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ABSTRACT Objective: Log-linear analysis is a classical statistical method for the analysis of 
association between variables in multi-way contingency tables. Generalized Estimating Equations 
(GEEs) approach is popular especially for analyzing longitudinal data, since it enables to take into 
account the correlation of repeated measures over time within subjects by defining a so-called 
“working correlation structure”. GEEs provide consistent regression parameter estimates even if 
working correlation structure is misspecified. In this paper, we suggest GEEs approach to the 
analysis of a multi-way contingency table with longitudinal data, which consists of more than one 
contingency tables obtained over time in case-control studies and examine the method of GEEs by 
considering four different working correlation structures for correlations between longitudinal 
count data in the table. Material and Methods: Log-linear analysis and GEEs method for 
longitudinal data in the multi-way contingency table with time factor are performed by SAS 9.4 
statistical software program. A real genetic association case-control study with longitudinal data 
was illustrated to compare both methods. Results: Using either the classical log-linear analysis or
GEEs method with an independent (IND) working correlation structure generates similar results 
for parameter estimates. It is found that linear model fitting longitudinal data in the multi-way 
contingency table is observed to be same for both log-linear analysis and GEEs approach 
performed under all correlation structures. Conclusion: This study indicates that GEEs approach 
provides more efficient and unbiased regression parameter estimates for the multi-way 
contingency table designed by responses measured repeatedly over time in the case-control study.  
 
Keywords: Case-control studies; linear models; longitudinal studies; GEEs  
 
 
 
ÖZET Amaç: Logaritmik doğrusal analiz, çok-yönlü tablolarda değişkenler arasındaki ilişkiyi analiz 
etmek için kullanılan klasik bir istatistiksel yöntemdir. Genelleştirilmiş Tahmin Denklemleri (GEEs) 
yaklaşımı, bir “çalışan korelasyon yapısı” tanımlayarak, zaman boyunca birimlerin tekrarlı ölçümleri 
arasındaki korelasyonu hesaba kattığı için, özellikle uzun süreli verilerin analizi için sık 
kullanılmaktadır. Çalışan korelasyon yapısı yanlış belirlenmiş olsa bile, regresyon parametre tahminleri 
tutarlıdır. Bu makalede, vaka-kontrol çalışmalarında zaman boyunca elde edilen birden fazla çapraz 
tablolardan oluşan uzun süreli verilere sahip çok-yönlü olumsallık tablosunun analizi için GEEs 
yaklaşımını önerdik ve tablodaki uzun süreli kesikli veriler arasındaki korelasyonlar için dört farklı 
çalışan korelasyon yapısı düşünülerek GEEs yöntemini inceledik. Gereç ve Yöntemler: Zaman faktörlü 
çok-yönlü çapraz tablodaki uzun süreli verilerin analizi için logaritmik doğrusal analiz ve GEEs yöntemi 
SAS 9.4 istatistiksel yazılım programında uygulanmıştır. Her iki yöntemi karşılaştırmak için gerçek bir 
genetik ilişki vaka-kontrol çalışması kullanılmıştır. Bulgular: Logaritmik doğrusal analiz ve bağımsız 
(IND) çalışan korelasyon yapısına sahip GEEs yöntemi ile benzer parametre tahminleri elde edilmiştir. 
Logaritmik doğrusal analiz ve tüm korelasyon yapıları düşünülerek uygulanan GEEs yönteminde de, 
çapraz tablodaki uzun süreli verileri inceleyen doğrusal modelin aynı olduğu bulunmuştur. Sonuç: Bu 
çalışma, vaka-kontrol çalışmasında zaman boyunca tekrarlı olarak ölçülen cevaplar tarafından 
tasarlanmış bir çok-yönlü çapraz tablo için GEEs yaklaşımının logaritmik doğrusal analize göre daha
etkin ve yansız tahminler verdiğini göstermektedir.   
 
Anahtar Kelimeler: Vaka-kontrol çalışmaları; doğrusal modeller; uzun süreli çalışmalar; GEEs 
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ase-control studies are often used in epidemiology and medical sciences as an easy way of 

comparing subjects with a disease interested (cases) with disease-free subjects (controls).1,2 A 

genetic case-control study may examine whether a statistical relationship exists between a 

particular disease and genotypes of subjects by comparing the frequency of genotypes in groups of 

subjects with and without the disease.3 Results of case-control studies are displayed in contingency 

tables to calculate the relationship between disease and a specific risk factor. In assessing more than one 

factors that may influence the disease, multi-way contingency tables might be used to analyze a set of 

counts or frequencies obtained by classifying observations.  

