
unctional data analysis (FDA) is a relatively new area within the dis-
cipline of statistics. Functional data are data that have been meas-
ured discretely over a continuum, usually time. Instead of treating

the many discrete measurements as individual observations, one makes
the assumption that these measurements represent a smooth, underlying
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Variable Selection for
Functional Logistic Regression in

fMRI Data Analysis

ABS TRACT This study was motivated by classification problem in Functional Magnetic Resonance
Imaging (fMRI), a noninvasive imaging technique which allows an experimenter to take images of
a subject’s brain over time. As fMRI studies usually have a small number of subjects and we assume
that there is a smooth, underlying curve describing the observations in fMRI data, this results in in-
credibly high-dimensional datasets that are functional in nature. High dimensionality is one of the
biggest problems in statistical analysis of fMRI data. There is also a need for the development of bet-
ter classification methods. One of the best things about fMRI technique is its noninvasiveness. If sta-
tistical classification methods are improved, it could aid the advancement of noninvasive diagnostic
techniques for mental illness or even degenerative diseases such as Alzheimer’s. In this paper, we
develop a variable selection technique, which tackles high dimensionality and correlation prob-
lems in fMRI data, based on L1 regularization-group lasso for the functional logistic regression
model where the response is binary and represent two separate classes; the predictors are func-
tional. We assess our method with a simulation study and an application to a real fMRI dataset. 

Key Words: Functional data; logistic regression; LASSO; variable selection; fMRI data

ÖZET Bu çalışmada bir deneğin zamana dayalı olarak beyninin görüntülerinin alınmasını sağlayan
noninvazif bir görüntüleme tekniği olan   Fonksiyonel Manyetik Rezonans Görüntülemedeki (fMRI)
sınıflandırma problemi incelenmiştir. fMRI çalışmaları az sayıda deneğe sahip ve fMRI verisindeki
gözlemlerin pürüzsüz eğriler olarak varsayılması söz konusu olduğundan, doğası gereği fonksiyo-
nel olan yüksek boyutlu veri kümelerinin ortaya çıkmasına neden olur. Yüksek boyutluluk; fMRI
verisinin istatistiksel analizindeki en büyük problemlerinden biridir. Daha iyi sınıflama yöntemle-
rinin geliştirilmesine de ihtiyaç vardır. fMRI tekniğinin en iyi tarafı noninvazif olmasıdır. Eğer ista-
tistiksel sınıflama yöntemleri geliştirilirse, akıl hastalığı ya da hatta Alzheimer gibi dejeneratif
hastalıklar için noninvazif tanı yöntemlerinin gelişimine yardımcı olabilir. Bu makalede, fMRI ve-
risindeki yüksek boyutluluk ve korelasyon problemlerini ele alan, yanıt değişkeninin iki ayrı sınıfı
gösterdiği ve açıklayıcı değişkenlerin fonksiyonel olduğu lojistik regresyon modeli için lasso grubu-
L1 düzenlemesine dayalı, bir değişken seçim tekniği geliştirdik. Yöntemimizin performansını si-
mülasyon çalışması ve gerçek bir fMRI veri seti uygulaması ile saptadık.

Anah tar Ke li me ler: Fonksiyonel veri; lojistik regresyon; LASSO; değişken seçimi; fMRI verisi
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curve. This curve, then, is considered as one ob-
servation. 

