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ABSTRACT Objective: We aimed to investigate whether machine 

learning (ML) and deep learning (DL) methods, utilizing individ-

ual-level data from genome-wide association studies (GWAS), 
could serve as a viable alternative to traditional polygenic risk score 

(PRS) calculation methods, which rely on odds ratios as weights. 

PRS is widely used to estimate genetic susceptibility to diseases, 
but its accuracy and generalizability can be affected by variations in 

allele frequencies and sample sizes. Given the advancements in ML 

and DL techniques, we explored their potential for improving risk 
prediction. Material and Methods: We generated GWAS datasets 

using the PLINK program, simulating genetic data under various 

conditions by varying allele frequencies and sample sizes. This 
process was repeated 100 times to assess the robustness of the ap-

proaches. We applied 2 ML algorithms-Support Vector Machine 
and Random Forest alongside a DL approach. The predictive per-

formance of these methods was compared to the traditional PRS 

calculation, which uses odds ratios as weights. Results: Our  
findings showed that ML and DL methods provided more consis-

tent case-control separation than the classical approach. Addition-

ally, they exhibited reduced bias and greater stability across differ-
ent genetic conditions. Conclusion: ML and DL approaches pre-

sent a promising alternative to odds ratio-based PRS calculations, 

offering enhanced reliability and consistency in genetic risk predic-
tion. 
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ÖZET Amaç: Bu çalışmada, genom-boyu ilişkilendirme çalışması 

[genome-wide association studies (GWAS)] verilerinden elde edilen 

bireysel düzey bilgileri kullanarak, poligenik risk skoru (PRS) hesap-
lamasında, olasılık oranlarını ağırlık olarak kullanan geleneksel yak-

laşımlara alternatif olarak, makine öğrenimi [machine learning (ML)] 

ve derin öğrenme [deep learning (DL)] yöntemlerinin uygulanabilirli-
ğini araştırmayı amaçladık. PRS, hastalıklara genetik yatkınlığın tah-

mininde yaygın olarak kullanılmaktadır; ancak, alel frekanslarındaki 

ve örneklem büyüklüklerindeki farklılıklar nedeniyle doğruluğu ve 
genellenebilirliği etkilenebilmektedir. Son yıllarda ML ve DL teknik-

lerindeki ilerlemeler göz önüne alındığında, bu yöntemlerin risk tah-

minini iyileştirip iyileştiremeyeceğini değerlendirdik. Gereç ve Yön-

temler: PLINK programı kullanılarak farklı alel frekansları ve örnek-

lem büyüklüklerinde 100 kez tekrarlanan GWAS veri setleri oluştu-
ruldu. Ardından, bu veri setleri üzerinde 2 farklı ML algoritması 

(Destek Vektör Makinesi ve Rastgele orman) ile bir DL yaklaşımı 

uygulandı. Bu yöntemlerin performansı, olasılık oranlarını ağırlık 
olarak kullanan klasik PRS hesaplama yöntemiyle karşılaştırıldı. Bul-

gular: ML ve DL yaklaşımları, klasik yönteme kıyasla vaka-kontrol 

ayrımında daha tutarlı sonuçlar üretti. Ayrıca, farklı alel frekansları ve 
örneklem büyüklükleri altında daha az yanlılık ve daha yüksek karar-

lılık sergiledikleri gözlendi. Sonuç: ML ve DL tabanlı yöntemler, 

PRS hesaplamasında geleneksel olasılık oranına dayalı yaklaşımlara 
kıyasla daha güvenilir ve tutarlı bir risk tahmini sunarak alternatif bir 

yöntem olarak öne çıkmaktadır. 
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Genome-wide association studies (GWAS) are methods used to identify and investigate genes and 

genomic regions potentially responsible for a specific disease. By analysing entire chromosome each con-

taining hundreds of thousands of gene GWAS can assess both gene-gene and gene-environment interac-

tions. Therefore, GWAS are not restricted to specifically selected genes; rather, they aim to identify dif-

ferences between case and control groups by analysing large-scale genetic data. Changes in single nucleo-

tides within the genome are known as single nucleotide polymorphisms (SNPs). SNPs help explain why 

some individuals are healthier than others, why the same disease progresses differently across individuals, 