Log-linear models which are a special type of generalized linear models for Poisson distributed data can 

be used to analyze the relationship between two factors in two-way contingency tables and three or 

more factors in multi-way contingency tables by taking the logarithm of the expected cell counts in the 

contingency table. It can also deal with multi-category or polytomous factors on the disease interested in 

case-control studies. Tanaka et al.4 used log-linear models to investigate the allele frequency among 

disease-free subjects decreasing with age and the dependence of genotype and age in the genetic 

association case-control study.  

Longitudinal binary responses arise, when the case-control study is designed repeatedly over time for 

same subjects. Several methods have been proposed for analyzing such longitudinal data in case-control 

studies.5,6 Park and Kim5 extended ordinary logistic regression models to the case-control designs with 

independent repeated responses from same subjects over time. Their proposed method is based on the 

method of Generalized Estimating Equations (GEEs)7. GEEs are the quasi-likelihood equations which 

provide quasi-likelihood estimates of regression coefficients in the model from maximization 

of normality-based log-likelihood function without assuming that the response is normally distributed. 

GEEs approach does not require distributional assumptions of responses and is widely used for 

longitudinal and other correlated response data, especially if responses are from binomial and Poisson 

distribution.7,8 In the GEEs approach, the within-subject correlations among repeated responses from 

each subject are taken into account by defining a working correlation structure. GEEs provide consistent 

parameter and standard error estimates even if the correlation structure among responses is not specified 

correctly. However, Hin and Wang (2009) and Wang and Carey (2003) showed that the misspecification 

of working correlation structure may cause inaccurate results of the parameter estimates especially in 

small sample sizes.9,10   

Besides the GEEs, generalized linear mixed model (GLMM) provides a flexible approach to handle 

longitudinal data from exponential family distributions (normal, binomial or Poisson) by using link 

functions. GLMM is an extension of generalized linear models including the random effects, which 

represents the influence of each subject on his/her own repeated responses. GLMM can deal with 

correlated binary and count responses over time. Zhang et al.(2012) examine GEE- and GLMM-based 

log-linear models for modelling longitudinal count responses of each subject.11 

In this paper, unlike the usual methods, GEEs approach is used for the analysis of counts in the multi-

way contingency table which summarize longitudinal data obtained by the case-control study 

repeatedly over time. Cell counts in the contingency table are considered as the responses in the sense 

that we are interested in describing the relationship between factors and disease. The use of response 

differs from the classical use in GEEs approach. We illustrate and compare the GEEs approach and 

C 
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classical log-linear analysis provided by SAS statistical software program to analyze count data in the 

three-way contingency table where one of factors is time. We also examined GEEs approach for 

independent (IND), unstructured (UN), compound symmetry (CS) and first-order autoregressive (AR1) 

working-correlation structures among repeated counts in the contingency table with time factor. 

Additionally, it is emphasized that the model selection in GEEs is important and necessary to determine 

the model including significant factors for the study.  

    LOG-LINEAR MODELS FOR THREE-WAY CONTINGENCY TABLES 

An a×b×c three-way contingency table cross-classifies m subjects by the levels of three factors, A, B, C, 

which are taking possible values 1, 2, ..., a; 1, 2, …, b and 1, 2, ..., c, respectively. The cell counts mĳk are 

the number of subjects having categories i, j and k of factors A, B and C, respectively. A multinomial 

distribution can be assumed with cell probabilities πĳk, where ∑ ∑ ∑ πĳk=1c
k=1

b
j=1

a
i=1  , and expected counts 

�μ
ĳk

= m	πĳk�  in ijk th cell in the table. Log-linear models can also apply to Poisson sampling for 

independent observed cell counts mĳk with means �μ
ĳk

= E(	mĳk)�.  

