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ABSTRACT Objective: Time-dependent reciever operating characte-
ristics (ROC) curves are statistical methods which can be used when the 
specified outcome is an event which can take place at any time after the 
diagnostic test has been measured and may be right censored. This work 
presents an approach for making inference related to the performance of 
prognostic biomarker which can be measured from smaller number of 
patients, by borrowing information from the other biomarker(s) which 
can be measured from larger number of patients for right censored sur-
vival data.  Material and Methods: Simulation studies were performed 
to see the performance of the proposed modification. We evaluated es-
timators related to the time dependent ROC function and the area under 
the curve (AUC) in terms of efficiency and unbiasedness to see whether 
proposed modification provides benefit over the original method. Re-
sults: It is observed that proposed approach yielded smaller bias, mean 
square error and standard deviation values for most scenarios in the si-
mulation studies. Conclusion: The proposed approach, which combines 
information from different samples with different biomarkers may be 
useful to make inference related to the biomarker of interest which is 
measured from sample with a smaller size.

Keywords: Biomarker; censored data; time dependent ROC curves   

ÖZET Amaç: Zamana bağlı ROC eğrileri sonuç, tanı testinin öl-
çülmesinden sonra herhangi bir zamanda gerçekleşebilen ve sağdan 
sansürlü olay olarak tanımlandığında kullanılabilen istatistiksel yön-
temlerdir. Bu çalışma, sağdan sansürlü sağkalım verileri için daha 
fazla sayıda hastadan ölçülebilen diğer biyobelirteçlerden bilgi alı-
narak az sayıda hasta için ölçülebilen prognostik biyobelirtecin per-
formansı ile ilişkili çıkarım yapan bir yaklaşım sunmaktadır. Gereç 
ve Yöntemler: Önerilen modifikasyonun performansını görmek için 
simülasyon çalışmaları yapılmıştır. Önerilen yöntemin orijinal yönte-
me üstünlük sağlayıp sağlamadığını görmek için etkinlik ve yansız-
lık açısından eğri altında kalan alanla (AUC) ve zamana bağlı ROC 
fonksiyonuyla ilişkili tahmin ediciler değerlendirilmiştir. Bulgular: 
Önerilen yaklaşımın simülasyon çalışmalarındaki birçok senaryo 
için daha küçük yanlılık, hata kareler ortalaması ve standart sapma 
değerleri verdiği görülmüştür. Sonuç: Farklı biyobelirteçler ile fark-
lı örneklemlerden elde edilen bilgiyi birleştiren önerilen yaklaşım, 
örneklemden daha küçük olan ilgilenilen biyobelirteçle ilgili çıkarım 
yapmak için yararlı olabilir.

Anahtar kelimeler: Biyobelirteç; sansürlü veri;  
                 zamana bağlı ROC eğrileri

Biomarkers are used in detection and diagnosis of a disease, provide information on the disease phase, and 
monitor its progression, to predict probable outcomes of a disease, to identify patients who are most likely to 
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benefit from selected treatments and to guide clinical decision-making. Determining the biomarker’s ability 
to accurately predict the probability of a specified outcome such as disease onset, disease progression or death 
is fundamental for their being used effectively in clinical practice. This encourages the development of new 
statistical methodologies to assess the relationship between biomarkers specific to a disease and the clinical 
outcomes.1-7

The diagnostic performance of a continuous biomarker 𝑋 is often evaluated by receiver operating charac-
teristics (ROC) curve analysis which displays the false positive rates (the probability that 𝑋 be above given 
cut-off point for an healthy subject) versus the true positive rates (the probability that 𝑋 be above given cut-off 
point for a diseased subject) for all possible cut-off points and the diagnostic accuracy is often summarized 
by the area under the ROC curve (AUC) which the statistical methods used to estimate these statistics need 
often large sample sizes.8-12 In biomarker research, collecting large amounts of experimental data is crucial to 
process the data and draw conclusions. The studies conducted for evaluating the biomarkers can be expensive 
in terms of cost. Usually the power gained by a large sample size is being tried to be balanced against the cost 
of performing assays.13 In addition, newly developed expensive biomarkers cannot be applied in most centers 
routinely to all patients due to financial constraints. For this reason, fewer patients can benefit from these 
newly developed biomarker.  
Pooling and random sampling are two approaches commonly used by investigators to reduce overall cost. 
Due to high costs of evaluation the effectiveness of some biomarkers, several authors have proposed the poo-
ling samples and statistical methods for ROC curve analysis when dealing with such data.12,14-18 On the other 
hand many statistical approaches have been proposed to make inference about one population by combining 
information from other sources, especially when the sample size is small. Stein showed that precision could 
be “borrowed” from data drawn independently from populations other than the one which is inferential of in-
terest.19 Cox gave a general discussion for merging information from such data by using weighted means and 
pooling in the presence of over-dispersion.20 Like the James-Stein estimator, Hu and Zidek suggested weighted 
likelihood (WL) estimator, which provides making inference on one sample by using the additional informa-
tion from different populations.21,22 Wang, Wang et al and Wang and Zidek proposed adaptive weights which 
were allowed to depend on data.23,24 Plante has showed that WL can be derived from the entropy maximization 
principle using weighted empirical distribution function and he suggested minimum averaged mean squared 
error (MAMSE) weights.25 Plante have used MAMSE weights for right censored data and proposed adaptively 
weighted Kaplan-Meier estimate, which borrows strength from different populations to make inference for just 
one population of interest.26,27

Models which are developed to predict patient survival using prognostic and predictive biomarkers are increa-
singly getting important in clinical research and practice. Various definitions and estimators of time-dependent 
ROC curves have been proposed which can be used when the specified outcome is an event which can take 
place at any time after the diagnostic test has been measured and may be right censored.28 In their seminal 
work, Heagerty et al. defined cumulative sensitivity and dynamic specificity as time-dependent function at 
time point t as below:29

(1)𝑠𝑒𝑛𝑠(𝑡, 𝑐) = 𝑃(𝑋 > 𝑐�𝑇 ≤ 𝑡) 

(2)𝑠pec(𝑡, 𝑐) = 𝑃(𝑋 ≤ 𝑐�𝑇 > 𝑡) 

where 𝑇  denotes the time from baseline to the occurrence of the disease or death, 𝑋 be the continuous bio-
marker measured at baseline with the larger values are associated with higher probabilities of the event and c 
denotes the cut-off value. In this approach, let the sample size includes 𝑛 independent and identically distri-
buted subjects. So the 𝑖𝑡ℎ individual is considered as positive if 𝑡𝑖 ≤ 𝑡, and as negative if 𝑡𝑖 > 𝑡 at time point 𝑡. 
When there is no censored data it is easy to calculate the estimators for these quantities. We have a complete 
information at time point 𝑡 for the subjects who have experienced the event of interest before time 𝑡, or for the 
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subjects who haven’t experienced the event yet and have a follow-up longer than 𝑡. The main complexity of 
the time-dependent ROC curve comes from those subjects who are censored before time point 𝑡.