and why some people respond positively to treatment while others do not. GWAS typically involve ana-

lysing SNP data. Today, numerous disease-associated SNPs have been identified, but further studies be-

yond GWAS are still needed. Approaches such as polygenic risk scores (PRS) may help clinicians by con-

tributing to precision and personalized medicine before disease onset.
1,2

 PRS is a measure that utilizes 

multiple SNPs simultaneously to calculate an individual’s genetic disease risk. A low PRS indicates lower 

susceptibility to genetic disease, whereas a high PRS indicates a higher predisposition to disease. The ob-

jectives of this study are to identify the most accurate model for distinguishing case-control groups and 

predicting genetic risk, as well as to validate traditional PRS calculations using machine learning (ML) 

and deep learning (DL). 

    MATERIAL AND METHODS 

In this study, for the purpose of finding out the best model of PRS, a raw GWAS data set (which is bad, bim, 

and fam files) that has been simulated from 1000 genome project real datasets, consisting of 251 cases and 

232 controls, as well as 489805 SNPs that are associated with obesity, is used. To determine cases and con-

trols, a body mass index above 30 was used as a criterion.
3 

In our simulation scenarios, we created different 

odds ratios for each case and control group and different sample sizes. If compared with all SNPs, a number 

of the SNPs associated with disease have a 1% rate in all datasets. For the purposes of separating cases from 

controls, the SNPs associated with disease have been created by a less than 0.05 p value obtained from logis-

tic regression analysis. This study was planned as a methodological study. This study was conducted in ac-

cordance with the principles of the Helsinki Declaration. 

PRS 

A PRS is a method used to estimate the genetic risk of a complex disease. By design, a PRS incorporates all 

variants across the genome, thereby potentially providing more information than any single mutation. 

Mathematically, it is calculated as the sum of weighted genotypes across relevant SNPs: 

PRS=       
 
    ,           (1) 

where    is the weight assigned to the i-th SNP, and    indicates the genotype (e.g., the number of risk al-

leles) for the i-th SNP.
3
 In this context, the odds ratio of each SNP typically serves as its weight. 

ML METHODS 

ML refers to a system of algorithms designed to identify patterns within a dataset and autonomously 

improve their own predictive performance. In other words, ML algorithms are self -improving: they en-

hance their prediction accuracy over time by analysing and learning from data.
4
 ML is increasingly 

popular today because, unlike classical statistical methods, it does not rely on strict assumptions such as 

normality or specific sample sizes. Moreover, its capacity to handle numerous tuning parameters for 

solving non-linear problems is a key advantage.
5,6

 Genetic epidemiological datasets often fall under the 

umbrella of “big data”, so any methods used need to be able to handle large, complex datasets. Given 

the strong predictive power of ML approaches, they have become more commonly applied in big-data 

analyses.
7
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SUPPORT VECTOR MACHINES 

Support vector machines (SVM) were first introduced by Vladimir Vapnik in 1992. They use Lagrange mul-

tipliers to solve classification problems, thereby identifying the decision boundaries that separate classes 

with minimal error. Although SVMs often have longer training times compared to some other algorithms, 

they are notably robust against overfitting.
8,9

 

        
 

 
           

 
                 (2) 

         for the variables,  

                         (3)  
 

                     C is regulation parameter,   is slack variable V is tuning parameter and   is 

weights. If Lagrange multipliers are used to find the smallest sums to be used to obtain the optimization so-

lution in the equation, 
 

   
 

 
        

   +C    
 
   -      

                        
 
           (4) 

 

   is the weight vector of the variable.   , if the derivative is taken according to w; 
 

   

   
  ;         

 
        

                               (5)  

 

(5) obtained. Similarly, if the derivative operation is continued, 
 

   

  
 ;      

 
                    (6)  

and 

   

    
; C=                                  (7) 

 

(7) equality is achieved. Dual formulation for     Lagrange multiplier, 

max       
 

 
  

        
 
       

                                   (8)  

(8) It is calculated by the equation, and 

    
 
                      (9)  

Therefore, the interval, C≥  ≥0 exists and the kernel function is defined as follows. 