Under statistical independence, for multinomial sampling, A, B and C factors are mutually independent, 

when πĳk = πi++ π+j+ π++k for all i, j and k, where πi��= P (A=i), π�j+= P (B=j) and π�+k= P (C=k). For  

μ
ĳk

, the log-linear model for mutual independence has the following form 

log �μ
ĳk

� = λ + λi
A + 	
� + λk

C ,                                                                                                                       (1) 

with the constraints such as ∑ λi
A = ∑ λj

B =
 ∑ λk
C = 0ki . When factor C is jointly independent of factors 

A and B, πĳk = πĳ+ π++k for all i, j and k, where πĳ+ = P (A=i, B=j). Jointly independence has log-linear 

form 

log �μ
ĳk

� = λ + λi
A + 	j

B + λk
C + 	ĳ

AB.                                                                                                              (2) 

If factors A and B are conditionally independent of each other, when factor C is fixed, π �

	| k =
P��A=i, B=j | C=k) = π �
�	| k	π ��j | k for all i, j and k. Conditional independence of A and B factors, given C, 

has the log-linear model as 

log �μ
ĳk

� = λ + λi
A + 	j

B + λk
C + 	ik

AC + 	jk
BC.                                                                                                   (3) 

In Equations (1),(2) and (3), 	 is an overall effect or a grand mean of the logarithms of the expected 

counts, λi
A, 	j

B	and λk
C are the main effects of A, B and C factors. 	ĳ

AB, 	ik
AC and 	jk

BC are the two-way 

interaction terms of them. The log-linear model including three two-way interactions which are 

conditionally independent is log �μ
ĳk

� = λ + λi
A + 	j

B + λk
C + λĳ

AB + λik
AC + λjk

BC. The general log-linear 

model for a three-way contingency table is  

log �μ
ĳk

� = λ + λi
A + 	j

B + λk
C + λĳ

AB + λik
AC + λjk

BC + λĳk
ABC,                                                                            (4) 

where λĳk
ABC is the three-way interaction term representing the association between three factors. 

Equation (4) is also called as saturated model seven model components including three main effects, 

three two-way interactions and one three-way interaction of factors. Analysis of Variance (ANOVA) 

type parameter constraints are ∑ λi
A = ∑ λj

B =
 ∑ ∑ λĳ
AB = ∑ ∑ ∑ λĳk

ABC�



i = 0.12 
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In SAS statistical software program, PROC GENMOD and PROC CATMOD can be used for log-linear 

modelling of count data in contingency tables. 13, 14  Both procedures fit generalized linear models to cell 

counts in contingency tables. Weighted least squares (WLS) with maximum likelihood (ML) estimation 

method can be used to fit log-linear models in PROC CATMOD procedure. PROC GENMOD procedure 

is especially suited for count data and also provides ML estimation of parameters for log-linear models. 

In order to determine model components necessary to best account for the count data in contingency 

table, the overall goodness of fit of each log-linear model are tested by the standard Pearson chi-square 

statistic (χ�) or the likelihood ratio statistic (G2)  defined as  

G2= 2 ∑ ∑ ∑ mĳkkji log �mĳk

�ĳk
�, 

where mĳk are the observed cell counts and �ĳk are the estimated expected counts under the model for 

testing the null hypothesis of independence. However, G2 is more commonly used, since it is minimized 

in maximum likelihood estimation. Smallest value of likelihood ratio chi-square G2	indicates the well-

fitting model.12,15,16 On the other hand, Pearson residuals or standardized (adjusted) Pearson residuals of 

the cells can be calculated under the assumed model to assess the selection of well-fitting model among 

reasonable models for the contingency table based on G2	values. Adjusted Pearson residual is distributed 

as N(0,1) and its absolute value that exceeds 2 or 3 indicates a sign of lack of fit.12 

    GENERALIZED ESTIMATING EQUATIONs (GEEs)  

In a longitudinal study, suppose that there are m subjects measured at n time points. Let 

Yi=�Yi1, …,  Yin)′  denote a n×1 vector of responses of subject i (i=1,…,m) and Xĳ be a (p+1)×1 vector of 

discrete or continous covariates for subject i at jth time point (j=1, …, n). A marginal model for 

longitudinal data is described as g-1�μ
ĳ
)=Xĳ

′ 	β , where β
 
is an unknown (p+1)×1	vector of regression 

parameters and μ
ĳ
= E��Yĳ � Xĳ� depends on the covariates through a known link function g-1�. ). The 

estimate of β is obtained by solving the following GEEs8: 

