. 

Several studies have used AIC variable selection to improve breast cancer classification and prediction. 

One such study by Li et al.
 
used the AIC for selecting the best model among competing models before per-

forming breast cancer classification and prediction.
3
 The authors performed variable selection with the use of 

AIC to identify relevant variables from high-dimensional breast cancer data. 

In their study, Li et al. used a dataset containing gene expression profiles of breast cancer patients and 

applied their proposed AIC-based variable selection algorithm to identify a subset of genes that are strongly 

associated with breast cancer classification and prediction.
3
 The authors compared the performance of their 

AIC-based approach with other commonly used variable selection methods, such as Lasso, Ridge, and Elas-

tic Net, and demonstrated that their proposed method outperformed these methods in terms of prediction ac-

curacy and model interpretability. 

Another similar study by Yu et al. employed AIC variable selection for gene expression data in triple-

negative breast cancer classification.
4
 The authors used AIC to compare different models with different sub-

sets of variables and selected the model with the lowest AIC value as the best model. They demonstrated that 

their AIC-based variable selection method outperformed other commonly used methods, such as stepwise 

selection and LASSO, in terms of classification accuracy and model interpretability. 

Similarly, Chen et al. used AIC variable selection for early breast cancer prediction using radiomics 

variables extracted from medical images.
5
 They applied AIC to evaluate the performance of different vari-

able subsets and identified the optimal subset of variables that yielded the lowest AIC value. Their results 

showed that the AIC-based variable selection method improved the prediction accuracy compared to other 

variable selection methods, such as correlation-based and mutual information-based methods. 

In addition to classification and prediction, AIC has also been used for variable selection in other types 

of cancer studies. For example, in a study by Liu et al., AIC was used to select the most informative vari-

ables from a large set of clinical, pathological, and imaging variables for predicting breast cancer recur-

rence.
6
 The authors developed a predictive model using AIC-selected variables and demonstrated that their 

model had superior predictive performance compared to other models. 
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Another recent study by Li et al. utilized AIC variable selection technique for cervical cancer classifica-

tion and prediction was proposed.
7 

The authors developed a novel algorithm that combines a backward 

elimination procedure with AIC to select the most relevant variables from a large dataset of cervical cancer 

patients. The backward elimination procedure starts with the full variable set and iteratively removes the 

least significant variables based on their p-values from the logistic regression model. Then, AIC variable se-

lection is performed to evaluate the performance of the model with different variable subsets and select the 

optimal variable set that minimizes the AIC value. The proposed method was compared with other variable 

selection techniques, including stepwise selection and LASSO regression, on a publicly available breast can-

cer dataset. The results showed that the proposed method outperformed other methods in terms of classifica-

tion accuracy, sensitivity, specificity, and Area Under the Curve (AUC) of the Receiver Operating Charac-

teristic curve, indicating its superior performance in breast cancer classification and prediction. 

Furthermore, another recent study by Chen et al. and Zhang et al. also utilized AIC variable selection in 

breast cancer classification and prediction.
8,9

 The authors proposed a novel procedure that integrates AIC-

based variable selection with support vector machine (SVM) classification for breast cancer diagnosis. The 

AIC-based variable selection method was used to select the most informative variables from a high-

dimensional dataset of gene expression profiles, and the selected variables were then used to train an SVM 

classifier for breast cancer diagnosis. The proposed method was evaluated on a real-world breast cancer 

dataset, and the results demonstrated that it achieved higher classification accuracy, sensitivity, specificity, 

and AUC compared to other variable selection methods, such as recursive variable elimination and random 

forest. 

In summary, recent literature has shown that AIC-based variable selection methods can improve the ac-

curacy and interpretability of breast cancer classification and prediction models. These methods offer a 

promising approach to identifying the most relevant variables from high-dimensional datasets and enhance 

the performance of breast cancer diagnosis and prediction models. However, all the studies mentioned above 

performed AIC variable selection using a subjective approach. By subjective, we mean the best models or 

variables were identified based on minimum AIC value. The big question is, what is the minimum or optimal 

AIC threshold difference for a specific dataset? Thus, in this paper, we propose an alternative objective ap-

proach for comparing two AICs that originated from two competing models, such that the magnitude of the 

difference is subjected to the statistical test of significance. Specifically, a new backward elimination vari-

able selection procedure similar to the existing “stepAIC” procedure in R statistical software is developed. 