             
 
       

 
               

 
                (10) 

To determine the maximum distance between two classes for classification with the help of weight vec-

tors, the equations,                       are used and these equations are subtracted from each 

other and maximized. Hence, these weight vectors are unbiased. Thus, the weights (represented by “w”) will 

be unbiased when used for calculating the PRS.  

αᵢ (Lagrange Multipliers) determine the influence of each training sample on the decision boundary. 

Only samples with nonzero αᵢ (support vectors) affect the final model. βᵢ ensure that the slack variables ξᵢ are 

non-negative. C (Regularization Parameter) balances the trade-off between maximizing the margin and 

minimizing classification errors. ξᵢ (Slack Variables) allow flexibility by accommodating margin violations 

or misclassifications. V (Tuning Parameters) appear in the feature mapping functions and influence how 
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the data is transformed. They affect the behaviour of the kernel and the decision boundary. b (Bias Term) 

shifts the decision boundary so that it is correctly positioned relative to the data points. K_ψ(xᵢ, xⱼ) (Kernel 

Function) allows the SVM to operate in a high-dimensional feature space efficiently, by implicitly comput-

ing inner products without explicitly transforming the data. 

RANDOM FOREST 

Random Forest (RF) is an algorithm composed of multiple decision trees. It can be applied to both categori-

cal and continuous data in classification or regression tasks. RF is also useful for missing data imputation, 

feature selection, and determining each variable’s contribution to the model-often referred to as variable im-

portance.
10-13

 

                           
             (11) 

 

Here (11), while T represents the training set, the function of the probability of being selected as be-

longing to the class    is            . Another strength of the random forest algorithm is that the variables 

contributing to the model can be calculated with the “variable importance” score. This score can be calcu-

lated in three different ways, with the out-of-bag sampling method, the bootstrap sampling method, and the 

calculation method based on the z-score. 
 

          
          

   
 

       

       
                

 
       

             (12) 

 

Here (12), the expression,      is the sample obtained by out-of-bag sampling method for a tree t, with 

t {1, 2, ..., n.tree},    
            . Here, i in the prediction class. Before the observation is included in the 

prediction class and       
                        

                  i. your observation j. permutation up to 

observation and                                                   .        Is the significance score of the 

variable. If        is equal to zero, then the variable   is not included in the t tree. If we continue with the 

Bootstrap method, 
 

       
          

                
   

                
          (13) 

 

Here (13), the score           is obtained from the number of independent n-trees. Finally, if it is de-

sired to calculate with the z-score method, 
 

        
      

  

                 

          (14) 

It is calculated by its formulation (14). Thus, the weights (represented by “i”) will be unbiased when 

used for calculating the PRS. 

DL METHODS 

DL is a specialized subset of ML. While one key difference between DL and traditional ML lies in how data 

is processed particularly regarding feature selection and labelling DL does still require data preparation. 

However, DL is especially adept at automatically learning features from raw data, making it highly suitable 

for complex tasks.
14

 Major breakthroughs in DL have been achieved in image and speech recognition, as 

well as in natural language processing and language translation. The success of DL can be attributed to its 

ability to learn hierarchical representations of data by progressively increasing the level of abstraction.
15,16

 

DL architectures typically involve artificial neural networks with multiple nonlinear layers, where each layer 
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processes the output of the preceding layer. Each layer comprises one or more artificial neurons, which re-

ceive inputs from the neurons in the previous layer. These neurons compute a weighted sum of their inputs 

and apply an activation function such as the sigmoid or rectified linear unit (ReLU) to produce an output. 

During training, the most suitable hierarchical representations are learned by optimizing the weight parame-

ters in each layer. After the forward pass sequentially propagates signals through all layers, the loss function 

in the final output layer calculates the error between the predicted output and the true label. To minimize this 

error, a backward pass back-propagates the error signals, updating the weight parameters using optimization 

algorithms based on stochastic gradient descent.
17

 
 

                                                     (15) 
 

Here (15),   is a matrix of size N×C, where C=dK is the dimensionality of the network’s output (equal 

to the number of classes in a classification task). The notation W=       
    represents the set of weight ma-

trices in the network, and   denotes the input data. The formulation used to optimize these weights during 

the training phase is given by: 
 

            
                                           (16) 

 

It is defined as (16). Here (16), the term        is defined as the loss function.   is a regulation term 

used to eliminate the overfitting problem and is calculated with  (W)=        
  

    and the loss function 

               
  and                                 (17) 

Classification is made according to the result of equation (17) where     )  represents a possible latent 

unit activation and X is the training dataset and  > 0 is the equilibrium parameter. 