Cumulative/dynamic, incident/static and incident/dynamic estimators for time-dependent sensitivity/specifi-
city and related ROC curves were defined by Heagerty and Zheng and also discussed by Cai et al. and Pepe 
et al.28,30,31 Etzioni et al. and Slate and Turnbull adopt an incident/static time dependent sensitivity/ specificity 
approach, in which cases are stratified according to the time at which the event occurs (incident) and controls 
are defined as those subjects who are event free through a fixed follow-up period.32,33 

In the present paper we deal with the cumulative/dynamic type of the ROC curves. Heagerthy et al. proposed 
cumulative/dynamic versions of time-dependent estimation methods where 𝑖𝑡ℎ individual plays the role of 
control for times 𝑡 ≤ 𝑡𝑖, and then contributes as a case for times  𝑡 > 𝑡𝑖.

29 They proposed two estimators which 
are based on traditional Kaplan-Meier survival function and based on bivariate distribution function provided 
by Akritas which uses nearest neighbor estimator.34 Although the former gives good results when there is no 
dependence between the censoring time and biomarker, it does not guarantee monotonicity for sensitivity and 
specificity and can give values greater than 1. The second one needs a bandwidth since it uses a kernel func-
tion. Chambless and Diao also proposed two methods.35 The first one estimates time-dependent ROC curves 
by using a recursive approach akin to the Kaplan-Meier method, again which does not guarantee the mono-
tonicity. The second one uses Cox model to estimate conditional distribution of the survival time given the 
biomarker. Song and Zhou define the covariate specific time-dependent ROC curve using both the cumulative 
and the incident sensitivity.36 Uno et al. and Hung and Chiang also have proposed estimators based on inverse 
probability of censoring weighting (IPCW).37,38 Wolf et al. introduced a method for calculating sensitivity 
and specificity for censored data based on the Nelson-Aalen estimator and they used isotonic regression to 
achieve monotonicity for the ROC curve.39 Blanche et al. proposed a conditional IPWC method which is the 
modified version of IPCW to obtain a nonparametric estimator robust to marker-dependent censoring.40 They 
gave a detailed review of the time-dependent ROC curve estimators proposed in the literature and compare 
their properties. Li et al. and Martinez-Camblor et al. studied estimators where the missing status indicator 
is replaced by weights obtained from conditional survival functions.41,42 Li et al. proposed a kernel weighting 
method to estimate cumulative/dynamic time-dependent sensitivity/specificity and related ROC curve nonpa-
rametrically.41 They calculated a probability weight for being a case to those subjects who are censored before 
time point 𝑡, by proportioning the kernel-weighted Kaplan-Meier estimator for time 𝑡 to follow-up time of the 
related subject. Again this method require a bandwidth parameter but the authors showed that their proposed 
methods was not sensitive to the bandwidth choice.41 Martinez-Camblor et al. estimated cumulative/dynamic 
sensitivity/specificity by assigning a probability of belonging to the negative group to those subjects who are 
censored before time point 𝑡.42 They proposed two methods to estimate this probability: the semi-parametric 
one which uses proportional hazard Cox regression model; and the non-parametric one using directly the 
Kaplan-Meier estimator. In the second one they noted that for the Kaplan-Meier method since 𝑋 is a continu-
ous variable, the probability was calculated, by proportioning the usual Kaplan-Meier estimator for time t to 
follow-up time of the related subject, for those subjects satisfying 𝑋 ≤ 𝑥𝑖. It has been shown that the proposed 
methods were monotone, ranges between 0 and 1, and also does not depend on any smoothing parameter.42 

Martinez-Camblor and Pardo-Fernandez used a bivariate kernel density estimator which accounts for censored 
observations in the sample and proposed smooth estimators of the cumulative/dynamic and incident/dynamic 
time-dependent ROC curves.43

In the present study we aimed to propose a method for making inference about a new prognostic biomarker 
that cannot be applied, to large samples, by using information obtained from other biomarkers routinely used 
in the same situation, measured in different samples with bigger sizes. As an example, consider the case where 
a newly investigated biomarker is evaluated for its performance in predicting prognosis in a group of patients 
of a certain disease or condition. Due to certain limitations, this biomarker can only be applied to a particular 
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portion of these patients. Thus, when measuring this biomarker from this small sample, another biomarker 
used routinely can be measured from the remaining patients, and the information to be obtained can be used 
to assess the performance of the new biomarker. Or a similar situation may be encountered when the biomar-
kers used to evaluate the prognosis of a disease may be change over time with advances in technology. In this 
case, in the evaluation of the performance of the newly developed biomarker the data of the samples that were 
obtained from the old biomarker/biomarkers used in a similar situation can be utilized. We evaluated the per-
formance of the proposed method by simulation studies.

MATERIAL AND METHODS

METHODS

We will consider the case where there are k samples, there are  𝑛𝑖 independent and identically distributed sub-
jects in the 𝑖𝑡ℎ sample and the first sample is the sample of interest. Let 𝑇 𝑖𝑗 denote the time from baseline to oc-
currence of disease or event of interest and 𝐶𝑖𝑗 denote the censoring time, 𝑌𝑖𝑗 = min (𝑇 𝑖𝑗, 𝐶𝑖𝑗) denote the observed 
time and δ𝑖𝑗 = 𝐼 (𝑇 𝑖𝑗 ≤ 𝐶𝑖𝑗) is the indicator function for 𝑗 = 1, 2, …,𝑛𝑖 and 𝑖 = 1,…,𝑘. So our observed data for the 
𝑗𝑡ℎ subject in the 𝑖𝑡ℎ independent random sample with a marker value 𝑋𝑖𝑗 can be presented by  𝑍𝑖𝑗 = {𝑌𝑖𝑗, 𝛿𝑖𝑗, 𝑋𝑖𝑗}.