The method's variable selection and predictive performances are compared with “stepAIC” and LASSO us-

ing both simulated and real-life breast cancer datasets. 

    MATERIAL AND METHODS 

Logistic regression model: Logistic regression is a statistical method used to analyze the relationship 

between a binary dependent variable (breast cancer outcome) and one or more independent variables (diag-

nostic or prognostic factors). The goal of logistic regression is to find the best-fitting model that can predict 

the probability of the binary outcome based on the values of the independent variables.
10-15

 

The logistic regression model is formulated using a logistic function, which is a type of sigmoid func-

tion that maps any real-valued input to the range [0, 1]. The logistic function is defined as: 

                                                                                (1) 

where          also denoted by   is the probability of the dependent variable   (breast cancer out-

comes) being equal to 1 given the values of the independent variables   and their associated coefficient  , 

and       is the exponential function. The likelihood of parameter   in equation (1) for   observed samples 

according to (7) is given by 
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The corresponding log-likelihood follows as: 

                                     

 

   

 

                             
        

          
            

 

          
  

 

   

 

                                 

 

   

 

 

The logistic regression model is trained using a maximum likelihood estimation method, which esti-

mates the parameters of the model that maximizes the likelihood of observing the data. The model parame-

ters are usually estimated using numerical optimization algorithms, such as gradient descent or Newton-

Raphson (3).  

AIC Criteria for logistic regression model: In logistic regression, AIC is calculated using the follow-

ing formula: 

                      

                                         

 

   

       

where   is the number of parameters in the model, also known as the model's complexity. In logistic re-

gression, the parameters include the regression coefficients for the predictor variables and an additional pa-

rameter for the intercept term. The AIC compares different logistic regression models, with lower values in-

dicating better model fit. The AIC penalizes models with higher complexity (i.e., more parameters) to pre-

vent overfitting. The term    acts as a penalty term in the AIC formula, discouraging overly complex mod-

els that may fit the data well but not generalize to new data. When comparing multiple logistic regression 

models, the model with the lowest AIC value is considered the best-fitting model, as it balances the good-

ness of fit and model complexity (3).  

Test of difference of two AICs for logistic regression: Suppose     
  and     

  are two Akaike Infor-

mation Criteria estimated from two competing nested models with the number of parameters   and   . If 

     , we would expect     
      

 , thus we can construct a  -like statistic as follows: 

  
                          

                 
               (2) 

where       
      

   and         
      

   are the expected value and variance of the theoretical 

distribution of     
      

 . The statistic   can be used to test the following one-sided hypothesis: 

               

              . 

Under   , the statistic   can be approximated with the normal distribution       , and under   , the 

statistic   follows a normal distribution with mean and variance       
      

   and         
      

  . 
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Proof: 

Given that: 

    
                                 (3) 

    
                                 (4) 

Equation (4) – (3) gives: 

    
      

                                              (5) 

Recall that                           is distributed       

 , and is the likelihood ratio test for com-

paring two nested models where    is the full model and    is the reduced model, thus,
16

 

    
      

        

                       (6) 

Therefore, the expected value and variance of the difference between the two AICs,     
      

  are 

      
      

           

            

      
      

                  

      
      

                      (7) 

Consequently, the variance is; 

        
      

             

   

        
      

                        (8) 

Now, under    and backward elimination procedure, we can assume that        , that is the model 

1 is one additional parameter larger than model  . Thus,       
      

          and the corresponding 

variance is         
      

       . Therefore, the mean and variance of the statistic   are:  
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Equations (9) and (10) imply that the statistic            . 

Variable selection based on AIC testing: We develop a backward elimination procedure based on AIC 

testing in equation (2). We adapted the existing “stepAIC” procedure in R statistical software by updating 

the default AIC model comparison based on small thresholds  . Instead of predefining  , we compare the 

AICs of model     and   at each step by calculating statistic   in (2) and the associated p-value. The p-

value of   can be easily computed in R using the function “1-pnorm(z)”. The new variable selection algo-

rithm is presented below: 

Algorithm 1: AIC testing variable selection algorithm  

1. Let             be the full model with    variables. 

2. Compute     
                    . 

3. Create a null      vector of size   . 

4. For each   in          do: 

a. Compute                        

b. End For   in         . 