BIAS SOURCES IN GWAS ODDS RATIO ESTIMATION 

GWAS face various biases in odds ratio (OR) estimation, which can result in distorted associations, false-

positive findings, or overestimated effect sizes. 

POPULATION STRATIFICATION 

Population stratification occurs when genetic variations reflect ancestry differences rather than associations 

with a trait. For example, allele frequency differences between subpopulations (e.g., African versus Euro-

pean ancestry) can confound results, making it appear as if certain variants are associated with a disease, 

while they simply reflect population structure.
18

 

WINNER’S CURSE 

This bias refers to the inflation of effect sizes for genetic variants discovered in initial studies. Variants that 

reach statistical significance in a discovery sample often exhibit larger-than-true effect sizes due to sampling 

variation. Subsequent replication studies typically observe smaller effect size, reflecting the true underlying 

association.
19

 

ASCERTAINMENT BIAS 

Ascertainment bias arises when the selection of participants for GWAS is not representative of the general 

population. For example, cases might be recruited from hospitals while controls are sampled from the 

general population, introducing environmental or demographic differences that confound the genetic 

analysis.
20
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LINKAGE DISEQUILIBRIUM (LD) 

LD refers to the non-random association of alleles at nearby loci. When a non-causal variant is in strong LD 

with a causal variant, it may appear to be associated with the disease. This can complicate efforts to pinpoint 

the true causal variant and interpret its functional impact.
21

 

MULTIPLE TESTING BIAS 

GWAS tests millions of SNPs simultaneously, increasing the probability of false-positive findings. For in-

stance, even with stringent significance thresholds (e.g., p<5×10⁻⁸), spurious associations may arise due to 

the sheer number of comparisons. Proper statistical corrections, such as Bonferroni correction or false dis-

covery rate control, are necessary to mitigate this issue.
22

  

CONFOUNDING VARIABLES 

Confounding occurs when external factors (e.g., environment, lifestyle) influence both the genetic variant 

and the phenotype of interest, creating spurious associations. For example, socio-economic factors might 

correlate with both disease risk and genetic variation, leading to biased OR estimates if not properly ac-

counted for.
23

  

CRYPTIC RELATEDNESS 

Cryptic relatedness refers to hidden familial relationships among participants in a GWAS. Such relationships 

inflate test statistics by violating the assumption of independence between individuals, leading to an in-

creased risk of false-positive associations. Proper quality control, such as identity-by-descent analysis, can 

help identify and exclude related individuals.
24

 

ALTERNATIVE METHODS FOR POLYGENIC RISK SCORE PREDICTION 

ML models, including RF, Support Vector Machines (SVM), and Deep Neural Networks, can mitigate bi-

ases in PRS formulation by accounting for population stratification through ancestry-adjusted features, 

addressing winner’s curse with cross-validation and regularization, avoiding arbitrary significance thresh-

olds by learning SNP contributions directly from data, incorporating non-linear relationships and epistatic 

interactions that traditional GWAS-based PRS methods overlook, handling missing data without imputa-

tion errors, and integrating environmental and genetic confounders into a unified predictive framework, all 

of which contribute to better-calibrated, generalizable, and less biased PRS for complex traits and dis-

eases. 

We propose an alternative approach for predicting PRS by identifying weight vectors using different 

ML methods. In the SVM and DL approaches, the weight matrices used to classify samples serve as weight 

vectors for computing PRS. For RF, we utilize the variable importance measurements as the weight vector. 

