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On Imputing Binary Data via
Pairwise Associations and
Corresponding Conditional Probabilities

Iliski Katsayilar: ve
Kosullu Olasiliklar1 Kullanarak
Iki Sonuclu Veriler I¢in Deger Atama

ABSTRACT Objective: In this work, we present a method for imputing binary data without making any multin-
omial or loglinear model assumptions. Material and Methods: Our approach employs principles of generating bi-
nary data from multivariate normally distributed values, as discussed in Emrich and Piedmonte. Specifically, a data
set that follows a multivariate normal distribution is generated separately from observed data, using marginal bi-
nary proportions, and a matrix associated with pairwise tetrachoric correlations derived from phi coefficients. The
same fraction of missing information is introduced in the generated data as in the original multivariate binary data,
multiple imputation is then applied to the generated values via joint modeling under the normality assumption,
and imputed values are dichotomized by quantiles corresponding to the binary proportions that are computed
based on the original incomplete data. Results: Application of our imputation method to generated data in simu-
lation studies and to real data examples led to promising results, as indicated by average estimates (AE) of pair-
wise correlation parameters comparable to the true correlation values associated with generated data and to the
original correlation estimates involving real data, standardized bias (SB) values < 50%, small RMSE values asso-
ciated with good accuracy and precision, coverage rates (CR) > 90%, and average widths (AW) of confidence in-
tervals for correlation parameter estimates from the imputed data comparable to 95% confidence interval widths
of true correlation values associated with generated data or original correlation estimates involving real data.
Conclusion: Simulation studies and real data applications indicate that this new method is a promising approach
in imputing binary data while relaxing multinomial and loglinear model assumptions.

Key Words: Missing data; multiple imputation; multivariate normal distribution; binary data

OZET Amag: Bu ¢aligmada, iki sonuglu degiskenler i¢in multinomial ya da logaritmik dogrusal model varsayimlari
olmadan gelistirilen bir deger atama yontemi tamitilacaktir. Burada kullanilan yaklagim, Emrich ve Piedmonte
tarafindan onerilen, ¢ok degiskenli normal dagilim gosteren verileri kullanarak iki sonuclu ¢ok degiskenli veri
tiiretme prensibine dayanmaktadir. Gereg ve Yontemler: Gozlenen iki sonuglu verilerden hesaplanan marjinal
oranlan ve iki sonuglu degiskenler arasi korelasyonlar: gosteren phi katsayilarindan bulunan tetrakorik
korelasyonlar1 kullanilarak ¢ok degiskenli normal dagilim gosteren bir veri seti tiiretilir. Tiiretilen veri setinden,
gercek veride gozlenen kayip oram kadar veri silinir ve ¢ok degiskenli normal dagilima dayal bilesik modelleme
yaklagimi ile deger atamasi yapilir. Sonra eksik veriler yerine atanan degerler, gercek veriden hesaplanan oranlara
kargilik gelen yiizdeliklere (kuantillere) gére iki sonuglu hale déniigtiiriiliir. Bulgular: Deger atama sonrasinda
bulunan ortalama korelasyon kestirimleri, benzetim ¢alismasinda belirlenen gergek degerler ve gercek veri setindeki
kestirimler ile benzer bulunmustur. Standardize yanhlik degerleri %50'nin altinda, dogruluk ve kesinligin yiiksek
olduguna isaret eden hata kareleri ortalamas: karekokii kiigiik, kapsama alanlari da %90"1n tizerinde bulunmustur.
Deger atama sonucu bulunan giiven smirlarinin ortalama genislikleri, benzetim cahgmasindan ya da gergek veri
uygulamasindan elde edilen korelasyon parametre kestirimlerine iligkin %95 giiven sinirlarina benzer bulunmustur.
Yapilan benzetim galigmalar ve gergek veri seti uygulamas: sonucunda elde edilen bulgular 1s181nda, 6nerilen deger
atama yonteminin umut verici oldugu sdylenebilir. Sonug: Yapilan benzetim ¢aligmalari ve gergek veri uygulamasi,
gelistirilen bu yeni yontemin iki sonuglu ¢ok degiskenli veriler i¢in multinomial ya da logaritmik dogrusal model
varsayimlari olmadan yapilan iyi bir deger atama yaklagimi oldugunu gostermektedir.

