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ABSTRACT Objective: Hierarchical data with two or more levels 
are common in different fields of research including medical, edu-

cational, social and sports sciences. Maximum likelihood (ML) and 

Bayesian Markov Chain Monte Carlo (MCMC) estimation methods 
are widely used in regression analyses used for modelling these 

hierarchical data. However, the performances of these methods are 

not well studied for the estimation of three-level models. This paper 
aims at finding the optimal estimation technique under various 

combinations of number of clusters at second and third levels in 

three-level data sets. Material and Methods: A data application 
example is presented using a three-level dataset on football player’s 

performance. Then, a simulation study based on the 3-level hierar-

chical linear model is performed for the comparison of four differ-
ent maximum likelihood and Bayesian estimation approaches under 

various number clusters.  Results: The data analysis and simulation 
study illustrate how strongly different estimation approaches affect 

the model parameter estimates, especially variance components. It 

is found that, if the main interest of the analysis is in the fixed part 
of the model, then any maximum likelihood or Bayesian method 

can be used, provided that the number of clusters at both levels are 

more than four. However, the main difference between these meth-
ods occurred in estimating the random terms. Conclusion: Results 

of the simulation study showed that using restricted maximum like-

lihood method is associated with better results for both regression 
coefficient and variance estimates. Obtaining valid variance esti-

mates with Bayesian MCMC estimation requires careful considera-

tion for defining prior distributions. 
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ÖZET Amaç: Tıp, eğitim, sosyal ve spor bilimleri dahil olmak 
üzere farklı araştırma alanlarında iki veya daha fazla düzeyli hiye-

rarşik veriler yaygındır. Bu hiyerarşik verileri modellemek için kul-

lanılan regresyon analizlerinde maksimum olabilirlik ve Bayesçi 
Markov Zinciri Monte Carlo (MZMC) tahmin yöntemleri yaygın 

olarak kullanılmaktadır. Ancak, bu yöntemlerin performansı üç 

düzeyli modellerin tahmini için yeterince çalışılmamıştır. Bu maka-
le, üç düzeyli veri setlerinde ikinci ve üçüncü düzeylerindeki çeşitli 

küme sayısı kombinasyonları altında en iyi tahmin tekniğini bulma-

yı amaçlamaktadır. Gereç ve Yöntemler: Futbolcu performansları-
na dair üç düzeyli bir veri seti kullanılarak bir veri uygulama örneği 

sunulmuştur. Sonrasında, dört farklı maksimum olabilirlik ve 

Bayesçi tahmin yaklaşımlarını farklı küme sayıları altında karşılaş-
tırmak için, üç düzeyli hiyerarşik doğrusal modele dayanan bir si-

mülasyon çalışması yapılmıştır. Bulgular: Veri analizi ve simülas-
yon çalışması, farklı tahmin yaklaşımlarının model parametre tah-

minlerini, özellikle varyans bileşenlerini ne kadar güçlü etkilediğini 

göstermiştir. Eğer analizin temel ilgi konusu modelin sabit kısmıy-
sa, her iki düzeydeki küme sayısının dörtten fazla olması koşuluyla 

herhangi bir maksimum olabilirlik ve Bayesçi yöntemin kullanılabi-

leceği sonucuna varılmıştır. Ancak, bu yöntemler arasındaki temel 
fark, rastgele terimleri tahmin etmede ortaya çıkmıştır. Sonuç: Si-

mülasyon çalışmasının sonuçları, sınırlı maksimum olabilirlik yön-

teminin kullanılmasının hem regresyon katsayısı hem de varyans 
tahminleri için daha iyi sonuçlarla ilişkili olduğunu göstermiştir. 

Bayesçi MZMC tahmini ile geçerli varyans tahminleri elde etmek, 

önsel dağılımları tanımlamak için dikkatli bir değerlendirme gerek-
tirmektedir.  