U�β) =� Di
'Vi

�1�Yi − μi
�

m

i=1

 

where μ
i
= �μ

i1
,…,μ

in
)′  is a mean vector for subject i, D
 = �μi

�β'
 and Vi is the variance-covariance matrix 

for Yi noted by Vi =	� Ai
1/2Ri Ai

1/2. The Ri describes n×n  working correlation structure within repeated 

measures of subject i which account for the form of within-subject correlation of responses and Ai =
�iag  υ�μ

i1
�, …, υ�μ

in
�! is a function of μ

ĳ
 and � is a scale parameter which depend on the distribution 

of response. If Yĳ is count, υ(μ
ĳ
)=μ

ĳ
	, � is equal to 1 and g-1�. ) is a log link function.8 There are a 

number of choices for "
 including independent (IND), unstructured (UN), first-order autoregressive 

(AR1) or compound symmetry (CS) structures.17,18 GEEs are obtained by using an iterative quasi-scoring 

algorithm. The inference of regression parameters in GEEs is obtained as Wald test using robust 

standard errors. Even when working correlation structure is misspecified, parameter estimates from 

GEEs are consistent.7,18 Unlike general linear models, GEEs approach is a non-likelihood based method. 

The popular Akaike Information Criteria (AIC) approach as a model selection criteria cannot be directly 

applied, since AIC is based on maximum likelihood estimation. Model selection in GEEs framework is 

performed with Quasi-AIC (QIC) which is as a modification to AIC for correlated data.19 
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    APPLICATION ON GENETIC ANALYSIS WORKSHOP 18 DATA 

Log-linear modelling and GEEs are used for the analysis of 3×2×3	contingency table in the study of 

Karadağ and Aktaş (2016). The data set is obtained from Genetic Analysis Workshop 18 (GAW18) 

conducted between 1991 and 2011, which is interested in the association between disastolic blood 

pressure (DBP) as a hereditary disease and whole genome sequence genotype data. DBP values were 

measured at three different time points.20 First measurements were taken between 1991 and 1996, 

second measurements were taken between 1997 and 2000 and third measurements were taken between 

1998 and 2006. In this study, DBP is used as an identifier of high blood pressure and hypertension 

(DBP>90) is defined as disease (D). There were 445 individuals with available genotype information for 

NPR3-C5orf23 gene study. The genotype distribution for subjects having hypertension (D+) and 

hypertension-free (D-) in this longitudinal study is presented by the three-way contingency table as 

Table 1. 

 

TABLE 1. NPR3-C5orf23 data set. 

Visit (V) Disease Status (D) Genotype (G) Total Visit 

CC CT TT 

V1 D+ 19 39 15 73 
 D- 117 190 65 372 

V2 D+ 34 69 27 130 
 D- 102 160 53 315 

V3 D+ 42 92 31 165 
 D- 94 137 49 280 

 

The data in the 3×2×3	contingency table in Table 1 within the framework of log-linear analysis approach 

is fistly analyzed and log-linear analysis are performed by PROC GENMOD and PROC CATMOD 

procedures in SAS 9.4 statistical software program. We treat three factors as independent categorical 

variables. For the 3×2×3 three-way contingency table in Table 1, under all types of independence, log-

linear models in Table 2 are analyzed to explore relationships between factors in Table 1. 

In Table 2, for i=1, 2, 3; j=1, 2 and k=1, 2 ,3; μ
ĳk

 is the expected count, λ is the overall effect, λi
V (or Vi), 

λj
D (or Dj) and λ�G (or Gk) are the main effects of  V, D and G factors and λĳ

VD (or VDij), λik
VG (or VGik) and 

λjk
DG (or DGjk) are the two-way interaction terms and λĳk

VDG (or VDGijk) is the three-way interaction term 

of factors. (VDG) is the saturated model that includes all model components. The model (V, D, G) 

includes only the main effects of factors. All main effects and only one two-way interaction term are 

included in (VD, G), (VG, D) and (DG, V) models. (VD, VG), (VD, DG) and (VG, DG) are including all 

main effects and two different two-way interaction terms. 
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TABLE 2. Representations of log-linear and linear models. 