5. Sort the       in decreasing order and store them as     
    . 

6. Create a null     
     and        vectors of size    

7. For   in          do: 

a. Fit an updated model                             using the maximum       in     
    . 

b. Compute                              

c. Compute the test statistic     
             

  
 

d. Compute the p-value            

e. If      , break. 

f. Update     
       . 

g. Print the final best model            with              . 

h. End For   in         . 

Simulation study: We simulated five predictors to be informative variables out of              

variables, and set        . We generate all predictors from a k-variate normal distribution with mean 0 and 

independent covariance variances            . The logistic regression model is simulated using 

                    with                      ,                     and 

    
               

             
 . 
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We compare the proposed AIC testing variable selection procedure with the traditional “stepAIC” pro-

cedure in R and LASSO.
17,18

 The following variable selection performance metrics were used: 

Sensitivity is one minus the false deletion rate. For example, suppose that the true coefficients are [0, 1, 

1, 1, 0] so that the best model would include predictors 2, 3, and 4, but that our model includes only predic-

tors 3 and 4. Then the false deletion rate is 33% (1/3 of the good predictors were lost), so sensitivity is 67% 

(2/3 were kept) (10). Therefore,  

            
          

        
 

where            is the number of the selected informative variables, and          is the number of 

true informative variables. 

Specificity is one minus the false inclusion rate. For example, suppose that the true model would include 

predictors 2, 3, and 4 (and exclude predictors 1 and 5), but our estimate contains 1, 2, 3, and 4. Then the false 

inclusion rate and the specificity rate would both be 50%, since of the two inactive predictors, one was in-

cluded, and one was not (10).  

            
           

         
 

where             is the number of the selected uninformative variables, and           is the number 

of true uninformative variables. 

Correct model rate (Accuracy) is the proportion of simulations in which exactly the correct subset was 

identified (i.e., in which sensitivity and specificity were both 100%). If a model is not correctly identified, 

then it is overfit (has too many predictors), underfit (too few), or misfit (the wrong ones) (10). 

         
                                  

 
  

where   is the number of repetitions set as 100. 

We calculated the sensitivity, specificity and accuracy attained by each simulation method and then av-

eraged them. In addition, we also compare the predictive performance of the best model of each method us-

ing the misclassification error rate (mer) (10). The mer is computed as 

    
     

 
 

where   : represents the actual number of correct class “1” predicted as class “1”,   : represents the 

actual number of correct class “0” predicted as class “0” (10). In addition, we compared the computational 

time of the proposed method with the existing methods. The computational time was computed in R using 

the function “system.time()”. 

Database: Our study did not require ethical board approval because it was based on publicly available 

information from the UCI machine learning repository.
19

 The Wisconsin Breast Cancer Diagnostic Data Set 

is a widely used dataset in machine learning and cancer research. It was originally obtained from the Univer-

sity of Wisconsin Hospitals, Madison, by William H. Wolberg. The data set contains a total of 569 instances, 

with each instance representing a breast cancer biopsy sample. The data set includes 30 variables describing 

various characteristics of the cell nuclei present in the biopsy samples, such as mean radius, texture, smooth-

ness, and so on. The full variable description can be found in Table 1. The dataset is divided into two 

classes: 357 benign (representing non-cancerous samples) and 212 malignant (representing cancerous sam-

ples).
19-21 
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TABLE 1: Variable descriptions in the Wisconsin Breast Cancer Diagnostic Data Set. 
 