Much of this work was motivated by Func-
tional Magnetic Resonance Imaging (fMRI), a non-
invasive imaging technique which allows an
experimenter to take images of a subject’s brain
over time. These images are taken while the subject
performs a task such as finger tapping or correctly
identifying images of human faces amidst a series of
images containing both human faces and objects.
fMRI is currently being used to assess which areas
of the brain are activated while performing certain
tasks. This is done by dividing the brain into vox-
els, the three-dimensional analog of a pixel, and
measuring brain activation. Depending on how one
defines a voxel, a typical fMRI image has over
1,000,000 voxels. As fMRI studies usually have a
small number of subjects, this results in datasets
that are incredibly highdimensional. High dimen-
sionality is one of the biggest problems in statisti-
cal analysis of fMRI data.1 Initial statistical analysis
of fMRI data was univariate in nature.2 This is ob-
viously simplistic for data that take into account
four dimensions: three spatial dimensions and one
temporal dimension. The second decade of fMRI
research focused on multivariate data analysis.
Considering the fact that, the capturing of images
happens over time, the next logical step in this pro-
gression is functional data analysis. In an fMRI ses-
sion, images of a subject’s brain are taken at discrete
time points. However, one would expect the brain’s
response to a stimulus to be continuous in nature.
This makes fMRI imaging data a great candidate for
functional data analysis. In Viviani et al.3 published
a paper using functional principal component
analysis in fMRI. They showed the results to be
much more interpretable than multivariate PCA.
Since then more statistical analysis of fMRI data has
been functional in nature. There is a need to attack
the problem of high dimensionality of brain imag-
ing data. There is also a need for the development
of better classification methods.1 One of the best
things about Functional Magnetic Resonance Im-
aging is its noninvasiveness. If statistical classifica-
tion methods are improved, it could aid the
advancement of noninvasive diagnostic techniques

for mental illness or even degenerative diseases
such as Alzheimer’s. There is some research being
done in this area, but there is room for more ad-
vancement.1

Section 2 contains overview of functional data
analysis and steps to be taken in this type of data.
Functional logistic regression and principal com-
ponent functional logistic regression for multiple
functional predictors are described in Section 3.
Group Lasso for functional logistic regression is de-
veloped for classification in section 4. An applica-
tion from fMRI data analysis and a simulation study
are conducted to show the performance of the pro-
posed methodology in section 5. We finally con-
clude the paper with a discussion and conclusion
section.

FUNCTIONAL DATA ANALYSIS

Consider sample curves of the form {x i( t),  tЄT ,  
i = 1, ...,  n}, where T is an interval over which
the observations were measured. The observations
belong to the Hilbert space, L2(T), of square-inte-
grable functions with the inner product

(1)

A vector x i = (x i1,...,x iN) represents the dis-
crete measurements for the ith subject of one vari-
able, x, at N points in T. There are functional
analogs of the traditional summary statistics. The
functional sample mean,     is defined below:

(2)

The sample mean is computed point-wise at
tЄT . Similarly, one can compute the covariance be-
tween measurements at two time points s and t

(3)

BASIS EXPANSION OF FUNCTIONAL DATA

Let observations {x i(t), tЄT , i = 1, ..., n} belong
a subspace of L2 spanned by the p-dimensional
basis system of independent functions, {φ1, . . . ,
φp}. The assumed smooth functional observation,
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or linear expansion, x i(t), can be expressed in terms
of the sum

(4)

Here, each ak is called a basis coefficient.
There are many different basis systems that can be
used in a basis expansion. One of the most common
systems is the Fourier basis system. A Fourier basis
is defined by a Fourier series,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(ω3t), ....

Fourier bases are useful for data that are peri-
odic, e.g. weather patterns.4 Additionally, deriva-
tive estimation is easier with a Fourier basis as the
derivatives of sin(t) and cos(t) are known and easy
to compute. 

For data that are not cyclical in nature, the
most common choice is the B-spline basis system.
They are computationally efficient and are flexible
enough to approximate most non-periodic func-
tions. In this paper, only B-spline bases will be
used. 

After a basis system has been chosen, the basis
coefficients must be estimated. One method of
basis coefficient estimation is that of least squares
estimation. Denote the discrete observations of a
functional dataset y j , j = 1,...,N, where N is the
number of time points at which observations were
taken. Assume independently and identically dis-
tributed measurement errors, ε j, with E [ε j] = 0 and
Var [ε j] = σ

2). However, least squares smoothing
is inappropriate if the error assumptions (i.e. errors
are independently and identically distributed
measurement errors, ε j, with E [ε j] = 0 and Var [ε j]

= σ 2) are not true. In the case of functional data
measured over time, observations at adjacent time
points are likely correlated, violating the standard
error assumptions.