Symbol Log-Linear Model Linear Model  

(V, D, G) 		log�µ
ijk
� = λ+ λi

V + 	
D + λk
G 				log �µ

ijk
� =β

0
+β

1
Vi+β2

Dj+β3
Gk 

(VD, G) 		log�μ
ijk
� = λ + λi

V +   
D + λk

G + λij
VD log �μ

ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β4VDij  

(VG, D) 		log�μ
ijk
� = λ + λi

V +   
D + λk

G + λik
VG log �μ

ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VGik 

(DG, V) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + λjk

DG log �μ
ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#DGjk 

(VD, VG) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + λij

VD + λik
VG log �μ

ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VDij + β$VGik 

(VD, DG) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + λij

VD + λjk
DG log �μ

ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VDij + β$DGjk 

(VG, DG) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + 	
�VG + λjk

DG log �μ
ijk
� =β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VG
� + β$DGjk 

(VD, VG, DG) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + 	ij

VD + 	
�VG + λjk
DG log �μ

ijk
� = β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VDij + β$VGik 

                 +	β%DGjk 

(VDG) 		log�μ
ijk
� = λ + λi

V + 	
D + λk
G + 	ij

VD + 	
�VG 

																						+λjk
DG + λijk

VDG 

log �μ
ijk
� = β

0
+β

1
Vi+β

2
Dj+β

3
Gk+β#VDij + β$VGik 

                 + β%DGjk + &'VDGijk 

 

 

    RESULTS 

Log-linear model analysis is a process of assigning which model components are significant, therefore,  

Pearson  χ� and G2 statistics are assessed for each model by PROC GENMOD and PROC CATMOD 

procedures, respectively. Table 3 shows the results of testing fit for log-linear models in Table 2 (Table 2, 

Table 3). 

According to the p-values from Table 3, the (VD, G), (VD, VG), (VD, DG) and (VD, VG, DG) models fit 

the data well. The standardized (adjusted) Pearson residuals are assessed to find the best fitting model for 

Table 1. The largest adjusted residuals for four models are found to be 1.2298, 1.7953, 0.5691 and 0.6965, 

respectively. (VD, DG) model has the smallest value among the largest adjusted residuals and therefore, 

it can be used in the decision of selecting the best model for Table 1.  
 

 

TABLE 3. Goodness-of-fit test results for log-linear models. 

Model df χ( p-value G2 p-value 

(V, D, G) 12 55.1626 0.0001 56.82 <.0001 

(VD, G) 10 6.3056 0.7890 6.38 0.7822 
(VG, D) 8 55.1626 0.0001 56.82 <.0001 
(DG, V) 10 49.3058 0.0001 51.17 <.0001 

(VD, VG) 6 6.3056 0.3898 6.38 0.3818 
(VD, DG) 8 0.7317 0.9994 0.73 0.9994 
(VG, DG) 6 49.3058 0.0001 51.17 <.0001 

(VD, VG, DG) 4 0.5237 0.9712 0.52 0.9712 
(VDG) 0 0.0 - 0.0 - 

 

df: degrees of freedom; )�: Pearson chi-square statistic; G2: Likelihood ratio statistic. 



Melike KAYA BAHÇECİTAPAR et al.                                                                                                                            Turkiye Klinikleri J Biostat 2017;9(2):96-104 

 

 102

Table 4 shows the parameter estimates obtained by both procedures for (VD, DG) model. It is found that 

both procedures do not calculate similar parameter estimates and cause different interpretations to 

decide whether to reject the null hypothesis of some parameter estimates, such as the category CC for G 

factor and the categories V2 and D+ for V and D factors, respectively.  

 

TABLE 4. Parameter estimates with standard errors of the (VD, DG) model from PROC GENMOD and PROC 
CATMOD procedures for log-linear analysis. 

 

Parameter 

PROC GENMOD PROC CATMOD 

Estimate S.E. p-value Estimate S.E. p-value 

V V1 0.2841 0.0791 0.0003* -0.1570 0.0489 0.0013* 
 V2 0.1178 0.0821 0.1516 0.0484 0.0439 0.2711 

D D+ -0.3903 0.1599 0.0147* -0.5090 0.0348 <.0001* 
G CC 0.6282 0.0958 <.0001* -0.0491 0.0476 0.3020 
 CT 1.0703 0.0897 <.0001* 0.5441 0.0414 <.0001* 

V*D V1∗D+ -1.0996 0.1613 <.0001* -0.3072 0.0489 <.0001* 
 V2∗D+ -0.3562 0.1432 0.0129* 0.0645 0.0439 0.1419 

D*G D+∗CC -0.3648 0.1828 0.0460* -0.1112 0.0476 0.0195* 
 D+∗CT -0.0624 0.1635 0.7027 0.0400 0.0414 0.3337 

*:  p-value is smaller than 0.05. S.E.: Standard error 
 

In Table 4, all parameters except two belonging to the category V2 of V and categories D+ and CT of 