Anahtar Kelimeler: Kay1p veri; ¢oklu deger atama; ¢ok degiskenli normal dagilim; iki sonuglu veri
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his work focuses on approach for imputing binary data without ma-
king any assumptions associated with the multinomial or loglinear
models conventionally used in imputing categorical data. Our met-
hod involves mapping binary data to normally distributed values, using
principles described in Emrich and Piedmonte,' imputing the data via joint
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modeling under the normality assumption, and
back-transforming the imputed values to binary
data using quantiles based on marginal proportions.
We recommend this approach for multiple impu-
tation of binary data in scenarios where multino-
mial and loglinear assumptions are suspected to be
violated and therefore should be relaxed.

Before discussing the imputation methods, we
briefly introduce the mechanisms under which da-
ta can be missing as well as several different miss-
ing data patterns. The probability of missingness is
independent of the observed and missing data un-
der the Missing Completely at Random (MCAR)
mechanism, only depends on the observed data un-
der the Missing at Random (MAR) mechanism, and
depends on the missing data and/or observed data
under the Missing Not at Random (MNAR) mech-
anism.>® Furthermore, missing data can involve
patterns such as univariate, monotone, and arbit-
rary patterns. Assume that we have a data set with
K variables. Then, in the univariate pattern, one va-
riable has missing entries, while the other K—1 va-
riables are completely observed. In the monotone
pattern, the (k+1)" to the K" variable have the same
amount of missing information as the " variable
plus an additional amount for k= 1,...,K. Lastly, for
the arbitrary pattern, missingness can occur any-
where in any of the K variables.*

I MATERIAL AND METHODS

IMPUTING BINARY DATA VIA MULTINOMIAL AND
LOGLINEAR MODELS

Schafer’® discusses a joint modeling approach for
imputing binary or categorical data which employs
the EM (Expectation-Maximization), associated
with taking the expectation of a complete and suf-
ficient statistics, T, and maximizing this expectati-
on, and DA (Data Augmentation) algorithms, in
combination with the saturated multinomial mo-
del. The DA algorithm is comprised of the I-step,
where values are drawn from a distribution condi-
tional on the observed data and model parameters,
and the P-step, where parameters are updated
using a posterior distribution conditional on the
observed and imputed data, as shown in (1) and (2),
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where Y .. and Y, correspond to missing and
observed data, respectively, and 6= {6, 0, ...,
0p} is the parameter vector involved with the satu-
rated multinomial model.

mis*

Y(Hl) ~ P(Ymis* | Yobs’e(t)) (l)

0" ~ P07, Y )

where 7, ,,(lf:*l ' in (2) are the imputed data obtained
via (1). The saturated multinomial model is based on
a contingency table with cells denoted by subscript
d=1,2,...D. The contingency table represents the dis-
tinct number of possible combinations of levels
among the variables considered. For example, with
three binary variables, the contingency table would
have D=23=8 cells. x; x = {x},X,,....xp} is then de-
fined as the number of entries in cell dand 6, 6 =
{6, 0y ... Op}is the probability that an entry is in

D
cell d. Furthermore 2, X, =7, where n if the

. D
total number of entries and 0, =17 Therefo-
re, the distribution function involving the multi-
nomial model is:

n!
X| )X Xp
o 66, ...0, 3)

x 1l xp!

P(x|6) =

When some terms, for example insignificant pair-
wise or higher-order interaction terms, can be eli-
minated, a loglinear model can be employed and
parameter estimation can be achieved via the ECM
(Expectation-Conditional Maximization) and DA-
BIF (Data Augmentation-Bayesian Iterative Pro-
portional Fitting) algorithms.