Let 𝑤1𝑗 be the conditional probability of experiencing the event of interest at time 𝑡 for the 𝑗𝑡ℎ subject in the 1𝑠𝑡 
sample, given  𝑧1𝑗:

42,43

𝑤1𝑗 = 𝑃(𝑡1𝑗 ≤ 𝑡�𝑍𝑖𝑗)  = 1−
𝑆𝑇 (𝑡�𝑋1𝑗) 

𝑆𝑇 (𝑌1𝑗�𝑋1𝑗) 
(5)

Here we used the 0/1 symmetric nearest-neighbor kernel estimator of Akritas to calculate conditional survival 
functions with a span of  0.25(𝑛−1/3) as suggested by Heagerthy et al.29,35 Let 𝑆1

∗(𝑡|𝑋1𝑗) be the Kaplan-Meier esti-
mate of the first sample calculated using the subjects which are found in the neighborhood of 𝑋1𝑗. We calculated 
1000 equally spaced quartile points for the biomarkers in each groups. Let the quartile order corresponding to 
the 𝑋1𝑗 value be in the 𝑠𝑡ℎ order. For the markers found in the other groups, let the marker value corresponding 
to the same order be 𝑋𝑖𝑗(𝑠) (𝑖≠1; 𝑠=1,…,1000). Then the Kaplan-Meier estimate for the 𝑖𝑡ℎ sample, calculated 
using the subjects which are found in the neighborhood of the 𝑋𝑖𝑗(𝑠) can be presented by 𝑆𝑖

∗(𝑡| 𝑥𝑖𝑗(𝑠)) where 𝑖≠1. 
We used MAMSE weights  to combine the estimations of conditional survival functions of 𝑘 (𝑖=1,…,𝑘) groups 
to obtain the estimates of  𝑆𝑇 (𝑡�𝑋1𝑗)  and 𝑆𝑇 (𝑌1𝑗�𝑋1𝑗)  in equation-5 as follows:28,44

(6)𝑆𝑇 (𝑡|𝑋1𝑗)  = 𝑆1
∗(𝑡|𝑋1𝑗) .𝛾1 + 𝑆2

∗(𝑡| 𝑋2𝑗(𝑠) ) .𝛾2 +…+ 𝑆𝑘
∗(𝑡| 𝑋𝑘𝑗(𝑠) ) .𝛾𝑘

(7)𝑆𝑇 (𝑌1𝑗|𝑋1𝑗)  = 𝑆1
∗(𝑌1𝑗|𝑋1𝑗) .𝛾1 + 𝑆2

∗(𝑌1𝑗| 𝑋2𝑗(𝑠) ) .𝛾2 +…+ 𝑆𝑘
∗(𝑌1𝑗| 𝑋𝑘𝑗(𝑠) ) .𝛾𝑘

where 𝛾𝑖 (𝑖=1,…,𝑘) are the MAMSE weights which are calculated from the sub-samples of each sample, con-
sisted of the survival data of the subjects which are found in the neighborhood of 𝑋𝑖𝑗(𝑠)  (𝑖=1,…,𝑘).

The empirical estimates of sensitivity and specificity can be written based on the 𝑤1𝑗. Since we assume 
without loss of generality that a higher value of biomarker is associated with higher risk of disease, it is 
expected to be negative correlation between the real survival time and the biomarker value. The correlation 
between the observed survival time and biomarker, 𝑐𝑜𝑟(𝑋, 𝑌), would change depending on the 𝑐𝑜𝑟(𝑋, 𝐶) 
and 𝑐𝑜𝑟(𝑋, 𝑇 ). It is observed that the values of sensitivity and specificity are affected from the correlation 
between the observed survival time and the biomarker. We shifted the values of  𝑋 so as to make a corre-
ction on sensitivity and specificity of the first population associated with 𝑐𝑜𝑟(𝑋, 𝑌) which can be given in 
Equation-8 and 9,
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(8)

(9)𝑆𝑝𝑒𝑐𝑐 = 
�   (1−𝑤1𝑗)𝐼 (𝑥1𝑗+𝑐𝑜𝑟(𝑋,𝑌)∗𝜀)≤𝑐

�   (1−𝑤1𝑗)

𝑆𝑒𝑛𝑠𝑐 = 
�   𝑤1𝑗𝐼 (𝑥1𝑗−𝑐𝑜𝑟(𝑋,𝑌)∗𝜀)>𝑐

�   𝑤1𝑗

,where 𝐼 (.) is the indicator function, 𝑐𝑜𝑟(𝑋,𝑌) is the Pearson product-moment correlation coefficient and we 
take 𝜀=0.00025.