 

Anahtar kelimeler: Bayesçi hiyerarşik modelleme;  
                                  karma etkili modeller; çok düzeyli modelleme;  

                                  üç-düzeyli kümeleme 
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In many fields of research, it is common to see hierarchical data sets where observations are nested within 

higher units and cannot be assumed to be independent. An hierarchical structure of data can occur when the 

individual observations are nested within different groups, or when repeated measurements are taken from 

the same individuals as in longitudinal studies, or both.
1
 The correlation between observations into account, 

a common approach is to use hierarchical (i.e. mixed-effects, multilevel) models.
2
 When data consists of 

three-level hierarchy, clustering must be accounted by the analysis model in order to ensure that resulting 

estimates are reliable. There are various likelihood and Bayesian Markov Chain Monte Carlo (MCMC) esti-

mation techniques to fit three-level models, however the literature on estimation techniques to be used in the 

three-level context are limited.
3
  

These estimation techniques were well compared for two-level data.
4-6

 However, to the best of our 

knowledge, there is no to limited work which compares likelihood and Bayesian methods in the three-level 

context. The purpose of this study is to compare and discuss the performance of likelihood based and Bayes-

ian MCMC estimation methods for the estimation of three-level linear hierarchical model, for different com-

binations of number of clusters at level-2 and level-3. Thus, it is aimed to contribute to the methodological 

literature in this area. 

The study is motivated with a football players performance data set, which has a three-level hierarchical 

structure (i.e. football players (level-1) are nested within teams (level-2), teams are nested within leagues 

(level-3)). The data analysis demonstrates how strongly different estimation approaches affect the relevant 

results. In addition, the performance of likelihood and Bayesian estimation approaches were examined for 

modelling three-level hierarchical dataset with a simulation study. The layout of the paper is as follows. In 

Section 2 the fundamentals of three level hierarchical model and estimation techniques are given. The data 

which motivated this work and are used as a basis for comparing the likelihood and Bayesian methods are 

introduced in Section 3. In Section 4, the assessment of the techniques is illustrated via simulation study. 

Section 5 provides a discussion and recommendations. 

    MATERIAL AND METHODS 

THREE-LEVEL HIERARCHICAL LINEAR MODEL 

A three-level hierarchical model was used to analyse data and for the simulation study, where a random term 

is added to the model for each cluster implying a random intercepts model given below:
7
 

                  
 
                                                 (1) 

            ,              ,                
 

In the model above,      corresponds to the dependent variable of i
th

 level-1 unit, which is nested within 

the j
th

 level-2 cluster, which is further nested in k
th

 level-3 cluster. The     matrix of         represents the 

value for an independent variable q (q=1,…,p) for the corresponding     . The regression coefficients (  , ..., 

  ) and three variance estimates (  
    

  and   
 ) are referred as “fixed” and “random” effect parameters, 

respectively. The assumptions of the model are normality, independence of error terms at cluster and 

observation level, linearity and homoscedasticity. The expected correlation  between the two randomly 

chosen units within the same cluster is assessed with intra-class correlations (ICC) in hierarchical models. 

The ICC for 2
nd

 and 3
rd 

levels are calculated using the formulae below.
8
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LIKELIHOOD ESTIMATION METHODS IN HIERARCHICAL MODELLING  

The two main likelihood-based estimation techniques are Maximum Likelihood (ML) and Restricted (Resid-

ual) Maximum Likelihood (REML) estimation. In ML method, both regression coefficients (fixed effects) 

and the variance components (random effects) are included in the likelihood function, whereas the likelihood 

function in REML contains only the variance components, and the regression coefficients are estimated in a 

second estimation step.
8
 ML estimation yields simultaneous estimation of fixed and random components by 

maximizing the likelihood function of the data.
9
 On the other hand, in REML the estimation of fixed and 

random components is separated.
4 

Both methods which are used as estimation methods in hierarchical linear mixed models have their own 

merits. McCulloch and Neuhaus (2014) argue that ML method has a demerit of estimating biased estimates 

for random effect parameters and REML estimates have less bias.
10

 They point out the growing preference 

for REML due to the following merits. First, REML produces unbiased estimates for random parameters 

when the number of observations in clusters are equal (i.e., balanced data set). Second, since fixed 

parameters (   are not involved while forming the likelihood, there is no loss of degrees of freedoms occurs 

due to the estimation of fixed effects.
11

 Finally, REML estimates are less sensitive to outliers in the data than 

ML.
12

 Boedeker (2017) agrees that in theory REML leads to better estimates, especially when the number of 

clusters is small.
4
 

Likelihood estimates are often obtained through iterative procedures such as Iterative Generalized Least 