D*G are found to be significant by PROC GENMOD. In addition to these two parameters, 

parameters for the main effect of G factor with category CC and the interaction term V*D with 

categories V2 and D+ are not found to be significant by PROC CATMOD.For GEEs analysis of 

GAW18 data in Table 1, it is considered that the cells in the combination of levels of D and G 

factors as if subjects in GEEs approach are measured repeatedly at three different time points. GEEs 

analysis of the data is performed by PROC GENMOD procedure with repeated statement. We 

consider IND, UN, AR1 and CS working correlation structures among repeated counts. Table 5 

displays the QIC values for the linear models in Table 2.  

 

TABLE 5. QIC values by GEEs under the assumptions of IND, UN, AR1 and CS working correlation structures. 

 "+ =IND "+ =UN "+ =AR1 "+ =CS 

(V, D, G) -2025.9354 -1970.9739 -2022.9948 -2025.9354 
(VD, G) -14874.5887 -14759.6318 -2002.0686 -12045.9154 

(VG, D) -1347.2542 -1315.6821 -1342.9873 -1347.2543 
(DG, V) -1891.2933 -1841.0788 -1892.1134 -1894.6186 

(VD, VG) -8924.2323 -8898.9655 -8917.3526 -6605.2592 
(VD, DG) -102683.7134* -100341.1624 -99877.4194 -102193.7447 
(VG, DG) -1131.9488 -1111.0999 -1132.0485 -1136.7712 

(VD,VG, DG) -71736.0073 -71069.5252 -71685.6587 -71120.1951 

(V, D, G) -2.950414E-32 0.000 0.000 0.000 
*: The smallest QIC value. IND: Independent; UN: Unstructured; AR1: First-order autoregressive; CS: Compound symmetry  

 

In Table 5, for all working correlation structures, (VD, DG) model has the smallest QIC value (QIC= -

102683.7134) among all models. However, compared to QIC values for all working correlation 

structures, (VD, DG) model with IND working correlation structure is found to be best fitting model in 
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GEEs approach. Table 6 includes the maximum likelihood parameter estimates by GEEs approach of (VD, 

DG) having only the two-way terms VDĳ and DGjk and the main effects of each factor (p-value<0.05).  

 

TABLE 6. Parameter estimates with model-based standard errors for (VD, DG) by GEEs approach with  
IND working correlation structure. 

Parameter Estimate S.E. p-value 

V V1 0.2841 0.0239 <.0001* 
 V2 0.1178 0.0248 <.0001* 

D D+ -0.3979 0.0484 <.0001* 
G CC 0.6282 0.0290 <.0001* 
 CT 1.0703 0.0271 <.0001* 

V*D V1∗D+ -1.0996 0.0488 <.0001* 

 V2∗D+ -0.3562 0.0433 <.0001* 
D*G D+∗CC -0.3648 0.0553 <.0001* 

 D+∗CT -0.0624 0.0495 .2069 
*:  p-value is smaller than 0.05. S.E.: Standard error 

 

From Table 6, parameter estimates by GEEs are found to be exactly same as log-linear analysis by PROC 

GENMOD, but standard errors for all parameter estimates of (VD, DG) in GEEs are much smaller than 

those in log-linear approach (Table 6). GEEs approach provides that all parameters in the (VD, DG) 

model except the interaction D+∗CT (p-value=0.2069) are significant at the 5% level (p-value<0.0001). 

However, addition to D+∗CT, the main effect of V factor with the category V2 is also found to be not 

significant in log-linear analysis of Table 1 (Table 1). On the other hand, the D∗V interaction term is 

significant (p-value<0.0001), indicating that the effect of visits differs for D+ and D-. The number of 

subjects per visit for each level of D factor illustrates this result. 

    CONCLUSION 

In this paper, we suggest the GEEs approach for the analysis of longitudinal data in the case-control study, 

which are designed in the format of multi-way contingency table with time factor. We also analyzed this 

kind of contingency table by log-linear modelling approach and compare both approaches to find the well-

fitting model for longitudinal count data in the multi-way contingency table. Results show that both log-

linear modelling and GEEs give same results in model selection. Additionally, GEEs approach with IND 

working correlation structure and log-linear analysis provide same model with same parameter estimates. 

However, GEEs provide same model with significant factors under more efficient and unbiased estimates.  
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