Therefore a more common method, called
spline smoothing by roughness penalty, is often
used for estimating basis coefficients. This method
is designed to estimate a curve that is rough enough
to describe observed features of the data, but sup-
presses high-frequency features of the data, in-

cluding noise. To find the coefficients of a smooth
approximation of this type, the sum of squared er-
rors is minimized with the added constraint of a
roughness penalty. Roughness of a function is de-
scribed by the curvature, or the squared second de-
rivative. The quantity penalized is the integrated
squared second derivative,

(5)

The corresponding sum of squared errors to be
minimized is as follows:

(6)

where W is the matrix of weights describing the
covariance structure of the errors. The smoothing
parameter λ is chosen by the method of general-
ized cross validation developed by Craven and
Wahba.5 This is done by choosing λ such that it
minimizes the following equation

(7)

Here df(λ) = trace (Sφλ), where

(8)

is the hat matrix of the spline smoother.

Once you have smoothed functional observa-
tions, the statistical analysis can begin. As with tra-
ditional statistics, the beginning of FDA focused on
univariate statistics. Our focus, however, is on a set
of multiple functional predictors. In any functional
data set with multiple functional predictors, and es-
pecially in fMRI, dimensionality is an issue. It may
be important, for the sake of interpretation and
computational expense, to select a smaller subset of
important variables from the dataset. In any
dataset, classification is often of interest. This par-
ticularly resonates within fMRI. Currently classi-
fication is used to explore brain functionality. For
example, in a certain study subjects are given one of
two stimuli. Does the brain behave differently in
the presence of each stimulus so that one may be
able to predict which stimulus a subject was pre-
sented with? If so, it would be important to identify
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which areas of the brain are associated with this
difference. As classification improves within the
realm of fMRI, it could contribute to diagnosis of
brain degeneration or mental illness in clinical set-
tings. The rest of this paper focuses on a method of
dimension reduction and variable selection in a
dataset with multiple functional predictors and a
binary response.

FUNCTIONAL PRINCIPAL COMPONENT
LOGISTIC REGRESSION

Traditional principal component analysis (PCA) is
a method of data reduction for multivariate
datasets.6 Consider a data matrix Xn×m , where n is
the sample size and m is the number of variables.
Let E[X] = 0 and C = (X′X)−1 be the variance-co-
variance matrix. PCA is performed on the covari-
ance matrix or correlation matrix of X. It reduces
dimension by finding a linear combination of the
variables that has the maximum variance; this lin-
ear combination is the first principal component
(PC). The next PC is found by finding a linear com-
bination of the variables that is independent of the
first PC and has the next largest variance. This goes
on until min{n−1,m} PCs have been found.

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

Consider a sample containing observations of one
functional predictor. There is correlation between
observations at adjacent points in T. In a linear
model framework, this leads to the problem of
high multicollinearity. Escabias et al. propose a
method of functional principal component analy-
sis (fPCA) for the logistic regression model with
one functional predictor that alleviates this issue.8

We will extend this method to a functional logis-
tic regression model with multiple functional pre-
dictors.

As outlined by Ramsay and Silverman, fPCA
is merely a functional analog of the traditional mul-
tivariate principal component analysis.4 Assume
functional observations of one variable x i(t) Є L2
where i = 1,...n, with the usual functional sample
mean,    and sample covariance function, 

Without loss of generality, assu-
me The functional principal compo-

nents, ξj, are found by solving the following func-
tional eigenequation,

(9)

The solutions to (9) are the eigenvalues, λ, and
eigenfunctions, f(t), of the covariance matrix C.
The number of eigenvalues is n − 1. The ith com-
ponent of the j th principal component, ξij, is ex-
pressed as

(10)

The solution of (9) cannot always be com-
puted.