Squares (IGLS) which is designed specifically for hierarchical models although they can be adapted to other 

models.
13

 The iteration usually starts from ‘reasonable’ fixed parameter estimates, typically those obtained 

from ordinary least squares fit where the variance parameters are assumed to be 0. The next step follows 

with computational procedure that tries to improve starting values to produce better estimates.
8
 When two 

consecutive estimates for each parameter are sufficiently close to each other, the program concludes that 

convergence has been achieved and that no more iteration is needed. The IGLS algorithm which is modified 

to produce REML estimates is named as Restricted Iterative Generalized Least Squares (RIGLS). Since in 

REML the likelihood function is restricted to include only the variance components, the number of 

parameters to be optimized is reduced in RIGLS and this can improve the convergence properties.
14

   

BAYESIAN MCMC ESTIMATION METHODS IN HIERARCHICAL MODELLING  

Bayesian estimation is commonly being used for the estimation of hierarchical models, as it is well suited 

for connecting the information within and across higher levels of hierarchy.
15

 Bayesian approach 

incorporates parameter uncertainty through the prior distribution defined for a parameter estimate, and a 

random sample of representative parameter values from the posterior distribution is obtained at the 

estimation stage. 

One of the main tasks while fitting Bayesian models is to define the priors for model parameters. It is a 

common approach to use noninformative priors when there is no prior knowledge on the distributions of pa-

rameters. When defining noninformative priors for variance parameters, typical choices are inverse-gamma 

prior where the hyperparameters of the distribution are very small (i.e., α = 0.001, β = 0.001)
 
and uniform 

distribution on variance scale.
16,17

  

After defining the prior distributions, posterior distributions of both fixed and random parameters 

need to be specified, where         and   
    

    
  represent the fixed and random parameters, respec-

tively. This is done by combining the additional information in the form of a prior probability distribution 

and data.  

             
    

    
                    

    
    

                     
    

    
  , 

where Y represents the response variable and X is the matrix of k explanatory variables.  
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DATA EXAMPLE 

This study is motivated by the modelling football players’ performance data set which was obtained from the 

whoscored.com database (https://www.whoscored.com). The data set contains information from 15 major 

Leagues of different countries consisting of teams and 5723 players in total. The variables that were used in 

the study were the players’ rating scores, and various performance variables including number of goals, 

shots, tackles, assists, passes per 90 minutes and players’ position. The primary objective of the analysis was 

to examine to identify whether the number of goals, shots, tackles, assists, passes per 90 minutes and play-

ers’ positions affect their ratings. The structure of the dataset emerged the need of using 3-level hierarchical 

regression model, as the players are nested within teams, and teams are nested within leagues (Figure 1). The 

number of teams at each league varied from 16 to 28 and 25 players nested within each team on average.  

The three-level hierarchical model is given below: 

          

                                                                         

                               (1) 

            ,                        ,                       

where i
th

 football player is nested in team j which is also nested in league k. 
 

Level 3                               League 1                League 2             ...        League 15                               

(k:Leagues)  

 
Level 2               1    …    j1                1    …   j2                         1     …    j15 

(j: Teams)            

 
Level 1                   1    2 …   nj1,1               ...                    ...                           1   2      nj15,15         

(i:Players)    
FIGURE 1: Nested structure of football players ratings’ data. 

 

The model above was fitted with ML, REML and Bayesian estimation methods using MLwiN version 

3.03 which is a specialized software for fitting hierarchical models.
13

 As there is no prior knowledge on the 

distributions of fixed and random effects as in this study, for Bayesian model fitting noninformative priors 

were used. For regression coefficients diffuse uniform priors were used (        ) and for variance com-

ponents inverse-gamma and uniform priors were defined as shown: 

i. Diffuse inverse-gamma priors for variance components (equivalent to assume gamma priors for 

precision parameter   
 

   ) 

               
          ,         

          ,         
          

          where   is very small such as 0.001.  

ii. Diffuse uniform priors for variance components.  