SIMULATION

We conducted simulation studies to see whether proposed pooling modification provides benefit over the 
method which just uses the information from the sample of interest. For that propose we compared our pro-
posed modification with the original method proposed by Li et al using tdROC() function from the R package 
tdROC with default arguments.41,44 We choose this method because it guarantees monotonicity, it takes into 
consideration the structure which the censoring is dependent on the biomarker and the authors showed in the 
simulation studies that it is insensitive to bandwidth selection and gave better performance than the other 
time-dependent ROC curve methods in most cases. Simulations were performed for two groups (k = 2). Con-
tinuous biomarkers, survival times and censoring times were generated from multivariate normal distribution 
[𝑋, log(𝑇 ) , log(𝐶) ] ~ 𝑁(𝜇3×1, Σ3×3) for the both samples, where, a variety of sample sizes (𝑛1−𝑛2: 50-100, 100-
200, 250-500, 500-1000; where 𝑛1 is the sample size for the our sample of interest and 𝑛2 is the sample size for 
the second sample which the different biomarker has been measured and we use to borrow information). Since 
in practice we evaluate the diagnostic performance of a biomarker on a specific disease, we simulated log(𝑇 )  
and log(𝐶)  from the same distribution in both groups {𝜇𝑙𝑜𝑔𝑇 1 = 𝜇𝑙𝑜𝑔𝑇 2 = 0, 𝜎𝑙𝑜𝑔𝑇 1 = 𝜎𝑙𝑜𝑔𝑇 2 = 1; 𝜇𝑙𝑜𝑔𝐶1 = 𝜇𝑙𝑜𝑔𝐶2 = 𝜇𝐶, 
𝜎𝑙𝑜𝑔𝐶1 = 𝜎𝑙𝑜𝑔𝐶2 = 1}. We took 𝜇𝐶=−0.5 and 𝜇𝐶=1 which yields censoring rates approximately 64% and 24% respe-
ctively. Since the biomarkers in Group 1 and in Group 2 are different, we simulated with different distribution 
parameters for each biomarker. Three different situations were taken into account for the biomarker values, 
where the difference between the measurements units of the two biomarkers were small, moderate and large. 
For a small difference we simulated with the parameters {𝜇𝑋1 = 0, 𝜎𝑋1 = 1; 𝜇𝑋2 = 4, 𝜎𝑋2 = 0.8}, for a moderate 
difference we simulated with the parameters {𝜇𝑋1 = 0, 𝜎𝑋1 = 1; 𝜇𝑋2 = 8, 𝜎𝑋2 = 1.6} and for a large difference we 
simulated with the parameters {𝜇𝑋1 = 0, 𝜎𝑋1 = 1; 𝜇𝑋2 = 16, 𝜎𝑋2 = 3.2}, by taking the coefficient of variation 5% 
for the second biomarker. We take 𝜌1 = −0.6 to represent the correlation between the 𝑋 and log(𝑇 ) ; 𝜌2 = −0.4, 
0 or 0.4 to represent the correlation between the 𝑋 and log(𝐶) , and 𝜌1𝜌2 to represent the correlation between 
the log(𝑇 )  and log(𝐶)  which gives conditional independence between log(𝑇 )  and log(𝐶)  given 𝑋. ROC curve 
estimations were computed for log(𝑡) = 0.8. We performed 1000 repetitions for each simulation scenario and 
the results were given as percent bias and mean square error (MSE) for the AUC, for the sensitivity when 
the specificity is 0.9, 0.85 and 0.8 which are presented as 𝑅𝑂𝐶(0.1), 𝑅𝑂𝐶(0.15), 𝑅𝑂𝐶(0.2) respectively, and 
for the specificity when the sensitivity is 0.9, 0.85 and 0.8 which hare presented as 𝑅𝑂𝐶−1(0.9), 𝑅𝑂𝐶−1(0.85), 
𝑅𝑂𝐶−1(0.8) respectively. All the ROC curves are evaluated over a grid of 1000 equally spaced points on the 
specificity axis and all the AUC values are estimated by numerical integration. Simulations were performed 
in R version 3.4.2].45

RESULTS

In the tables we gave the results for the original method proposed by Li et al. in the single biomarker (SB) 
column.41 The original method was implemented on the biomarker value measured from the first group which 
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is the biomarker of interest. The biomarker value measured from the first group (the biomarker of interest) was 
generated with 𝜇𝑋1 = 0, 𝜎𝑋1 = 1 in all simulation scenarios. We gave the results of the combination method for three 
situations. In the first situation the second biomarker values measured from the second group were generated with 
𝜇𝑋2 = 4, 𝜎𝑋2 = 0.8, where the difference between the measurements units of the two biomarkers were small. In the 
second situation, the second biomarker values measured from the in the second group were generated with 𝜇𝑋2 = 
8, 𝜎𝑋2 = 2.56, where the difference between the measurements units of the two biomarkers were moderate. In the 
third situation, the second biomarker values measured from the second group were generated with 𝜇𝑋2 = 16, 𝜎𝑋2 = 
19.23, where the difference between the measurement units of the two biomarkers were large. 

Tables 1-3 display the percent bias and MSE, for the estimate of 𝐴𝑈𝐶(𝑡), sensitivity at three points and speci-
ficity at three points at log(𝑡) = 0.8, for the data generated with a 64% censoring rate and 𝜌1 = −0.6 at different 
sample sizes. 

The simulation results for 𝜌2 = 0 was given in Table 1. For 𝜌2 = 0, percent bias and MSE values for all situations 
decreased with the increase in the sample sizes. Smaller percent bias and MSE values were obtained for the mo-
dified method in most cases except the 𝑅𝑂𝐶−1(0.9)  and the 𝑅𝑂𝐶−1(0.8). For the AUC values, all the bias and MSE 
values were smaller than that of the original method. The difference between the proposed modification and the 
original method get smaller as the sample size get larger for AUC (𝑡), 𝑅𝑂𝐶(0.1), 𝑅𝑂𝐶−1(0.9)  and 𝑅𝑂𝐶(0.2)  esti-
mates and reached to minimum when the sample size was 500 for the sample of interest. Also it is observed that, the 
difference was the same for biomarkers derived from the different parameter values in the second group (Table 1).

TABLE 1: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶=−0.5 and 𝜌2=0.
Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 -1.1869 -1.1869 -1.1865 -1.1919 0.008770 0.008770 0.008770 0.008771
100-200 -1.1166 -1.1169 -1.1164 -1.1206 0.004251 0.004251 0.004252 0.004252
250-500 -0.5617 -0.5617 -0.5610 -0.5639 0.001851 0.001851 0.001851 0.001852
500-1000 -0.1741 -0.1731 -0.1733 -0.1742 0.000871 0.000871 0.000871 0.000872

ROC(0.1) (0.420)

50-100 -0.3655 -0.3657 -0.3646 -0.3735 0.035531 0.035530 0.035531 0.035532
100-200 -3.0615 -3.0612 -3.0602 -3.0754 0.022335 0.022338 0.022338 0.022337
250-500 -2.1473 -2.1483 -2.1448 -2.1507 0.010161 0.010158 0.010162 0.010164
500-1000 -0.4282 -0.4286 -0.4286 -0.4279 0.004608 0.004606 0.004606 0.004607