In all cases, each SNP is multiplied by the corresponding weight, yielding an individual risk score. The for-

mulas are as follows: 
 

                  
 
                 (18) 

                
 
             (19) 

                
 
                  (20) 

Here,      ,      and      represent the weights assigned to the i-th SNP by the respective methods, 

while      denotes the genotype for the i-th SNP. 
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SIMULATION STEPS 

Because it is both challenging and costly to acquire GWAS data for specific diseases, we simulated data us-

ing the PLINK (Shaun Purcell and Massachusetts General Hospital and Harvard Medical School, USA) 

software. The resulting raw files (bed, bim, and fam) were then used to develop our new method and to 

compare the performance of different approaches. We selected case-control sample sizes of 500-500, 1,000-

1,000, and 2,000-2,000 individuals. The number of SNPs studied included 5,000, 10,000, 50,000, and 

100,000. The primary software and platforms used were PLINK, R (R Foundation for Statistical Computing, 

Austria), Python (Python Software Foundation, USA), Linux (Linux Foundation, USA), and Microsoft Az-

ure (Microsoft Corporation, USA).
25-28

 

 

TABLE 1: Tuning parameters 
 

Model Parameter Value Description 

SVM  
C 1000 Regularization parameter 

Kernel Linear Kernel type for SVM 

Randomforestclassifier 

N_estimators 1000 Number of trees in the forest 

Max_depth 30 Maximum depth of the tree 

Min_samples_leaf 10 Minimum samples per leaf node 

Min_samples_split 10 Minimum samples to split a node 

Oob_score TRUE Use out-of-bag samples for evaluation 

Random_state 0 Random seed for reproducibility 

Train_test_split Test_size 0.2 Proportion of test data 

Deep Learning 

Layers [n, 64, 1] Layer sizes (number of neurons). N is the number of SNPs   

Activation ReLU/sigmoid Activation functions 

Optimizer Adam Optimization algorithm 

Learning rate 0.001 Learning rate 

Epochs 50 Number of training epochs 

Batch size 32 Mini-batch size 

Validation split 0.2 Proportion of validation data 
 

SVM: Support Vector Machine; ReLU: Rectified linear unit; SNP: Single nucleotide polymorphism 
 

 

    RESULTS 

In our simulation study, we compared PRS calculated by 4 methods: the classical (log-odds) approach, SVM, 

RF, and DL, across various sample sizes and SNP counts. A statistically significant difference was observed 

between case and control groups with PRSs derived from the classical method at all SNP counts and sample 

sizes (p<0.001). Although the classical method produced the lowest PRS values in both patient and control 

groups for all sample sizes, DL yielded the highest PRS values. Meanwhile, the RF method displayed a more 

homogeneous variation, with SVM showing a similar pattern. Overall, all newly developed methods (SVM, 

RF, and DL) appear suitable alternatives to the classical approach when the number of SNPs is small. For in-

stance, with 10,000 SNPs in the 500-500 case-control group, classical, SVM, and RF methods detected a statis-

tically significant difference in genetic risk scores (p<0.001), whereas DL did not (p=0.361). Similarly, at 

50,000 SNPs, the classical, SVM, and RF methods again showed significant case-control differences 

(p<0.001), whereas DL did not (p=0.642). Finally, at 100,000 SNPs, the classical, SVM, and RF methods suc-

cessfully distinguished case and control groups (p<0.001), while DL still did not (p=0.803). These findings 

suggest that SNP count is a crucial factor influencing the DL method’s ability to separate cases from controls. 

When working with a small number of SNPs, DL performed best at distinguishing case and control groups; 

however, when the SNP count increases, RF, SVM, and the classical method tend to outperform DL. Notably, 

RF and SVM can replace the classical method for any SNP count, and they yield narrower confidence intervals 

while offering superior discrimination of case-control status as the number of SNPs rises (Table 2). 
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TABLE 2: Comparison of classical PRS and risk scores weighted according to other models in case and control groups (n=500-500) 
 

Number of the SNPs Method 

500 Case-500 Control PRS Table 

p value 
Control Case 

X ±SD X ±SD 

[Minimum:maximum] [Minimum:maximum] 

5,000 

SNP 

PRS 
0.081±0.269 0.212±0.267 

<0.001 
[-0.645:0.916] [-0.712:0.863] 

SVM 
0.089±0.129 0.172±0.077 

<0.001 
[-0.178:0.428] [-0.125:0.389] 

RF 
0.078±0.025 0.083±0.019 

<0.001 
[0.033:0.128] [0.045:0.121] 

DL 
0.489±0.318 0.505±0.296 

<0.001 
[-0.098:1.247] [-0.044:1.234] 