              
       

 

 
  ,      

       
 

 
       

       
 

 
  

          where   is a small positive real number. 

To investigate the effect of different choice of diffuse variance priors on parameter estimates, Bayesian 

models were fitted with the priors given in (i) and (ii), in turn.  For all the parameters, it was concluded that 

running 3 independent chains for 10000 times were enough to obtain sufficiently small Monte Carlo Standard 

Error (MCSE). The first 2000 iterations of  each chain were discarded from the analysis as burn-in period.  

https://www.whoscored.com/
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TABLE 1: Estimates and their standard errors (given in parentheses) for three-level hierarchical model with random intercepts fitted 
by four different approaches. 
 

 Estimation methods 

Parameter estimates 
Likelihood based Bayesian MCMC  

ML REML InvGammaa Uniformb 

Intercept (β0) 6.204 (0.017) 6.204 (0.017) 6.203 (0.018) 6.202 (0.018) 

Goal (β1) 0.874 (0.028) 0.874 (0.028) 0.875 (0.028) 0.874 (0.028) 

Shot (β2) 0.051 (0.006) 0.051 (0.006) 0.051 (0.006) 0.050 (0.006) 

Assist (β3) 0.567 (0.026) 0.567 (0.026) 0.567 (0.026) 0.567 (0.026) 

Pass (β4) 0.008 (0.001) 0.008 (0.001) 0.008 (0.001) 0.009 (0.001) 

Tackle (β5) 0.088 (0.004) 0.088 (0.004) 0.089 (0.004) 0.088 (0.004) 

Position     

    Defender Reference    

    Midfielder (β6) -0.238 (0.008) -0.238 (0.008) -0.238 (0.008) -0.237 (0.008) 

    Forward (β7) -0.272 (0.013) -0.272 (0.013) -0.273 (0.013) -0.273 (0.013) 

Level-3 variance     
   0.001 (0.001) 0.001 (0.001) 0.002 (0.001) 0.003 (0.002) 

Level-2 variance     
   0.002 (0.001) 0.002 (0.001) 0.003 (0.001) 0.004 (0.001) 

Level-1 variance    
   0.053 (0.001) 0.053 (0.001) 0.053 (0.001) 0.053 (0.001) 

ICC (level-3) 0.018 0.018 0.034 0.050 

ICC (level-2) 0.036 0.036 0.054 0.070 

-2xlog-likelihood -338.753 -338.733 - - 

Deviance (MCMC) - - -383.875 -383.928 

       , aInverse-gamma (   ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively.  
bUniform(0,    ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. ML: Maximum Likelihood.  
REML: Restricted Maximum Likelihood. MCMC: Markov Chain Monte Carlo. ICC: Intra-class correlation 

 

The point estimates and standard deviations obtained from both likelihood and Bayesian approaches are 

given in the Table 1. With the likelihood-based methods the point estimates were predicted at the end of it-

erative procedures IGLS and RIGLS. Besides, in the Bayesian estimation procedure, the estimates of the re-

gression coefficients and variance components are the posterior means computed from the posterior distribu-

tion of each parameter.    

The ICC at the 2
nd

 and 3
rd

 levels were estimated to be low, however the likelihood ratio tests favoured 

the larger model with three levels over the fixed effects or 2-level models. In terms of coefficient estimates 

results are similar among different approaches, but there are some differences between methods in terms of 

variance component estimates and ICC, especially for level-3 variance. With ML method, the level-3 vari-

ance was estimated to be 0.001, however it was estimated as 0.003 with relatively large standard error with 

Bayesian estimation using uniform priors for variance components. This result may be due to two reasons. 