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 4.6069 4.6005 4.5869 4.5906 0.039273 0.039271 0.039283 0.039267
100-200 0.5522 0.5736 0.5733 0.5410 0.024451 0.024476 0.024463 0.024471
250-500 0.7588 0.7724 0.7941 0.7763 0.011156 0.011164 0.011179 0.011175
500-1000 0.5533 0.5559 0.5573 0.5490 0.005608 0.005602 0.005606 0.005608

𝑅𝑂𝐶(0.15) (0.517)

50-100 -2.5110 -2.5111 -2.5101 -2.5205 0.038376 0.038376 0.038376 0.038377
100-200 -2.9892 -2.9912 -2.9884 -2.9906 0.022769 0.022768 0.022772 0.022774
250-500 -1.7500 -1.7512 -1.7486 -1.7530 0.009611 0.009609 0.009610 0.009611
500-1000 -0.2693 -0.2670 -0.2687 -0.2731 0.004692 0.004693 0.004692 0.004694

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 0.0154 0.0135 0.0143 0.0052 0.035813 0.035812 0.035810 0.035813
100-200 -1.2012 -1.2029 -1.2007 -1.2124 0.022777 0.022770 0.022780 0.022783
250-500 -0.6281 -0.6220 -0.6252 -0.6298 0.009655 0.009644 0.009641 0.009644
500-1000 -0.0711 -0.0623 -0.0646 -0.0656 0.004974 0.004974 0.004972 0.004979

𝑅𝑂𝐶(0.20) (0.594)

50-100 -3.4945 -3.4942 -3.4933 -3.5067 0.038215 0.038215 0.038214 0.038220
100-200 -2.2890 -2.2901 -2.2893 -2.2997 0.020242 0.020242 0.020244 0.020238
250-500 -1.3722 -1.3717 -1.3691 -1.3734 0.009037 0.009032 0.009034 0.009035
500-1000 -0.2330 -0.2294 -0.2311 -0.2325 0.004440 0.004442 0.004442 0.004440

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 -1.8475 -1.8473 -1.8467 -1.8377 0.032797 0.032797 0.032796 0.032791
100-200 -1.9241 -1.9169 -1.9161 -1.9336 0.019880 0.019873 0.019874 0.019893
250-500 -0.8786 -0.8702 -0.8747 -0.8739 0.008590 0.008585 0.008581 0.008591
500-1000 -0.1651 -0.1628 -0.1575 -0.1607 0.004496 0.004504 0.004502 0.004504
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The simulation results for 𝜌2 = −0.4 was given in Table 2. For 𝜌2 = −0.4, all the estimators were underestimated 
in all situations with both methods. But smaller percent bias and MSE values were obtained for the modified 
method in almost everywhere. The difference between the proposed modification and the original method get 
smaller as the sample size gets larger for almost all cases except 𝑅𝑂𝐶−1(0.9) and 𝑅𝑂𝐶(0.2) estimates. This dif-
ference was the same for biomarkers derived from the different parameter values in the second group (Table 2).

The simulation results for 𝜌2 = 0.4, which was the correlation between the 𝑋 and log(𝐶) , was given in Table 3. 
For 𝜌2 = 0.4 smaller percent bias and MSE values were obtained for the modified method in most cases regard-
less of the difference between the measurement units of the two biomarkers. The performance of both methods 
increased with the increase in the sample sizes (Table 3).

Table 4-6 displays the percent bias and MSE, for the estimate of AUC (𝑡) , sensitivity at three points and 
specificity at three points at log(𝑡) = 0.8, for the data generated with a 24% censoring rate and 𝜌1 = −0.6 at 
different sample sizes. Table 4, 5 and 6 display the results for 𝜌2 = 0, 𝜌2 = −0.4 and 𝜌2 = 0.4 respectively. The 

TABLE 2: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = −0.5 and 𝜌2 = −0.4.

Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 -5.2634 -5.2634 -5.2727 0.011321 0.011321 0.011321 0.011330 0.011330

100-200 -3.8129 -3.8130 -3.8212 0.005619 0.005620 0.005619 0.005623 0.005623

250-500 -2.2648 -2.2647 -2.2711 0.00232 0.00232 0.002320 0.00232 0.00232

500-1000 -1.2116 -1.2124 -1.2169 0.001070 0.001070 0.001070 0.001070 0.001070

ROC(0.1) (0.420)

50-100 -15.7891 -15.7892 -15.8120 0.046709 0.046709 0.046710 0.046711 0.046711

100-200 -14.8793 -14.8796 -14.9139 0.032232 0.032233 0.032232 0.032250 0.032250

250-500 -10.2092 -10.2097 -10.2379 0.015320 0.015318 0.015319 0.015336 0.015336

500-1000 -5.9796 -5.9805 -6.0092 0.007913 0.007913 0.007913 0.007918 0.007918

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 -3.7925 -3.7908 -3.8323 0.034354 0.034354 0.034359 0.034385 0.034385

100-200 -3.3816 -3.3468 -3.3750 0.019020 0.019046 0.019041 0.019030 0.019030

250-500 -2.0132 -2.0075 -2.0228 0.008811 0.008812 0.008814 0.008821 0.008821

500-1000 -0.6449 -0.6334 -0.6572 0.004549 0.004544 0.004550 0.004561 0.004561

𝑅𝑂𝐶(0.15) (0.517)

50-100 -15.9171 -15.9173 -15.9333 0.052416 0.052417 0.052416 0.052439 0.052439

100-200 -13.2714 -13.2725 -13.2958 0.032129 0.032130 0.032129 0.032135 0.032135

250-500 -8.3900 -8.3905 -8.4087 0.015172 0.015171 0.015171 0.015184 0.015184

500-1000 -4.5582 -4.5591 -4.5720 0.007053 0.007054 0.007053 0.007055 0.007055

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 -6.8639 -6.8661 -6.9022 0.034618 0.034620 0.034631 0.034629 0.034629

100-200 -5.0769 -5.0786 -5.0963 0.018982 0.018988 0.018986 0.018996 0.018996

250-500 -2.2599 -2.2615 -2.2805 0.008308 0.008305 0.008305 0.008311 0.008311

500-1000 -1.0157 -1.0308 -1.0339 0.004381 0.004380 0.004384 0.004385 0.004385

𝑅𝑂𝐶(0.20) (0.594)