GENERATING BINARY DATA

To introduce our method for imputing binary data,
we first explain the approach given in Emrich and
Piedmonte' to generate binary data using normally
distributed values. This approach involves the phi
correlation (d,), a special case of the Pearson cor-
relation which measures the association between
two binary variables. A cross-tabulation of two bi-
nary variables, Y; and Y, with cell counts that ap-
pear in equation (4) below, is given in Table 1. The
phi coefficient, a derivative of the Pearson corre-
lation,® can be calculated by:
)1y — Moy,

\/(nlo + 1) (g + ;) + (g + 1)1y, +1y)

(4)
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TABLE 1: Cross-tabulation of Y; vs. Y.

Y; Y,
0 1

0 99 ny;

g ny;

where phi can range from:

max(—/(p; 7,/ 4,9.)—(@,4:/ P;Py))
S
min( (P4, / 4,0+ (4,7 P,41)) o)
pp=PrY;=1), ¢;=1-p;

This range ensures that all joint mass distribu-
tion values are nonnegative for all outcomes. We
can then obtain the tetrachoric correlation pj; using:

q)[z(pj)’z(pk)9pjk] = 5/k (ijjpk%)”z +D Dy (6)

L7 where @ is the cumulative distribution function
for a standard bivariate normal distribution. The
tetrachoric correlation, a form of the Pearson cor-
relation measuring the association between nor-
mally distributed values underling the binary
variables, Y| and Y,, is then used to generate a bi-
variate data set, Z, from bivariate normal distribu-
tion with mean vector (0,0), and 2x2 correlation
matrix whose off-diagonal entries are p;,. Proba-
bilities involving Y; and Y, pertaining to quantiles
in the bivariate normal data in turn allow for the
preservation of the same proportions observed in
the original binary data.

This generation method can also be extended
to multivariate data associated with a matrix com-
prised of pairwise tetrachoric correlations derived
as in (6), given that the matrix is positive semi-de-
finite. If the matrix is not positive semi-definite, a
positive semi-definite closest to the derived matrix
can be used.®

CONNECTION TO THE LURIE-GOLDBERG ALGORITHM

Lurie and Goldberg’ developed an algorithm for ge-
nerating multivariate continuous data associated
with specifying marginal distributions by first ge-
nerating normally distributed data and then app-
lying the inverse marginal distribution function to
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the probability distribution function (PDF) values
of the generated data. They first generate a matrix
X ~ N(0, I) and multiply it to the transpose of the
lower triangular matrix L, obtained via Cholesky
decomposition from the correlation matrix, R, with
the desired pairwise correlations between variab-
les such that:

Y =XL" ~ N(O,R) @)

They then obtain the standard normal PDF va-
lue for the entries of Y, i.e.:

U=(Y) (8)

and apply the inverse function of the desired mar-
ginal distribution for each variable Y; in the data

J
set:

v, =F (uy) 9)

R’, the correlation of the newly generated data set
V, is then compared to the original correlation ma-
trix R, via the RMSE:

RMSE = \J4SND /[k(k - 1)] (10)

where SND is the squared norm of the absolute dif-
ference between R and R’ and £ is the the number
of variables in the data set.

Convergence of the algorithm is determined
when the RMSE falls below some constant c set for
a desired accuracy. For example, with a desired ac-
curacy of 0.01, the authors suggest setting c = 0.005.

Their algorithm therefore only requires infor-
mation on the marginal distributions of the variab-
les and pairwise correlations, but not of the joint
distribution of the multivariate data which is often
unknown. In the Lurie and Goldberg’® approach,
the lower triangular matrix derived via Cholesky
decomposition from the matrix comprised of pair-
wise correlations is multiplied to the generated
multivariate normally distributed data in order to
preserve relationships among the variables.