First, the variance component parameter depends on the number of clusters and the number of clusters at the 

3
rd

 level (i.e. players) and 2
nd

 level (i.e. teams) were not enough to yield accurate estimates for random pa-

rameters. Second, the true values of higher-level variance parameters were small and they were 

overestimated when uniform priors were defined for random effect parameters which were close to zero. The 

effect of diffuse N(0,1) priors on fixed effect parameters is small, since they were based upon total sample 

size (Ntotal=5723).  

SIMULATION STUDY 

A simulation study based on the 3-level hierarchical linear model given in Model (1) was conducted to com-

pare the performance of different estimation methods through a Monte Carlo simulation study by using 1000 

simulations. For simplicity the model consisted of a normally distributed continuous variable as an inde-

pendent variable. A continuous outcome was generated where the true value was defined as β1=0.20. 16 dif-

ferent data sets were generated for the combinations of four different cluster sizes by varying the number 

clusters at the 2
nd

 and 3
rd

 levels and keeping the number of units at each level-2 as 20. The ICC at the 2
nd

 and 

3
rd

 levels were defined as 0.10 and 0.30, respectively.   
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Each data set was fitted using the estimation methods used for the data analysis in Section 2. For com-

paring the accuracy of parameters, relative bias and coverage rates were calculated. Relative bias was calcu-

lated with  
        

     
      and coverage of nominal 95% confidence intervals (CI) (i.e. credible intervals 

(CrI) for Bayesian estimation) were calculated as the proportion of times that the 95% CIs include true esti-

mate for i=1,…,1000.  

    RESULTS  

Table 2 shows the results of the simulations for the parameter estimates for the fixed regression coefficient 

obtained with four different estimation techniques. When the number of clusters at both levels are more than 

12, all methods provided negligible bias. When the number of clusters at both levels were small, i.e. 4, the 

methods showed a negligible upward bias. Under the same condition, the coverage rates were poor with all 

methods, but we note that Bayesian estimation resulted in slightly better coverage rates. 

 

TABLE 2: Simulation results for the fixed effect estimate of the continuous variable. 
 

 
Estimation methods 

 Likelihood based Bayesian MCMC  

Number of clusters ML REML InvGammaa Uniformb 

Level-3 Level-2 Rel.bias Cov. Rel.bias Cov. Rel.bias Cov. Rel.bias Cov. 

4 4 3.75 88.7 3.75 87.3 3.30 92.6 3.50 91.2 

4 8 0.68 97.1 0.49 97.3 1.04 94.1 1.06 97.2 

4 12 -0.23 96.1 -0.25 96.4 2.40 94.8 2.37 95.7 

4 15 -0.01 96.0 -0.02 96.2 2.12 95.3 2.00 95.9 

8 4 -0.06 94.1 -0.06 94.0 0.82 95.1 0.73 95.1 

8 8 -0.16 96.6 -0.16 95.1 1.04 96.2 0.99 95.4 

8 12 0.38 96.1 0.38 96.0 1.28 94.3 1.29 95.6 

8 15 0.43 96.2 0.62 96.2 2.16 94.3 2.00 95.6 

12 4 -0.31 93.4 -0.31 93.2 0.27 93.4 0.20 92.6 

12 8 0.72 95.8 0.72 96.4 1.65 93.4 1.56 93.1 

12 12 0.09 94.4 0.09 94.4 0.41 93.6 0.39 94.7 

12 15 0.09 95.6 0.09 95.1 1.07 94.5 1.50 95.1 

15 4 0.72 94.3 0.72 92.8 0.23 93.2 0.20 93.5 

15 8 0.72 94.8 0.72 95.8 1.07 93.2 1.00 94.2 

15 12 0.72 95.8 0.62 95.6 0.41 94.8 0.39 95.8 

15 15 0.47 95.5 0.47 95.7 0.47 95.0 0.61 95.8 

       , aInverse-gamma (   ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively.  
bUniform(0,    ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. Rel.bias: Relative bias,  

Cov: 95% Nominal Coverage. ML: Maximum Likelihood. REML: Restricted Maximum Likelihood. MCMC: Markov Chain Monte Carlo. 