Variable code Variable name Variable code Variable name Variable code Variable name 

X1 Radius mean X11 Radius severity X21 Radius worst 

X2 Texture mean X12 Texture severity X22 Texture worst 

X3 Perimeter mean X13 Perimeter severity X23 Perimeter worst 

X4 Area mean X14 Area severity X24 Area worst 

X5 Smoothness mean X15 Smoothness severity X25 Smoothness worst 

X6 Compactness mean X16 Compactness severity X26 Compactness worst 

X7 Concavity mean X17 Concavity severity X27 Concavity worst 

X8 Concave points mean X18 Concave points severity X28 Concave points worst 

X9 Symmetry mean X19 Symmetry severity X29 Symmetry worst 

X10 Fractal dimension mean X20 Fractal dimension severity X30 Fractal dimension worst 

 

The Wisconsin Breast Cancer Diagnostic Data Set variables are computed from digitized images of fine 

needle aspirates (FNA) of a breast mass. These images were captured using a CellScan system, which gener-

ates images of stained FNA slides at magnifications of 40x and 100x. The variables were then extracted from 

the images using image processing techniques, and statistical measures were calculated to characterize the 

cell nuclei in the biopsy samples.
19

 

    RESULTS 

Table 2 presents the performances of the variable selection methods using the performance metrics defined 

earlier and the average computational time in seconds. The results represent the average (mean) of 100 simu-

lation runs. Algorithm 1 was implemented in R for the Proposed AICtest, the “stepAIC” function in R pack-

age “stat” for the StepAIC method, and R package “glmnet” for LASSO. 

 

TABLE 2: Performance measures and average computational time (s) for the Proposed AICtest, R StepAIC, and LASSO based on the 

average of 100 simulation runs. 
 

  Performance metrics 
Method 

Proposed AICtest R StepAIC LASSO 

10 

Sensitivity 1.000 1.000 1.000 

Specificity 1.000 0.784 0.822 

Accuracy 1.000 0.330 0.470 

MER 0.100 0.098 0.098 

Time (s) 0.034 0.082 0.138 

20 

Sensitivity 1.000 1.000 1.000 

Specificity 0.999 0.789 0.862 

Accuracy 0.990 0.020 0.280 

MER 0.101 0.092 0.096 

Time (s) 0.089 0.469 0.189 

30 

Sensitivity 1.000 1.000 1.000 

Specificity 0.997 0.794 0.869 

Accuracy 0.970 0.000 0.260 

MER 0.103 0.088 0.097 

Time (s) 0.170 1.429 0.301 
 

AIC: Akaike Information Criterion. 
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Application to Wisconsin Breast Cancer Diagnostic Data Set: We applied the three procedures to 

identify the most informative variables that will accurately predict the two classes. The dataset was parti-

tioned into ten folds train:test cross-validation. The three methods were compared based on the average 

number of selected variables (ASV), test misclassification error rate (TMER) and the top selected variables 

(TSV). The TSV is computed by calculating the total number of times a variable is selected out of the ten 

folds. Variables that are selected at least 5/10 are reported. Table 3 presents the results of the breast cancer 

data analysis. 

 

TABLE 3: ASV, TMER, and TSV for the 10-fold cross-validation of the Wisconsin breast cancer diagnostic dataset. 
 

Method ASV TMER TSV 

Proposed AICtest 11 0.036 
X5(10), X7(10), X8(10), X9(10), X10(10), X12(10), 

X14(10), X15(10), X19(10), X25(7), X27(6), X30(5). 

R StepAIC 20 0.053 

X6(10), X18(10), X1(9), X20(9), X8(8), X16(8)  

X17(8), X19(8), X29(8), X30(8), X4(7), X11(7),  

X13(7), X14(7), X27(7), X9(6), X21(6), X22(6),  

X15(5), X24(5). 

LASSO 9 0.053 
X11(10), X22(10), X25(10), X29(10), X27(9), X28(9), 

X21(8), X8(7), X15(7), X24(5). 

 

Red: Variables selected by all three methods, Black: Variables selected by two methods. The ASV is the ASV out of the 30 variables over the ten folds cross-

validation. The TMER is the average misclassification error rate based on prediction using the test dataset in 10 folds cross-validation. The TSV is computed 

by calculating the total number of times a variable is selected out of the ten folds. Variables that are selected at least 5/10 are reported. ASV: Average number 

of selected variables; TMER: Test misclassification error rate; TSV: Top selected variables; AIC: Akaike Information Criterion. 