When the n sample functions of a functional
predictor belong to the space L2(T) spanned by or-
thonormal bases {φ1,...,φp}, the functional PCs are
equivalent to the multivariate PCs of the matrix
AΨ.8 Here, A is the n×p matrix of coefficients of
the basis expansions and Ψ is a p×p matrix whose
components are defined as

(11)

FUNCTIONAL PRINCIPAL COMPONENT LOGISTIC 

REGRESSION FOR ONE FUNCTIONAL PREDICTOR

Escabias et al.8 develop a principal component
functional logistic regression model for one func-
tional variable. We describe this method before ex-
tending it to the case with multiple functional
predictors. Consider observations {(y i,x i(t)) ,tЄ T,
i=1,.. . ,n} where x i(t) is a functional predictor.
Each x i j( t) is the i th observation at the j th time
point, and each y iЄ {0,1} . The conditional distri-
bution of Y i|X i (t) is Bernoulli(π i ), with 

(12)

where α Є R and β( t) ,  the parameter, is a func-
tion. Making the logit transform, a generalized
model is formed:9

(13)

Under the assumption that β( t) belongs to the
same L2 space spanned by {φ1,. .. ,φp},
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(14)

The li’s can be expressed in terms of the AΨ
matrix,

(15)

where β is a p× 1 dimensional vector containing
the coefficients βk for the basis expansion of β( t) .
The basis coefficients βk can be estimated using a
Newton-Raphson algorithm maximizing the likeli-
hood equation

(16)

In (16), Y = (y1,...yn), ∏ = (π1,...,πn) and X =
(1|AΨ).8 Once the coefficients are estimated,

(17)

The vector L in (15) can be reexpressed in
terms of the principal components of AΨ:

(18)

where Г =(ξ i j) is the matrix of the p principal com-
ponents and V is the matrix of the eigenvectors.
This notation allows for estimation of the compo-
nents of β,

(19)

Reduction of the effects of multicollinearity
occurs when a number of PCs, s ≤ p, is chosen.

FUNCTIONAL PRINCIPAL COMPONENT LOGISTIC 

REGRESSION FOR MULTIPLE FUNCTIONAL PREDICTORS

The extension of PCA to the model with multiple
functional predictors lies in the definition of the
inner product.6 Let {(yi,x i

m ( t)) , tЄ T,i = 1,...,n,m=

1,...,M} Є L2(T) spanned by {φ1, . . . ,φp} , where
each x i

m ( t )  is a functional predictor and each y i
Є {0,1}. The inner product, then, of two func-
tional PCs can be defined as follows:

(20)

The functional logistic regression model with
multiple predictors is still defined by (13). The def-
inition of πi, however, changes with the change in
inner product:

(21)

Making the logit transform,

(22)

To perform the dimension reducing PCA, we
redefine the design matrix AΨ. Here,

(23)

and

(24)

Each Am is an n ×pmatrix of basis coefficients.
Ψ is a diagonal block matrix with each Ψm having
dimensions p × p. Now, Redefin-
ing (15),

(25)

This definition depends on the assumption
that each observation x i

m ( t ) and the respec-
tive parameter function, βm ( t) can be defined by
the same set of basis functions
Below, we express L in terms of the principal com-
ponents

(26)

where are the principal compo-
nents of the AΨ m and Vm is the matrix of eigen-
vectors. The number of PCs sm ≤ pm, to be chosen
for each of the M should be determined by cumu-
lative variance. For simplicity, we chose the same
number of PCs, s, for each of the M predictors.
After the dimension has been reduced on the
within-variable level, (21) becomes

(27)
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We can re-express (25) as

(28)

The vectors βm can be estimated as in (19),

(29)

Although multicollinearity has been dealt
with on a within variable basis, as M gets large
there could be multiple predictors providing simi-
lar information. In the case of fMRI data, time se-
ries of adjacent voxels are expected to be similar.
There is a need to reduce dimension on the multi-
ple variable level by selecting only those functional
predictors which are relevant to the response. This
will alleviate another potential source of multi-
collinearity.