 

The relative bias of the variance components was assessed across the different sizes of clusters at both 

levels (Table 3, Table 4, Table 5). In general, the choice of the estimation technique and priors did not show 

any significant effect on the variance component estimates at level-1 and level-2, as all methods provided 

unbiased estimates under different combinations of number of clusters. The only exception was the scenario 

where both levels consist of 4 clusters as ML estimation resulted in a considerable bias. 

For the estimation of the 3
rd

 level variances,   
 , REML estimates were superior to the other methods 

on all aspects. However, Bayesian estimation with inverse-gamma priors benefitted from higher number of 

level-3 clusters and resulted in unbiased level-3 variance estimates if the number of level-3 clusters is more 

than 8. ML estimation is unbiased for   
 , if the there are at least 12 level-3 clusters and 8 level-2 clusters, 

provided that there are 20 level-1 units. Using uniform priors for variance parameters resulted in biased es-
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timates for   
  for all combinations of number of clusters. When the cluster size at 3

rd
 level increased, the 

relative bias obtained with uniform priors considerably decreased.  

 

TABLE 3: Relative bias for the level-1 variance component    
  . 

 

 
Estimation methods 

Number of clusters Likelihood based Bayesian MCMC 

Level-3 Level-2 ML REML InvGammaa Uniformb 

4 4 -1.35 0.02 1.04 1.11 

4 8 0.61 0.15 0.91 0.97 

4 12 -0.71 -0.07 0.11 0.13 

4 15 -0.51 0.04 0.10 0.13 

8 4 0.28 0.01 0.43 0.49 

8 8 -0.60 -0.09 0.18 0.25 

8 12 -0.35 -0.12 0.27 0.29 

8 15 -0.18 0.08 0.10 0.11 

12 4 -0.12 0.14 0.22 0.23 

12 8 -0.11 0.14 -0.08 -0.02 

12 12 0.15 0.22 -0.02 0.10 

12 15 0.10 0.21 0.04 0.05 

15 4 -0.07 0.11 0.20 0.26 

15 8 -0.09 0.15 -0.07 -0.18 

15 12 0.10 0.14 -0.01 0.09 

15 15 0.08 0.10 0.04 0.04 

       , aInverse-gamma (   ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively.  
bUniform(0,    ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. ML: Maximum Likelihood.  
REML: Restricted Maximum Likelihood. MCMC: Markov Chain Monte Carlo. 
 
 
 
 

TABLE 4: Relative bias for the level-2 variance component    
  . 

 

 
Estimation methods 

Number of clusters Likelihood based Bayesian MCMC 

Level-3 Level-2 ML REML InvGammaa Uniformb 

4 4 -13.13 -2.74 4.36 2.57 

4 8 -2.94 -2.92 -0.50 1.95 

4 12 -1.73 -1.71 0.01 0.64 

4 15 -1.16 -1.45 0.12 0.18 

8 4 2.61 2.20 1.37 1.56 

8 8 -1.44 -1.42 0.43 0.53 

8 12 -1.14 -1.14 0.54 0.37 

8 15 -0.55 -0.53 0.18 0.15 

12 4 -2.15 -2.14 0.87 0.72 

12 8 -0.74 -0.74 -0.53 -0.40 

12 12 0.15 0.17 0.30 0.39 

12 15 -0.11 0.12 0.25 0.66 

15 4 -0.60 -0.52 0.15 0.16 

15 8 -0.25 0.28 0.25 0.25 

15 12 0.10 0.14 -0.01 0.09 

15 15 0.08 0.10 0.04 0.04 

       , aInverse-gamma (   ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. 
bUniform(0,    ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. ML: Maximum Likelihood. 
REML: Restricted Maximum Likelihood. MCMC: Markov Chain Monte Carlo. 
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TABLE 5: Relative bias for the level-3 variance component     
  . 