50-100 -14.3317 -14.3322 -14.3467 0.051516 0.051516 0.051516 0.051534 0.051534

100-200 -11.1606 -11.1537 -11.1677 0.029846 0.029847 0.029839 0.029849 0.029849

250-500 -6.7316 -6.7321 -6.7541 0.013147 0.013146 0.013145 0.013153 0.013153

500-1000 -3.1787 -3.1785 -3.1979 0.005819 0.005819 0.005818 0.005831 0.005831

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 -7.8688 -7.8338 -7.8936 0.033902 0.033903 0.033862 0.033925 0.033925

100-200 -5.6822 -5.7017 -5.7114 0.019252 0.019243 0.019289 0.019266 0.019266

250-500 -3.1799 -3.1801 -3.1933 0.007868 0.007874 0.007883 0.007890 0.007890

500-1000 -1.3738 -1.3733 -1.3850 0.004246 0.004247 0.004247 0.004252 0.004252
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TABLE 3: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = −0.5 and 𝜌2 = 0.4.
Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 1.4130 1.4133 1.4131 1.4137 0.008322 0.008322 0.008321 0.008321

100-200 0.7211 0.7214 0.7210 0.7217 0.004214 0.004214 0.004214 0.004214

250-500 0.1404 0.1414 0.1412 0.1409 0.002036 0.002036 0.002036 0.002036

500-1000 0.0054 0.0056 0.0056 0.0050 0.001049 0.001049 0.001049 0.001050

ROC(0.1) (0.420)

50-100 7.8905 7.8894 7.8904 7.8984 0.034915 0.034914 0.034915 0.034916

100-200 3.5831 3.5875 3.5851 3.5942 0.019984 0.019984 0.019987 0.019971

250-500 1.1670 1.1693 1.1715 1.1752 0.008071 0.008070 0.008071 0.008073

500-1000 0.7137 0.7105 0.7081 0.7186 0.004013 0.004011 0.004013 0.004016

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 12.6441 12.6447 12.6089 12.5995 0.045093 0.045092 0.044992 0.045012

100-200 5.7889 5.7893 5.7890 5.7901 0.029499 0.029500 0.029500 0.029500

250-500 1.8174 1.8213 1.8019 1.8194 0.016537 0.016534 0.016529 0.016539

500-1000 -0.3249 -0.3227 -0.3342 -0.3289 0.008788 0.008786 0.008780 0.008791

𝑅𝑂𝐶(0.15) (0.517)

50-100 4.9123 4.9135 4.9123 4.9149 0.035612 0.035612 0.035612 0.035615

100-200 2.4535 2.4553 2.4537 2.4562 0.018490 0.018494 0.018495 0.018494

250-500 0.7448 0.7495 0.7484 0.7484 0.008109 0.008108 0.008107 0.008113

500-1000 0.5076 0.5068 0.5070 0.5113 0.004052 0.004050 0.004051 0.004054

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 5.5945 5.5955 5.5947 5.5864 0.040949 0.040948 0.040948 0.040973

100-200 1.9386 1.9373 1.9390 1.9436 0.026012 0.026012 0.026013 0.026022

250-500 0.4837 0.4888 0.4832 0.4770 0.013028 0.013029 0.013028 0.013026

500-1000 -0.4904 -0.4907 -0.4902 -0.4958 0.006840 0.006836 0.006840 0.006842

𝑅𝑂𝐶(0.20) (0.594)

50-100 3.1741 3.1760 3.1744 3.1715 0.033539 0.033540 0.033538 0.033543

100-200 1.8882 1.8894 1.8882 1.8939 0.018540 0.018540 0.018540 0.018538

250-500 0.6576 0.6606 0.6595 0.6588 0.008004 0.008007 0.008010 0.008013

500-1000 0.4057 0.4071 0.4071 0.4066 0.003906 0.003906 0.003906 0.003910

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 2.5722 2.5736 2.5725 2.5731 0.035207 0.035204 0.035206 0.035201

100-200 1.0110 1.0064 1.0059 1.0119 0.021791 0.021796 0.021797 0.021795

250-500 -0.1859 -0.1832 -0.1836 -0.1880 0.010784 0.010784 0.010785 0.010787

500-1000 -0.3502 -0.3428 -0.3405 -0.3454 0.005485 0.005477 0.005478 0.005483

TABLE 4: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = 1 and 𝜌2 = 0.
Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 -0.9308 -0.9309 -0.9314 -0.9364 0.004624 0.004625 0.004624 0.004628

100-200 -0.2743 -0.2742 -0.2741 -0.2787 0.002125 0.002125 0.002125 0.002127

250-500 -0.1699 -0.1704 -0.1694 -0.1752 0.000895 0.000895 0.000895 0.000897

500-1000 -0.0535 -0.0540 -0.0543 -0.0605 0.000453 0.000453 0.000453 0.000454

ROC(0.1) (0.420)

50-100 -1.3765 -1.3772 -1.3783 -1.3804 0.02260 0.02260 0.02259 0.02260

100-200 -0.5747 -0.5730 -0.5774 -0.5794 0.01297 0.01298 0.01297 0.01299

250-500 -0.2886 -0.2883 -0.2874 -0.3089 0.00571 0.00571 0.00571 0.00571

500-1000 -0.1886 -0.1880 -0.1890 -0.2110 0.002692 0.002692 0.002693 0.002695

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 0.3804 0.3745 0.3169 0.3521 0.02282 0.02291 0.02293 0.02274

100-200 1.3318 1.3345 1.3393 1.2745 0.01184 0.01187 0.01186 0.01181

250-500 0.6788 0.6658 0.6677 0.6614 0.00534 0.00535 0.00534 0.00535

500-1000 0.5373 0.5319 0.5374 0.5216 0.00289 0.00288 0.00289 0.00289

(continue)
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TABLE 5: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = 1 and 𝜌2 = −0.4.
Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 -1.0320 -1.0323 -1.0328 -1.0413 0.004772 0.004773 0.004772 0.004774

100-200 -0.3709 -0.3706 -0.3713 -0.3791 0.002251 0.002251 0.002250 0.002252

250-500 -0.1616 -0.1609 -0.1612 -0.1705 0.000923 0.000923 0.000923 0.000924

500-1000 -0.0676 -0.0679 -0.0678 -0.0773 0.000475 0.000475 0.000475 0.000476

ROC(0.1) (0.420)