GROUP LASSO FOR FUNCTIONAL 
LOGISTIC REGRESSION MODEL

The principal component analysis allows for re-
moval of redundant information on a within pre-
dictor basis. As stated before, this is necessary due
to the autocorrelation of observations between
time points. There is also a need to select only those
predictors which provide relevant information to
the model.

There are many methods of variable selection
used in linear models and generalized linear mod-
els. Model selection techniques, such as stepwise
and forward selection, cycle algorithmically
through subsets of variables until certain criteria
are met. The variables included in the various steps
of the algorithm are determined by previously se-
lected p-values. These methods are inherently sub-
jective, as it is up to the person analyzing the model
to choose the ”best” model based on a set of crite-
ria. The criteria that determine the quality of the
model are also chosen by the analyst.

LASSO

A more objective method of variable selection, the
lasso, was introduced by Tibshirani in 1996. The
lasso is a method that simultaneously performs
model selection and parameter estimation. It is an

L1 regularization technique that performs this vari-
able selection by shrinking certain β coefficients to
exactly 0, excluding those predictors from the
model. The other, non-zero, coefficients represent
variables that are relevant to the model. This is
done by solving the least squares estimation sub-
ject to a constraint on the β Assume a standard re-
gression model with independent observations
{(yi,x i, i = 1,...,n} where x i= (x i1,...,x ip)  The es-
timates of regression coefficients by the lasso
method              are

(30)

under ∑ j|β j|≤ t , where t≥0. Note that  is not pe-
nalized.

Tibshirani also applied the lasso to the logistic
regression model.10 Consider independent observa-
tions {(yi,x i, i = 1,...,n} where y i Є {0,1}. The vari-
able selection and model estimation are performed
by maximizing the loglikelihood function,

(31)

under ∑ j |β j |≤ t , where t≥0 . An iterated
reweighted least squares algorithm is used to com-
pute      under these conditions.

GROUP LASSO

Consider a linear model with multiple predictors,
some of them categorical. A categorical predictor
with l levels will be represented in the model by 
l − 1 variables. The lasso only has the ability to
shrink individual regression coefficients to zero. In
the case of the categorical predictor, this has little
interpretation. If the categorical predictor is not
relevant to the response, all l−1variables should be
removed from the model.

Consider independent observations {(yi,x i) ,
i = 1,...,n} where   Each xim repre-
sents a group of predictors. The linear regression
model is defined as

(32)
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where αЄ R is the intercept, each βm is a vector
whose components are the regression coefficients
for the mth group of predictors and Ynx1 is the vec-
tor of responses. Yuan and Lin11 developed a
method of variable selection called the group lasso
considers each of the M groups of variables for in-
clusion or exclusion in the model. The coefficient
estimates are defined as

(33)

where λ is a tuning parameter and
The penalty is a mixture of L1 and L2 regulariza-
tion methods, the lasso and the ridge regression
penalties.

GROUP LASSO FOR FUNCTIONAL LOGISTIC REGRESSION

Meier et al.7 describe a method of group lasso for
the multivariate logistic regression model. Consider
independent observations {(yi,x i) , i = 1,...,n}

where y i Є {0,1} and x i =                          Each xi
m

represents a group of predictors. Group lasso is per-
formed by minimizing the following convex func-
tion:

(34)

where dfm is the degrees of freedom of the mth

group of predictors. The use of is
suggested.7 The solution to this equation is the lo-
gistic group lasso estimator,     It is found using a
block co-ordinate gradient descent minimization
algorithm. The algorithm uses a second-order Tay-
lor series expansion,

The algorithm summarized in Figure 1 begins
by assuming an initial parameter vector, β (0). For
each of the M groups of variables, the algorithm
finds d that minimizes          . If this d is not iden-
tically 0, the estimate of β is updated. The updated
estimate            is the previous estimate, β (t) plus a
scalar times d. This algorithm proceeds for each

group until some convergence criterion is met. The
choice of λ is dependent upon n and the degrees of
freedom of each of the M groups. In the multivari-
ate model, group lasso performed on a dataset con-
taining M groups of discrete predictors. A number
of groups of predictors less than M is selected. This
version of the group lasso is shown to be asymp-
totically consistent.7 The minimization can be done
in R, using the package grplasso written by Meier
et al.7