Thus, the Lurie-Goldberg’® algorithm is similar
to the generation of binary data discussed in Em-
rich and Piedmonte' in that both algorithms invol-
ve generation of multivariate normal data and rely
on information concerning pairwise correlations
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between variables. In the case of binary data, the-
se pairwise correlations are the tetrachoric correla-
tions derived from phi coefficients relating the
binary variables, as given in equation (6). The Em-
rich-Piedmonte! algorithm differs from the Lurie-
Goldberg’® algorithm, in that mapping the normally
distributed data to binary data is nonparametric,
where quantiles corresponding to binary proporti-
ons are employed to dichotomize the normally dis-
tributed data. Contrarily, mapping of multivariate
normally distributed data in the Lurie and Gold-
berg’ algorithm involves inverse functions of mar-
ginal distributions.

IMPUTING BINARY DATA

Our algorithm for imputing binary data involves
generating multivariate normally distributed data
with a correlation matrix from pairwise phi corre-
lation coefficients as described in Section 2.2. After
generating these data, we then introduce the same
fraction of missing entries in these data as found in
the original data and calculate the proportions from
the observed data.

Let R; and R, be missing indicator variables for
Y, and Y,. Suppose some proportion of Y, is miss-
ing with probability Pr(R, = 0); we can therefore
calculate:

P, =1|Y,=1)=P¥,=1Y,=LR,=1)

=P(Y,=1|Y,=1,R, =)P(Y,=1,R, =1) (11)
=P, =111 =LR, =D)P(Y, =1|R, =D)P(R, =1)

and obtain corresponding quantiles given by:

9 = Qp(Y] :1|R2:1)(Zl)

9o = Qp(YZ:I\Yl:LRZZI)(ZZ) (12)

9 = Qp(YZ =1[¥,=0,R, =) (Z,)

Assuming we have a bivariate data set where both
Y; and Y, have missing entries, we define:

P =LY, =) =P, =LY, =LR,R,)
=P, =11} =LR,R,)P(Y, =L,R,R,)
=P, =11Y, =LR,R)P(Y, =1|R,R,)P(R,R;)
=P(Y, =11Y, =LR,,R,))P(Y, =1| R,,R,)P(R,R;)

(13)

and obtain binary outcomes from imputed Z; and
Z, values for variables Y; and Y, using quantiles ba-
sed on:

qk - QPr‘(Yk =11.Y5,... YRRy .. Ry) (Zk )
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d1 = Opitrotrmn (Z1)
qu = QP(lel\YZ:O,RI:I,RZ:I) (z)
9, = QP(YZ=1\}1=1,R1=1,RZ=1)(ZZ)
q; = QP(VZ:mf,:o,R,:I,RZ:I)(Zz)

(14)

Quantiles are based on data corresponding to en-
tries with both variables observed, i.e., R;=1 and
R,=1. With these quantiles, we can compute pro-
portions involving the generated bivariate normal
data with variables Z; and Z, and check that the
number of observed entries satisfies each condition
are the same as the cell counts given in Table 1.

Le.,

DI =LY, =1|R,R) =D I(Z, < ¢,,.Z, <qy| R, R,)
D IY, =1Y,=0|R,R) =Y I(Z < q,,Z, >q| R, R,)
DI =0,Y, =1|R.,R)=D1(Z,>q,,Z, < qy | R\, R,)
> I(Y,=0,Y,=0|R,R) =Y I(Z >q,,Z, > q3 | R, R,)

(15)

Extending our method to the multivariate case in-
volves basing our quantiles on probabilities:

PriYi=yi 1Y, =y, Y = Y, Ry
y=0Lk=1,..,K

s Ry)
(16)

wherey, =0,1,k=1,...,K> 3 and K is the num-
ber of variables in our data set.

Probabilities for all K variables can then be de-
rived from the joint probability with corresponding
quantiles obtained via

17)

Here, Z,, ..
buted variables of a data set, Z, with mean 0, and

., Zx comprise the normally distri-

correlation matrix P, where the elements are pair-
wise tetrachoric correlations derived from the pa-
irwise phi correlations via equation (6). We then
impute data in the multivariate normal data set, Z,
as described in Schafer’, and dichotomize the
newly imputed data for each variable £, k= 1,...K
via the quantiles obtained from equation (17).