50-100 -1.6536 -1.6534 -1.6551 -1.7100 0.025091 0.025091 0.025089 0.025106

100-200 -0.7344 -0.7338 -0.7357 -0.7803 0.013389 0.013388 0.013385 0.013374

250-500 -0.6283 -0.6280 -0.6283 -0.6829 0.006121 0.006121 0.006121 0.006124

500-1000 -0.4073 -0.4081 -0.4080 -0.4283 0.003050 0.003050 0.003050 0.003049

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 0.3409 0.3848 0.2895 0.3245 0.021861 0.021869 0.021846 0.021808

100-200 1.2837 1.2398 1.2367 1.2301 0.012149 0.012141 0.012127 0.012139

250-500 0.5886 0.6013 0.5890 0.5682 0.005316 0.005317 0.005316 0.005319

500-1000 0.4948 0.4952 0.4982 0.4631 0.002839 0.002843 0.002839 0.002840

𝑅𝑂𝐶(0.15) (0.517)

50-100 -3.0243 -3.0236 -3.0251 -3.0473 0.024011 0.024010 0.024007 0.024013

100-200 -1.4197 -1.4188 -1.4205 -1.4467 0.013076 0.013074 0.013072 0.013079

250-500 -0.2271 -0.2264 -0.2267 -0.2583 0.005656 0.005655 0.005655 0.005658

500-1000 -0.2749 -0.2759 -0.2756 -0.2998 0.002827 0.002828 0.002828 0.002827

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 -0.7726 -0.7733 -0.7599 -0.8218 0.020653 0.020669 0.020686 0.020676

100-200 0.6084 0.5928 0.5914 0.5800 0.011361 0.011354 0.011374 0.011344

250-500 0.5516 0.5504 0.5516 0.5266 0.004612 0.004607 0.004610 0.004605

500-1000 0.4628 0.4611 0.4617 0.4331 0.002546 0.002545 0.002546 0.002543

𝑅𝑂𝐶(0.20) (0.594)

50-100 -3.1257 -3.1262 -3.1272 -3.1358 0.023012 0.023012 0.023010 0.023046

100-200 -1.1441 -1.1428 -1.1455 -1.1523 0.011668 0.011668 0.011664 0.011650

250-500 -0.4634 -0.4628 -0.4640 -0.4855 0.004768 0.004766 0.004768 0.004768

500-1000 -0.1365 -0.1368 -0.1368 -0.1602 0.002544 0.002544 0.002545 0.002546

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 -1.2295 -1.2188 -1.2275 -1.2487 0.018861 0.018867 0.018861 0.018854

100-200 -0.3038 -0.3060 -0.3089 -0.3246 0.010057 0.010069 0.010055 0.010067

250-500 -0.2985 -0.2954 -0.2968 -0.3128 0.004103 0.004101 0.004100 0.004102

500-1000 0.0668 0.0669 0.0678 0.0519 0.002332 0.002331 0.002332 0.002330

TABLE 4: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = 1 and 𝜌2 = 0.
Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝑅𝑂𝐶(0.15) (0.517)

50-100 -2.4409 -2.4418 -2.4423 -2.4530 0.02272 0.02272 0.02271 0.02272

100-200 -0.8024 -0.8016 -0.8038 -0.8113 0.01215 0.01215 0.01215 0.01216

250-500 -0.2295 -0.2297 -0.2287 -0.2475 0.00519 0.00520 0.00520 0.00519

500-1000 0.0059 0.0057 0.0045 -0.0262 0.00262 0.00263 0.00263 0.00262

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 -0.4043 -0.4347 -0.3931 -0.4677 0.021827 0.021870 0.021781 0.021736

100-200 0.5208 0.5366 0.4853 0.4844 0.010952 0.010936 0.010976 0.010966

250-500 0.0636 0.0666 0.0798 0.0486 0.004935 0.004931 0.004936 0.004946

500-1000 0.3090 0.3099 0.3140 0.2949 0.002754 0.002753 0.002757 0.002761

𝑅𝑂𝐶(0.20) (0.594)

50-100 -2.7875 -2.7894 -2.7908 -2.8019 0.021241 0.021243 0.021238 0.021248

100-200 -0.6096 -0.6071 -0.6108 -0.6141 0.011093 0.011091 0.011092 0.011095

250-500 -0.5156 -0.5159 -0.5148 -0.5278 0.004657 0.004657 0.004658 0.004660

500-1000 -0.0731 -0.0749 -0.0747 -0.0895 0.002334 0.002334 0.002335 0.002331

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 -1.4258 -1.4308 -1.4394 -1.4510 0.020341 0.020336 0.020360 0.020343

100-200 -0.2795 -0.2725 -0.2822 -0.2946 0.010027 0.009980 0.009985 0.010002

250-500 -0.1532 -0.1555 -0.1490 -0.1672 0.004437 0.004441 0.004440 0.004445

500-1000 0.0719 0.0681 0.0684 0.0527 0.002372 0.002369 0.002374 0.002376

(continued)



Turkiye Klinikleri J Biostat. 2020;12(1):70-82Deniz SIĞIRLI et al.

79

TABLE 6: Percent bias and MSE values for AUC, sensitivity, specificity for 𝜇𝐶 = 1 and 𝜌2 = 0.4.