We apply this group lasso method to the func-
tional logistic regression model with
multiple functional predictors. Recall observations

spanned by {φ1,...,φp} where each xi
m(t) is a func-

tional predictor and each y i Є {0,1}. Consider the
model in (26), after  principal components have
been chosen. The loglikelihood function, l (β), of
the functional logistic regression model is

Using the definition l (β) in (36) we minimize
the objective equation,

(37)

In the case of our method of principal compo-
nent logistic regression with multiple functional
predictors, the degrees of freedom in (37) is equiv-
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FIGURE 1: Group Lasso Algorithm: Outline of the block coordinate gradient
descent algorithm used to perform grouped variable selection in the logistic
regression model.7
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alent to the number of chosen PCs, s. In the func-
tional case, each of the M functional predictors is
defined by a group of s coefficients. When one en-
tire group of coefficients is shrunk to 0, it excludes
the corresponding single functional predictor from
the model. For any set of  coefficients that are not
equal to zero, the corresponding functional predic-
tor is included in the model. In essence, the group
lasso performs single variable selection in the func-
tional logistic regression model with multiple func-
tional predictors.

NUMERICAL EXAMPLES

In a Functional Magnetic Resonance Imaging ex-
periment, an experimenter aims to measure the
amount of activation in each voxel of the brain.
When a part of the brain is active, there is in-
creased bloodflow to the area. fMRI measures the
change in blood flow using the bloodoxygen-level-
dependent (BOLD) contrast.2 Assessing which parts
of the brain are active during an fMRI experiment
allows researchers to determine which parts of the
brain respond to certain stimuli. There is a need for
classification tools in the statistical analysis of
fMRI. Logistic regression could be used to distin-
guish between brains at rest and those presented
with stimuli. Another application would be to dis-
tinguish between subjects receiving one of two par-
ticular stimuli. For example, an experimenter may
play pieces of music or speech to a subject.12 Being
able to classify which stimulus was presented al-
lows one to learn more about the way the brain
works. Classification also has an application in di-
agnosis of mental illness or degenerative disease.

SIMULATION STUDY

We assess our methodology using a simulation
study. Using the R package neuRosim, we were
able to simulated preprocessed fMRI data. The
package can be used to simulated fMRI time series
or complete 4D fMRI volumes. With neuRosim,
one can define the onset and duration of stimuli.
One can specify the effect size of the stimuli, TR
and times of spatial and temporal noise.13

We simulated preprocessed four dimensional
fMRI data for an area of 4000 voxels containing

two non-overlapping regions of activation. We
used neuRosim to create block designs of a stimu-
lus followed by rest. Design 1 presented an effect
size that was larger in Region 1 than in Region 2.
Design 2 created activation that was larger in Re-
gion 2 than in Region 1. Half of the observations in
each simulation were simulated under Design 1,
the other half under Design 2. Our goal was to use
the developed method of group lasso for functional
logistic regression with multiple functional predic-
tors to classify the validation set into the proper
groups. We simulated 15 datasets each at two lev-
els of signal-to-noise ratio (SNR), 0.75 and 3.87, and
two levels of subject size, 30 and 50. An observa-
tion simulated under Design 1 was given a y value
of 1, otherwise yi = 0. Two-fold cross validation
was then used to form training and validation sets.
All analysis was performed in R; the package gr-
plasso was used to perform the final variable selec-
tion.7 Observations with were classified
as yi = 1, otherwise yi = 0.