 

 
Estimation methods 

Number of clusters Likelihood based Bayesian MCMC 

Level-3 Level-2 ML REML InvGammaa Uniformb 

4 4 -22.84 -4.27 38.43 206.17 

4 8 -11.86 -1.26 13.44 56.29 

4 12 -12.23 -3.09 10.73 36.23 

4 15 -16.93 -2.71 15.31 25.31 

8 4 -13.56 0.88 8.51 63.34 

8 8 -14.58 -4.52 -9.04 34.03 

8 12 -5.15 1.28 -1.83 16.64 

8 15 -6.91 3.31 -2.47 15.00 

12 4 -14.11 -5.54 3.34 23.04 

12 8 -7.26 3.22 -2.76 21.26 

12 12 -6.43 -1.96 0.71 12.35 

12 15 -4.31 1.31 1.31 12.14 

15 4 -13.09 -3.31 2.86 29.13 

15 8 -8.73 -1.93 2.47 32.58 

15 12 -4.91 1.56 0.87 15.48 

15 15 -3.31 1.10 1.10 11.37 

       , aInverse-gamma (   ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively.  
bUniform(0,    ) and diffuse uniform priors were defined for variance components and regression coefficients, respectively. ML: Maximum Likelihood.  
REML: Restricted Maximum Likelihood. MCMC: Markov Chain Monte Carlo. 

 

    DISCUSSION 

When the estimation techniques were compared in terms of bias and coverage through a simulation study, all 

methods provided unbiased regression coefficient estimates. The only scenario where the regression coeffi-

cients were estimated with low coverage was when the number of clusters were specified as 4 at both levels. 

In previous studies, at least 15 clusters were recommended for obtaining accurate estimates for continuous 

outcomes in two-level datasets.
18

 However, the findings presented in our study showed that the suggestions 

regarding the number of clusters for two-level data sets are not directly adaptable to three-level context as 

the nesting structure is more complicated with three-level data structures.  

In general, variance estimates of a three-level model obtained with REML were less biased compared to 

ML and Bayesian methods, regardless of number of clusters. Given that REML performed approximately the 

same with other methods for the regression coefficients, the findings of this study agree with the growing 

preference of REML. However, it is important to note that with REML only differences in random part 

(variance components) can be compared with likelihood tests and when the interest is assessing the models 

which differ only in the fixed part it is not recommended to use.
8 

In terms of Bayesian methods, it was concluded that the choice of priors for variance parameters has a 

high impact on variance estimates. When uniform priors were used both for fixed and random parameters, 

the estimates for the 3
rd

 level variance parameters were positively biased. With 2-level models it is known 

that a uniform prior tends to give a biased variance estimates at level-2, when the number of level 2 units is 

small.
13

 This study showed that, with small number of clusters at both levels in a three-level model, uniform 

priors resulted in upward bias in level-3 variances, however level-2 variances were estimated precisely.  

There exist several limitations of this study. First, it was aimed at assessing the effect of the estimation tech-

niques for different number of clusters at Level-2 and Level-3. Therefore, simulated the datasets were generated 

with varying the number of clusters at both levels, keeping the level-1 units and ICCs fixed at all scenarios. In ad-

dition, using regression coefficients at higher levels, interaction terms or random slopes were avoided, as extend-

ing the model to include additional parameters may bring the issue of convergence with Bayesian estimation.  
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    CONCLUSION 

In this paper, the performances of maximum likelihood and Bayesian model-based approaches that had the 

potential to accommodate the individual dependency in the nested structure of 3-level hierarchical dataset 

were investigated. In the motivating example which is based on a three-level data, in terms of estimating re-

gression coefficients all methods provided similar results. However, the main difference between likelihood 

and Bayesian methods was observed in the highest-level variance in 3-level hierarchical linear model.  The 

simulation study based on a hypothetical three-level data set with a normally distributed variable showed 

that, all methods provide unbiased estimates with acceptable nominal coverage rates for the regression coef-

ficient. The only exception was the scenario where the number of clusters at level-2 and level-3 are as small 

as four. If the random part is the main interest of the analysis, then the use of REML may be preferred. Using 

Bayesian MCMC estimation requires careful consideration of prior distributions for obtaining accurate vari-

ance estimates. 

Although the methods under varying number of clusters at level-2 and level-3 with several simulation 

scenarios were assessed in this study, it should be avoided to overgeneralize these results which are based on 

a single hypothetical data set.  
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