Different measures can furthermore be utili-
zed to assess the performance of multiple imputa-
(AE),
standardized bias (SB), root mean square error
(RMSE), coverage rate (CR), and average width

tion such as the average estimate

Turkiye Klinikleri ] Biostat 2012;4(1)
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(AW) of the confidence intervals for parameter es-
timates of Qj’s. The average estimate (AE) is defi-
ned as the average of all parameter estimates
obtained from m > 1 imputed data sets and is com-

puted as:
=300, (18)
=

This AE value can be compared to the true para-
meter via the T approximation:

0 -0)~1, (19)

where Tis the total variance comprised of the wit-
hin-imputation variance, U, and between-imputa-
tion variance, B, given in (20) and (21),

respectively.
U=m"Y U, (20)
B=(m-1)">.(6,-6) (21)

The T approximation follows a t distribution with
degrees of freedom given in (22).

v=(m-— 1){1 +U_l}
(1+m™)B (22)

Typically, m = 10 number of imputations is suf-
ficient for most applications, but if B >> U, then
more imputations may be needed.>® SB, given in
equation (23), measures the effect of bias on the pa-
rameter estimate obtained from the imputed data.
Furthermore, SB values > 50% are considered to ha-

ve adverse effects on parameter estimation.>'%12
00x/£0=9) 23)
SE(D)

The RMSE given in equation (24) helps us to assess
precision (efficiency) and accuracy.

VE,(6-6) (24)

Coverage rate (CR) is defined as the percentage of
times that the true parameter lies within the con-
fidence interval of the parameter estimate; CR val-
ues < 90% are considered poor."® Lastly, average
width (AW) is the average difference between lo-
wer and upper bounds of the parameter estimate
obtained across m > 1 imputations. In this evalua-
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tion system, SB is an accuracy measure, AW is a
precision measure, and CR and RMSE are integra-
ted measures of accuracy and precision.

After computing pairwise correlations for the
newly imputed binary data, we check if the upda-
ted phi matrix containing these pairwise elements
is positive definite and if the matrix if fairly close to
the original phi matrix, i.e., if for each element,

S —8,|<c, (25)

for some constant Cjk‘

If the new phi matrix is not positive semi-de-
finite, then we derive the ‘nearest’ positive semi-
definite phi matrix and compare the elements of
this matrix to those of the original phi matrix. We
iterate the previously described procedures until
the convergence criteria are met. This algorithm
is summarized in (26), including the steps for mul-
tivariate normal data generation (MVN_generati-

on), multiple imputation (MI), and
dichotomization.
YEbinary)

MVN _ generation
1 . - Z(narma/ )

w (26)
2. 7™

(normal)

Dichotomization

imp
3 . - Y(binary)

SIMULATION STUDY AND REAL DATA APPLICATIONS

In examining our method for the bivariate case
with missing entries in the second variable, we first
created data sets with two binary variables and 500
observations and either randomly deleted 125 en-
tries in each variable to introduce 25% missingness
in both variables under the Missing Completely at
Random (MCAR) mechanism, or used a model
where the probability of missingness in the second
variable depended on the first variable to generate
data missing under the Missing at Random (MAR)
mechanism with 20% to 30% missingness. This
model given in (27) was applied to the data first and
was followed by introducing 25% missingness in
the first variable by randomly deleting 125 out of
the 500 entries.
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log(%) =-0.0125+0.125Y, (27)
P2

Py = P}"(RY2 _ 0)

We applied our approach to create 10 imputed
data sets at each of 1000 simulations and assessed
the performance by looking at the average estima-
te (AE), standardized bias (SB), root mean-square
error (RMSE), coverage rate (CR), and average
width (AW).

Testing our method in the multivariate case
with K =3 variables, we generated binary data sets
with 100 entries and induced either a 25% MCAR
pattern in each variable or a 25% MCAR pattern in
the first two variables, and a 20-30% MAR pattern
in the third variable, where the missingness in this
variable depended on the first variable, as shown
in (28). We note that missingness in this third va-
riable was introduced under the MAR mechanism
before random deletion of the entries in the first
variable was conducted.