 
 

    DISCUSSION 

The simulation results in Table 2 showed that the three methods are equally sensitive across various data di-

mensions. This implies that they can all correctly identify the five informative variables. In terms of specific-

ity, the proposed AICtest is the most specific in terms of correctly identifying the     uninformative vari-

ables at various levels of  . This result also translated to having the highest model accuracy in identifying 

the correct model with the five informative variables. As expected, the predictive performance depends on 

the number of model parameters; the higher the number of parameters in the model, the lower the misclassi-

fication error rate. Therefore, the prediction results observed for the three methods are relatively similar. 

Overall, the AICtest achieved the highest performance score of 3 out of the 4 criteria, making it the best 

among the three methods. The variable selection consistency performance of AICtest across various levels of 

  also indicates that it can be easily adapted to     high-dimensional situation, as the increase in dimen-

sion does not substantially degrades its performance. Similarly, the computational time comparison pre-

sented in Table 2 showed that the proposed AICtest is the best in terms of the lowest average execution time 

to perform model selection. 

Table 3 presents the average 10-fold cross-validation. The results are similar to the ones observed in the 

simulation study. The average number of selected variable results (ASV) showed that the proposed AICtest 

and LASSO are more precise with fewer variables selected, while StepAIC identified more variables. In ad-

dition, in terms of prediction accuracy (1-TMER), the proposed AICtest is the best, with 96.4% accuracy in 

correctly predicting benign and malignant breast cancer classes with an average of 11 variables. On the other 

hand, both StepAIC and LASSO achieved 94.7% accuracy with an average of 20 and 9 variables, respec-

tively. We also used the TSV to measure the selection consistency of the methods. The proposed AICtest, 

LASSO and StepAIC consistently identified 9/30,  4/30, and 2/30 variables with a selection probability of 1. 

This implies that the proposed AICtest is more valid in identifying the most important variables under differ-
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ent conditions. The top nine variables that were consistently selected by the proposed AICtest are smoothness 

mean, concavity mean, concave point mean, symmetry mean, fractal dimension mean, texture severity, area 

severity, smoothness severity, and symmetry severity. Also, these selected variables were similarly identified 

in, where the same breast cancer dataset was used.
20

 

The observed discrepancies in the selected variables by various methods, stemming from differences in 

the selection procedure, are in line with findings from previous studies.
3-9,20

 These studies have also reported 

similar observations of overlapping variables with different inclusion probabilities across different variable 

selection techniques. One such study is the research conducted by Haq et al., which specifically focused on 

comparing multiple variable selection techniques using the breast cancer dataset.
20

 Their study examined the 

performance of different methods and highlighted the presence of overlapping variables with varying inclu-

sion probabilities across these methods. This consistency in findings across studies suggests that variable se-

lection is a complex task influenced by the specific algorithm and selection criteria employed. The choice of 

the method can impact which variables are deemed important or relevant for inclusion in the model. These 

variations underscore the importance of carefully considering the specific goals and characteristics of the 

dataset when selecting a variable selection method. 

The results from the simulations and real-life breast cancer datasets showed that the proposed AICtest is 

better than the default method (stepAIC) as well as the LASSO in terms of variable selection. This strength 

is an important aspect of disease prognosis and diagnosis as it ensures the identification of the most informa-

tive variables needed to perform diagnosis or prognosis. However, the method is limited in terms of predict-

ing the model outcome as the result observed is not much different from that of the existing methods.  

    CONCLUSION 

The AIC-based variable selection approach proposed in this paper has several advantages. First, it accounts 

for both model complexity and goodness of fit, making it suitable for variable selection in high-dimensional 

datasets where the number of predictors is much larger than the sample size. Second, it incorporates statisti-

cal testing to assess the significance of individual predictors, providing a more robust and reliable approach 

for variable selection. Finally, the proposed method has the potential to improve the interpretability of the 

resulting models, which is critical in healthcare applications where interpretability is essential. In conclusion, 

breast cancer classification and prediction are challenging tasks that require accurate variable selection 

methods to build effective models. The AIC-based variable selection approach proposed is a promising 

method that integrates AIC with statistical testing for improved variable selection in breast cancer classifica-

tion and prediction. Further research and validation of this approach in diverse breast cancer datasets are 

needed to establish its utility and generalizability in clinical practice. 
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