For each of the four sets, two-fold cross vali-
dation resulted in 30 models. We report the num-
ber of voxels selected out of the initial 4000 voxels.
We also report sensitivity, defined as the ratio of
true positives to true positives plus false negatives;
false positive rate, the ration of false positives to
false positives plus true negatives; and the accuracy,
defined as the ratio of true positives plus true neg-
atives to the number of observations in the valida-
tion set. These findings can be seen in Table 1. We
did not report the number of principal components
selected in the table. In the cases where n = 50, the
original number of basis functions was 43. After
PCA, 8, 9 or 10 principal components were selected
every time. In the cases where n = 30, 7 or 8 PCs
were chosen. The method classifies well, even after
use of a small number of voxels. As expected, the
cases with fewer subjects have lower sensitivity
and accuracy and a higher false positive rate. In the
two simulations with lower SNR classification ap-
pears to improve, which is surprising.

fMRI EXAMPLE

To test this methodology on a real dataset, we used
fMRI data collected by Auburn University’s MRI
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Research Center. The data was collected from 6 sub-
jects on a 7T MRI scanner, and each scanning ses-
sion lasted 1000s. The data were preprocessed by the
experimenters using SPM8. Slice timing correction
was made. Spatial realignment, normalization, and
smoothing were performed. And, finally, the data
were detrended. The complete raw data voxel-wise
time series were then extracted using MarsBaR.

The experimental design was a block design
with two conditions.In one condition, subjects
were asked to use four lines to connect all dots in
Figure 2. In the other, subjects were asked to use
five lines to connect all dots in Figure 2. Conditions
were presented in a random sequence, and each
condition was followed by a period of rest. All sub-
jects were able to connect the nine dots using five
lines, but only one (Subject 5) was able to solve the
puzzle using four lines. Our aim was to use group
lasso for functional logistic regression to classify the

six subjects as having solved the four line puzzle, 
y = 1, or as being unable to solve the puzzle, y = 0.

According to the experimenters, there were
two important regions of interest (ROIs) in this
study. These regions are the left and right anterior
temporal lobes (ATL) which can be seen in Figure
3. They are associated with semantic memory,
knowledge of objects and facts. From the right
ATL, 7560 voxel time series were extracted. From
the left ATL, 6584 voxel time series were extracted.
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FIGURE 2: fMRI Nine Dot Experiment: Subjects were asked to use four and
five lines to connect all nine dots in the figure above.

TABLE 1: Simulation Results: The values reported are the means, followed by their standard deviations in parentheses.

SNR: Signal-to-noise ratio.

No Voxels Selected Sensitivity False Positive Rate Accuracy

SNR = 3.87
n = 50

5.414 (1.842) 0.935 (0.096) 0.053 (0.079) 0.936 (0.060)

SNR = 0.75
n = 50

5.267 (1.617) 0.953 (0.099) 0.044 (0.082) 0.949 (0.670)

SNR = 3.87
n = 30

3.867 (1.332) 0.825 (0.188) 0.166 (0.197) 0.840 (0.158)

SNR = 0.75
n = 30

3.967 (1.449) 0.874 (0.153) 0.108 (0.159) 0.871 (0.106)

FIGURE 3: Voxel Mask of the Anterior Temporal Lobe: The right anterior temporal lobe is in red, the left in blue.
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This led to a total of time series from 14144 voxels.
To perform PCA on the 14144 AΨ matrices of the
spline smooths, the number of basis functions, p,
must be less than the number of subjects. We chose
to use 5 basis functions. After performing the prin-
cipal component analysis, 3 PCs were chosen. From
the 14144 voxels, the group lasso procedure se-
lected 11 voxels. From these 11 voxel time series,
the classification procedure correctly selected Sub-
ject 5 as having solved the puzzle.

CONCLUSION

We have developed a viable method of variable se-
lection for functional logistic regression by em-

ploying the group lasso in an interesting way.
There are obvious limitations with small sample
sizes. Being limited to a number of spline basis
functions that is less than the sample size could lead
to poor estimation of the functional observations.
The method employed is also computationally ex-
pensive for a large number of functional variables
and subjects. Each spline smooth procedure must
be performed for all variables and subjects. The ap-
plication in the field of Functional Magnetic Reso-
nance Imaging is exciting. In future studies on real
data, it would be interesting to study the neuro-
logical significance of the voxels selected by the
group lasso.
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