10,000 

SNP 

PRS 
-0.513±0.451 -0.476±0.471 

<0.001 
[-1.104:0.039] [-1.119:0.079] 

SVM 
0.019±0.074 0.062±0.049 

<0.001 
[-0.155:0.162] [-0.075:0.156] 

RF 
0.039±0.012 0.042±0.009 

<0.001 
[0.018:0.063] [0.025:0.061] 

DL 
0.640±0.317 0.643±0.306 

0.361 
[-0.016:1.441] [0.012:1.443] 

50,000 

SNP 

PRS 
-0.001±0.113 0.130±0.163 

<0.001 
[-0.234:0.354] [-0.241:0.587] 

SVM 
0.053±0.096 0.137±0.063 

<0.001 
[-0.103:0.252] [-0.102:0.241] 

RF 
0.077±0.024 0.084±0.017 

<0.001 
[0.036:0.120] [0.050:0.119] 

DL 
0.616±0.351 0.618±0.348 

0.642 
[-0.005:1.468] [0.004:1.468] 

100,000 

SNP 

PRS 
0.286±0.358 0.452±0.266 

<0.001 
[-0.246:0.963] [0.045:0.986] 

SVM 
0.029±0.047 0.072±0.029 

<0.001 
[-0.052:0.111] [-0.028:0.111] 

RF 
0.038±0.013 0.042±0.008 

<0.001 
[0.015:0.060] [0.024:0.058] 

DL 
0.669±0.373 0.670±0.371 

0.803 
[-0.004:1.339] [0.002:1.351] 

 

SNP: Single nucleotide polymorphism; PRS: Polygenic Risk Score; SVM: Support Vector Machine; RF: Random Forest; DL: Deep Learning;  
SD: Standard deviation 

 

When the sample size is 2,000, SVM is the most powerful model for distinguishing cases from controls. 

At 5,000 SNPs, all methods can effectively separate cases and controls, indicating they are all suitable for 

predicting PRS in this scenario. However, at 10,000 SNPs, the classical method, RF, and SVM continue to 

yield statistically significant differences (p<0.001), whereas DL does not (p=0.467). For 50,000 SNPs, the 

classical method, SVM, and RF again show significant separation between cases and controls (p<0.001), but 

DL does not (p=0.652). A similar pattern emerges at 100,000 SNPs: the classical method, SVM, and RF re-

main significant (p<0.001), while DL fails to distinguish cases from controls (p=0.825; Table 3). 
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TABLE 3: Comparison of classical PRS and risk scores weighted according to other models in case and control groups (n=1,000-1,000) 
 

Number of the SNPs Method 

1,000 Case- 1,000 Control Polygenic Risk Score Table 

p value 
Control Case 

X ±SD X ±SD 

[Minimum:maximum] [Minimum:maximum] 

5,000 

SNP 

PRS 
-0.003±0.112 0.066±0.147 

<0.001 
[-0.400:0.463] [-0.403:0.777] 

SVM 
0.195±0.151 0.282±0.071 

<0.001 
[-0.139:0.540] [-0.011:0.545] 

RF 
0.080±0.026 0.085±0.018 

<0.001 
[0.027:0.136] [0.044:0.128] 

DL 
0.673±0.320 0.689±0.295 

<0.001 
[-0.043:1.432] [0.022:1.457] 

10,000 

SNP 

PRS 
-0.550±0.498 -0.516±0.519 

<0.001 
[-1.130:0.087] [-1.127:0.132] 

SVM 
0.073±0.095 0.119±0.062 

<0.001 
[-0.168:0.261] [-0.069:0.243] 

RF 
0.038±0.012 0.042±0.009 

<0.001 
[0.015:0.069] [0.025:0.062] 

DL 
0.902±0.430 0.905±0.419 

0.467 
[0.003:1.640] [0.061:1.657] 

50,000 

SNP 

PRS 
-0.023±0.079 0.109±0.182 

<0.001 
[-0.209:0.303] [-0.164:0.815] 

SVM 
0.039±0.085 0.123±0.068 

<0.001 
[-0.128:0.259] [-0.076:0.245] 

RF 
0.077±0.024 0.084±0.017 

<0.001 
[0.037:0.127] [0.046:0.118] 