Percent Bias MSE

𝑛1−𝑛2 𝜇𝑋2
=4 𝜇𝑋2

=8 𝜇𝑋2
=16 SB 𝜇𝑋2

=4 𝜇𝑋2
=8 𝜇𝑋2

=16 SB

𝐴𝑈𝐶(𝑡) (0.780)

50-100 -0.7169 -0.7165 -0.7161 -0.7217 0.004763 0.004762 0.004762 0.004765

100-200 -0.2976 -0.2973 -0.2985 -0.3010 0.002213 0.002214 0.002214 0.002215

250-500 -0.1691 -0.1687 -0.1685 -0.1712 0.000892 0.000893 0.000893 0.000894

500-1000 -0.1008 -0.1013 -0.1021 -0.1053 0.000457 0.000457 0.000457 0.000458

ROC(0.1) (0.420)

50-100 0.2628 0.2632 0.2641 0.2559 0.021596 0.021594 0.021592 0.021596

100-200 -0.0097 -0.0119 -0.0126 -0.0208 0.012704 0.012704 0.012703 0.012702

250-500 -0.1494 -0.1521 -0.1502 -0.1649 0.005254 0.005255 0.005253 0.005256

500-1000 -0.0426 -0.0443 -0.0435 -0.0563 0.002494 0.002494 0.002494 0.002495

𝑅𝑂𝐶−1(0.9) (0.431)

50-100 0.1690 0.0966 0.0987 0.0921 0.024265 0.024280 0.024268 0.024202

100-200 1.0216 0.9939 0.9777 1.0459 0.013293 0.013331 0.013323 0.013301

250-500 0.5499 0.5385 0.5341 0.5562 0.005874 0.005882 0.005873 0.005884

500-1000 0.0045 0.0131 0.0046 -0.0036 0.003015 0.003012 0.003015 0.003025

𝑅𝑂𝐶(0.15) (0.517)

50-100 -0.9013 -0.9014 -0.9007 -0.9121 0.022101 0.022099 0.022097 0.022092

100-200 -0.5873 -0.5862 -0.5870 -0.5892 0.011457 0.011455 0.011455 0.011452

250-500 -0.1657 -0.1665 -0.1627 -0.1702 0.004986 0.004986 0.004984 0.004988

500-1000 0.0111 0.0085 0.0105 -0.0026 0.002501 0.002500 0.002502 0.002503

𝑅𝑂𝐶−1(0.85) (0.525)

50-100 -0.5910 -0.5876 -0.5389 -0.6340 0.022442 0.022448 0.022427 0.022371

100-200 -0.0006 -0.0069 0.0128 -0.0237 0.011555 0.011556 0.011537 0.011546

250-500 -0.0276 -0.0224 -0.0296 -0.0258 0.005027 0.005035 0.005025 0.005035

500-1000 0.0386 0.0335 0.0273 0.0166 0.002763 0.002765 0.002764 0.002772

𝑅𝑂𝐶(0.20) (0.594)

50-100 -1.5945 -1.5939 -1.5921 -1.6028 0.020500 0.020501 0.020502 0.020510

100-200 -0.8599 -0.8581 -0.8609 -0.8594 0.010779 0.010779 0.010781 0.010780

250-500 -0.2663 -0.2662 -0.2652 -0.2730 0.004465 0.004465 0.004465 0.004464

500-1000 -0.0852 -0.0867 -0.0859 -0.0939 0.002324 0.002323 0.002324 0.002327

𝑅𝑂𝐶−1(0.8) (0.599)

50-100 -1.2631 -1.2100 -1.1911 -1.2629 0.020372 0.020333 0.020377 0.020320

100-200 -0.4368 -0.4296 -0.4403 -0.4260 0.010302 0.010307 0.010300 0.010297

250-500 -0.2863 -0.2694 -0.2890 -0.2888 0.004571 0.004567 0.004576 0.004583

500-1000 -0.2892 -0.2985 -0.2944 -0.2974 0.002405 0.002414 0.002409 0.002414

results for the 𝜌2 = 0 and the 𝜌2 = −0.4 were similar and smaller percent bias and MSE values were obtained 
for the modified method in most cases except the 𝑅𝑂𝐶−1(0.9) and the 𝑅𝑂𝐶−1(0.85). Percent bias and MSE of 
the 𝐴𝑈𝐶(𝑡) values were smaller for the combination method in all situations.

DISCUSSION

In this article, we introduce an approach which provides to make inference related to the diagnostic performan-
ce of a biomarker from population of interest, by pooling data from other sources which different biomarkers 
were measured, when the event of interest is right-censored. The simulation study demonstrates that the pro-
posed approach provided an improvement in the performance of estimating the ROC curve. 

The novel biomarkers may not be used in all medical centers since they are more expensive. Therefore fewer 
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patients can benefit from those markers. We consider the situations where there are additional populations 
from different medical centers or data from other studies for ROC curve estimation in the presence of ri-
ght-censored data. We used MAMSE weights proposed by Plante et al. to combine the nearest-neighbor kernel 
weighted Kaplan-Meier functions calculated from the sub-samples we created based on the neighborhood of 
the biomarker values.26 When the performance of this method has been compared with the classical method 
proposed by Li et al. via simulation studies, it is seen that the combination yielded smaller MSE and bias va-
lues in most cases.41 The performance of the modified method was not affected by the difference between the 
measurements units of the biomarkers. Percent bias and MSE values did not changed for small, moderate and 
large difference between the measurements units of the biomarkers. This is an expected results since we used 
the quartiles to provide a matching between the two biomarker values by taking into account the order. We 
used biomarker values to obtain a subsample for calculating the conditional survival functions in both groups. 

As expected, it is seen in most cases that performance of both methods increased as the sample size increased. 
The difference between the proposed modification and the original method gets smaller as the sample size gets 
larger and reached to minimum when the sample size was 500. The results show that it is not plausible to pool 
data when the sample size of the sample of interest is as large as 500. However despite that, bias and MSE 
values of the proposed method remained smaller than that of the original method’s in most cases. 

We follow the methodology proposed by Li et al. since the authors showed that the time-dependent ROC 
analysis method proposed by them demonstrated notable better performance compared the other methods in 
both dependent and independent censoring settings.41 But it is possible that the other time-dependent ROC 
approaches can be used to estimate sensitivity and specificity values from the populations. 

CONCLUSION

Specifically, we have proposed a pooling method for constructing time-dependent ROC curves related to target samp-
le, borrowing information from additional sample where a different biomarker has been measured from more indivi-
duals, while our biomarker of interest is measured on a sample consisting of fewer units. The modified method gave 
smaller MSE and bias values, except when the sample size was 500 where there was no difference between the two 
methods. Percent bias and MSE values for the proposed combination method were not affected by the change in me-
asurements units of the biomarkers. Although the simulation results which we are given in this study are promising, 
in the future studies theoretical properties of the presented methodology should be studied. Also the studies on the 
performance of the proposed modification should be investigated when the number of biomarkers is greater than two.
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