P
log(———)=-1.0+0.00125Y,

Py = Pr(Ry = ()

Again, we ran 1000 simulations, each invol-
ving m = 10 imputations. Convergence for each si-
mulation was achieved when the absolute
difference between each of the original pairwise
correlations and the pairwise correlations obtained
from the imputed data was less than some constant
Cito withj=1,2 and k= 2,3.

Our real data example comes from the NYC
HANES (New York City Health and Nutrition
Survey) database comprising of 831 men and 1168
women created to examine the association betwe-
en disease prevalence and environmental factors
in New York City. This example is motivated by
the notion that most private health insurance po-
licies in the US are offered through the workpla-
ce.'*1¢ Employment-based health insurance affects
aspects of employment such as job mobility" and
the option of health packages that employers cho-
ose to offer." Furthermore, it may be of impor-
tance to know if individuals with certain health
conditions or infectious diseases have access to in-

surance.'’"1°
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I RESULTS

The measures given in Tables 2 and 3 demonstrate
that the method works well for different correlated
bivariate binary data sets in MCAR and MAR cases,
respectively, as indicated by AE values comparab-
le to true parameters, SB estimates < 50%, small
RMSE values indicating good accuracy and precisi-
on, CR values > 90%, and AW estimates compa-
rable to the confidence interval widths of the
original parameters. Results in Table 4 also show
the validity of our method for multivariate data vi-
a the assessment measures of AE, SB, RMSE, CR,
and AW values.

TABLE 2: Results from applying the new imputation
method to bivariate binary data missing under the MCAR
mechanism, with 25% missingness in both variables.

Data Set 1 Data Set 2

Convergence

Constant 0.0075 0.01275

True d -0.7099 -0.4085

Imputed & -0.7102 -0.4094

SB 24.4278 40.1080

RMSE 0.0012 0.0019

CR 94.5486 94.4952

AW 0.0876 0.1477
True py True p,y True p4 True p,y
0.5200 0.5040 0.4840 0.4942

Imputed p; Imputed p, Imputed p; Imputed p,
0.5346 0.4947 0.4960 0.4993
Data Set 3 Data Set 4

Convergence

Constant 0.0175 0.0075

Trued 0.4083 0.7392

Imputed & 0.4078 0.7390

SB 15.4593 14.3974

RMSE 0.0024 0.0011

CR 92.0796 94.3719

AW 0.1492 0.0803
True py True p, True p4 True p,
0.5200 0.5165 0.5260 0.5156

Imputed p; Imputed p, Imputed p; Imputed p,

0.5280 0.5277 0.5000 0.4906

AE: average estimate, SB: standardized bias, RMSE: root mean square error,
CR: coverage rate, AW: average width

Turkiye Klinikleri ] Biostat 2012;4(1)
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TABLE 3: Results from applying the new imputation
method to bivariate binary data missing under the MAR
mechanism, with 25% missingness in the first variable

and 20% - 30% missingness in the second variable.

Data Set 1 Data Set 2

Convergence

Constant 0.00875 0.01275

True 8 -0.7622 -0.4085

Imputed & -0.7629 -0.4094

SB 45.4977 40.1080

RMSE 0.0013 0.0019

CR 93.1269 94.4952

AW 0.0740 0.1477
True p, True py True p4 True py
0.5120 0.5040 0.4840 0.4960

Imputed p; Imputed p, Imputed p; Imputed p,
0.5120 0.5076 0.4841 0.4993
Data Set 3 Data Set 4

Convergence

Constant 0.01225 0.0075

True 8 0.3492 0.7992

Imputed & 0.3488 0.7991

SB 17.9689 7.1497

RMSE 0.0018 0.0008

CR 94.6627 95.3248

AW 0.1559 0.0638
True p, True py True p4 True py
0.4680 0.5600 0.5000 0.5200

Imputed p; Imputed p, Imputed p; Imputed p,

0.4621 0.5599 0.4987 0.5116

AE: average estimate, SB: standardized bias, RMSE: root mean square error,
CR: coverage rate, AW: average width

Table 5 gives the results from applying the
new imputation method to a subset of 100 women
from the database and indicates promise in our
method as again shown by AE values comparable to
the original estimates, SB estimates < 50%, small
RMSE values implying good accuracy and precisi-
on, CR values > 90%, and AW estimates compa-
rable to confidence intervals of original estimates.