DL 
0.828±0.382 0.830±0.379 

0.652 
[-0.002:1.551] [0.008:1.544] 

100,000 

SNP 

PRS 
0.094±0.189 0.234±0.172 

<0.001 
[-0.174:0.545] [-0.079:0.552] 

SVM 
0.021±0.045 0.063±0.037 

<0.001 
[-0.041:0.116] [-0.043:0.113] 

RF 
0.039±0.013 0.043±0.008 

<0.001 
[0.013:0.065] [0.028:0.060] 

DL 
0.892±0.461 0.893±0.459 

0.825 
[0.000:1.727] [0.005:1.732] 

 

SNP: Single nucleotide polymorphism; PRS: Polygenic risk score; SVM: Support vector machine; RF: Random forest; DL: Deep learning; SD: Standard deviation 

 

For the largest sample size of 2,000, the DL method yielded the highest PRS values (for both cases and 

controls) at 5,000 SNPs, followed by SVM (range: [0.20,0.40]). The classical method produced the lowest 

PRS values. Although the classical method, SVM, and RF all showed significant differences between cases 

and controls (p<0.001), DL did not (p=0.843). At 50,000 SNPs, PRS values from the classical method were 

again lower for both case and control groups compared to the other methods. In contrast, RF and SVM pro-

duced similar results. While the classical method, SVM, and RF indicated a statistically significant differ-

ence between cases and controls (p<0.001), DL did not (p=0.760). This pattern persisted at 100,000 SNPs 

(Table 4). 
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TABLE 4: Comparison of classical PRS and risk scores weighted according to other models in case and control groups (n=2,000-2,000) 
 

Number of the SNPs Method 

2,000 Case-2,000 Control Polygenic Risk Score Table 

p value 
Control Case 

X ±SD X ±SD 

[Minimum:maximum] [Minimum:maximum] 

5,000 

SNP 

PRS 
-0.515±0.459 -0.485±0.472 

<0.001 
[-1.135:0.029] [-1.123:0.046] 

SVM 
0.254±0.248 0.354±0.182 

<0.001 
[-0.384:0.757] [-0.152:0.773] 

RF 
0.075±0.027 0.081±0.022 

<0.001 
[0.018:0.132] [0.030:0.129] 

DL 
1.214±0.526 1.224±0.501 

0,028 
[-0.076:2.150] [0.126:2.155] 

10,000 

SNP 

PRS 
-0.534±0.477 -0.504±0.495 

<0.001 
[-1.086:0.048] [-1.084:0.084] 

SVM 
0.072±0.125 0.117±0.096 

<0.001 
[-0.205:0.342] [-0.210:0.343] 

RF 
0.039±0.013 0.042±0.009 

<0.001 
[0.014:0.068] [0.023:0.065] 

DL 
1.506±0.681 1.507±0.667 

0.843 
[-0.072:2.448] [0.030:2.435] 

50,000 

SNP 

PRS 
-0.013±0.087 0.060±0.191 

<0.001 
[-0.178:0.370] [-0.177:0.639] 

SVM 
0.135±0.164 0.224±0.127 

<0.001 
[-0.190:0.440] [-0.090:0.444] 

RF 
0.077±0.023 0.084±0.017 

<0.001 
[0.040:0.120] [0.048:0.115] 

DL 
2.207±0.966 2.210±0.962 

0.760 
[0.007:3.430] [0.018:3.409] 

100,000 

SNP 

PRS 
1.372±1.247 1.393±1.251 

<0.001 
[-0.008:2.547] [-0.002:2.574] 

SVM 
0.019±0.042 0.111±0.040 

<0.001 
[-0.095:0.117] [-0.013:0.158] 

RF 
0.027±0.004 0.036±0.004 

<0.001 
[0.018:0.044] [0.020:0.044] 

DL 
1.456±0.484 1.460±0.483 

0.382 
[0.004:1.940] [0.010:1.927] 

 

SNP: Single nucleotide polymorphism; PRS: Polygenic risk score; SVM: Support vector machine; RF: Random forest; DL: Deep learning; SD: Standard deviation 

 

A statistically significant difference was observed between the case and control groups using the classi-

cal PRS calculation method and SVM (p<0.001); however, DL (p=0.989) and RF (p=0.290) did not produce 

significant differences. When the case and control groups are evaluated separately, the control group’s mean 

of -0.214 for the classical PRS method falls within the [-0.246:0.963] simulation range. Similarly, the DL 

mean of 0.178 is within [-0.004:1.339].  For SVM, the simulation results closely match the mean values ob-

tained from real data, whereas RF does not exhibit the same similarity. 