Boxplots in Figures 1 and 2 show comparable
ranges of mean and pairwise correlation estimates
between 1000 generated data sets resembling the
real data on average and 10 imputed data sets for
each generated data set obtained from application

Turkiye Klinikleri J Biostat 2012;4(1)

Irene B. HELENOWSKI et al.

of our method. Although variability was slightly
higher for certain pairwise correlation estimates
from imputed data, these values were still in an ac-
ceptable range. We furthermore note that the frac-
tion of missing information in the generated data
sets was equal to fraction of missing information in
each corresponding variable of the original data
and was introduced via the MCAR or MAR mech-
anism.

I CONCLUSION

We introduce a novel procedure for imputing biva-
riate and multivariate binary data which allows us to

TABLE 4: Results from applying the new imputation
method to multivariate binary data, with 25% missing-
ness in all three variables under the MCAR mechanism
and with 25% missingness in the first two variables and
20% - 30% missingness in the third variable under the
MAR mechanism.

MCAR Case
Variable Pairs (1,2) (1,3) (2,3)
Convergence Constant 0.025 0.025 0.05
True § 0.0025 0.025 0.0325
Imputed & -0.7679 0.4419 -0.3793
SB -0.7677 0.4414 -0.3786
RMSE 4.3744 11.6331 12.995
CR 0.0034 0.0035 0.0042
AW 91.4058 95.17 94.4604
True p4 True py True p3
0.4600 0.4900 0.5200
Imputed p, Imputed p,  Imputed p;
0.4599 0.4766 0.5288
MAR Case
Variable Pairs (1,2) (1,3) (2,3)
Convergence Constant 0.025 0.025 0.05
True & -0.7366 0.3917 -0.2889
Imputed & -0.7379 0.392 -0.2871
SB 28.3954 7.3437 39.6934
RMSE 0.0038 0.0038 0.0039
CR 91,5072 94.9118 95.207
AW 0.1852 0.3377 0.3645
True p4 True py True p3
0.4600 0.4500 0.4300
Imputed p, Imputed p,  Imputed p;
0.4500 0.4603 0.4497

AE: average estimate, SB: standardized bias, RMSE: root mean square error,
CR: coverage rate, AW: average width
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TABLE 5: Description of variables and results from the
new imputation method applied to a subset of 100
women from the NYC HANES database.
Variable Label Number (Percent) Missing
1 Herpes | 12 (12.0%)
{yes vs. no)
2 Insurance Offered at 42 (42.0%)
Workplace {yes vs. no)
3 Private Insurance 0 (0.0%)
{yes vs. no)
Variable Pairs (1,2) (1,3) 2,3)
Convergence
Constant 0.0325 0.0325 0.0325
Original & -0.1422 -0.1376 0.5131
Imputed & -0.1435 -0.1388 05132
SB 22.5165 23.3595 3.8314
RMSE 0.0047 0.004 0.0043
CR 94.1559 95.0411 93.2211
AW 0.3907 0.3900 0.2964
Original p; Original py Original p3
0.77 0.55 0.68
Imputed p4 Imputed p, Imputed p3
0.76 0.54 0.68

AE: average estimate, SB: standardized bias, RMSE: root mean square error,
CR: coverage rate, AW: average width

relax any assumptions associated with the saturated
multinomial or loglinear model. This method invol-
ves imputing normally distributed values mapped
from the original binary data and then dichotomi-
zing these values using quantiles based on marginal
proportions. This approach is semi-parametric in
nature as imputing under the normality assumpti-
on of joint modeling involves the parametric porti-
on and dichotomizing via quantiles constitutes the
nonparametric portion. We have validated this met-
hod via simulation studies and real data applications
under MCAR and certain MAR scenarios. Thus, we
recommend this approach as a possible avenue for
imputing binary data when multinomial or logline-
ar model assumptions may be violated.
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FIGURE 1: Boxplots of means for data sets resembling the NYC HANES
data applied to the new imputation method for binary data generated under
the MCAR or MAR mechanism.
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FIGURE 2: Boxplots of pairwise correlations for data sets resembling the
NYC HANES data applied to the new imputation method for binary data gen-
erated under the MCAR or MAR mechanism.

Turkiye Klinikleri ] Biostat 2012;4(1)



Emrich JL, Piedmonte MR. A method for gen-
erating high-dimensional multivariate binary
variates. The American Statistician 1991;45
(4):302-4.

Demirtas, H. Simulation driven inferences for
multiply imputed longitudinal data. Statistica
Neerlandica 2004;58(4):466-82.

Schafer, JL, Olsen MK. Multiple imputation for
multivariate missing-data problems: a data an-
alyst's perspective. Multivariate Behavioral Re-
search 1998;33(4):545-71.

Schafer JL, Graham JW. Missing data: our
view of the state of the art. Psychol Methods
2002;7(2):147-77.

Schafer JL. Analysis of Incomplete Multivari-
ate Data. 15t ed. London: Chapman and Hall;
1997. p.430.

Guilford JP. Psychometric Methods. 1% ed.
New York: Mc Graw-Hill Book Company Inc;
1957. p.597.

Demirtas H, Doganay B. Simultaneous gen-
eration of binary and normal data with speci-
fied marginal and association structures. J
Biopharm Stat 2012;22(2):223-36.

Turkiye Klinikleri J Biostat 2012;4(1)

8.

13.

ON IMPUTING BINARY DATA VIA PAIRWISE ASSOCIATIONS AND CORRESPONDING...

I REFERENCES

Higham N. Computing the nearest correlation
matrix - a problem from finance. IMA J Numer
Anal 2002;22(3):329-43.

Lurie PM, Goldberg MS. An approxima-
te method for sampling correlated random
variables from partially specified distribu-
tions. Management Science 1998; 44(2):
203-18.

. Demirtas H, Hedeker D. Gaussianization-

based quasi-imputation and expansi-
on strategies for incomplete correlated bi-
nary responses. Stat Med 2007; 26(4): 782-
99.

. Demirtas H, Freels SA, Yucel, RM. Plausibil-

ity of multivariate normality assumption when
imputing non-gaussian continuous outcomes:
a simulation assessment. J Stat Comput Simul
2008;78(1):69-84.

. Demirtas H, Hedeker D. Multiple imputation

under power polynomials. Communications
in Statistics-Simulation & Computation 2008;
37(8):1682-95.

Collins LM, Schafer JL, Kam CM. A compari-
son of inclusive and restrictive strategies in

Irene B. HELENOWSKI et al.

modern missing data procedures. Psychol
Methods 2001;6(4):330-51.

. Feldman R, Finch M, Dowd B, Cassou S. The

demand for employment-based health insur-
ance plans. J Hum Resour 1989;24(1):115-
42,

. Monheit AC, Cooper PF. Health insurance and

job mobility: theory and evidence. Ind Labor
Relat Rev 1994;48(1):68-85.

. Gruber J, Madrian BC. Employment separa-

tion and health insurance coverage. J Public
Econ 1997,66(3):349-82.

Bergner M. Measurement of health status.
Medical Care 1985;23(5):696-704.

Ayanian JZ, Kohler BA, Abe T, Epstein AM.
The relation between health insurance cover-
age and clinical outcomes among women with
breast cancer. N Engl J Med 1993;329(5):326-
31

Trouiller P, Olliaro P, Torreele E, Orbinski J,
Laing R, Ford N. Drug development for neg-
lected diseases: a deficient market and a pub-
lic-health policy failure. Lancet 2002;359
(9324): 2188-94.