In the case group, the classical, SVM, and DL methods all yield mean values that lie within the [mini-

mum:maximum] ranges derived from the simulations (Table 5). 
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TABLE 5: Comparison of Classical Polygenic Risk Score (PRS) and Risk Scores Weighted by Other Models Using Real Data  
with Patient Group and Healthy Control Group 
 

Method 

251 Case- 232 Control Polygenic Risk Score Table 

p value 

489805 SNP 

Control Case 

X ±SD X ±SD 

[Minimum:maximum] [Minimum:maximum] 

PRS 
-0.214±0.049 0.216±0.051 

<0.001 
[-0.289: -0.073] [0.121:0.364] 

SVM 
-0.073±0.046 0.077±0.043 

<0.001 
[-0.101:0.026] [-0.020:0.103] 

RF 
0.481±0.154 0.495±0.137 

0.290 
[0.005:0.550] [0.005:0.553] 

DL 
0.178±0.004 0.178±0.004 

0.989 
[0.162:0.189] [0.168:0.191] 

 

SNP: Single nucleotide polymorphism; PRS: Polygenic risk score; SVM: Support vector machine; RF: Random forest; DL: Deep learning; SD: Standard deviation 

 
 

    DISCUSSION 

Overall, SVM exhibits lower standard errors and narrower confidence intervals, making it a powerful alter-

native for calculating PRS in both control-only and case-only groups. Similar studies have reported that risk 

scores could be defined for control groups alone.
29

 Other methods (classical, RF, DL) remain viable options 

if one wishes to estimate PRS separately for case or control populations. It is important to note that genetic 

variation alone (captured by SNPs) does not fully explain disease risk. Clinical factors, environmental influ-

ences, and gene-environment interactions also play key roles. This is consistent with studies where clinical 

risk scores and PRS are used together to enhance the power of case-control discrimination.
30

 The DL ap-

proach, despite its strengths with low SNP counts, tends to struggle with binary GWAS data as the number 

of SNPs increases. All PRS methods are effectively weight×SNP. Hence, differences in PRS primarily stem 

from how each method derives the weight vectors. In DL, weights were more homogeneously distributed, 

limiting case-control differentiation. In SVM, the algorithm naturally seeks to maximize the margin between 

classes, resulting in weight vectors that more distinctly separate cases and controls. RF uses variable impor-

tance measures to derive weights, which also can offer a robust discrimination, especially at higher SNP 

counts. Moreover, certain real-data comparisons illustrate how DL can match outcomes from smaller SNP 

sets. For instance, with 1,000 cases and 1,000 controls at 5,000 SNPs, DL results fit within the ranges previ-

ously reported in prostate cancer datasets from Johns Hopkins University and Ambry Genetics.
31

 Another 

study using 289 SNPs for breast cancer risk also reached similar mean PRSs. It is critical to remember that 

PRS is not a diagnostic test; it does not definitively state whether an individual does or does not have a given 

disease. Instead, PRS quantifies the risk or probability of disease progression.
32

 Consequently, ML methods 

(SVM, RF) may yield more stable results than DL and classical methods at higher SNP counts.
33,34

 For the 

largest sample size and highest number of SNPs, classical and DL methods yielded PRS values above 1.00 

for both cases and controls, whereas SVM and RF remained in the (0.00, 0.20) range. In our simulations 

with 2,000 cases and 2,000 controls and 5,000 SNPs, SVM aligned well with real-data findings. 

    CONCLUSION 

SVM and RF generally perform better or at least comparably to the classical PRS method across a wide 

range of sample sizes and SNP counts. DL stands out for smaller SNP counts but loses discriminative power 

as SNP numbers increase. These insights can guide researchers in choosing the most appropriate PRS calcu-

lation strategy for specific study designs and sample constraints. 
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