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ABSTRACT Objective: Time-dependent reciever operating characte-
ristics (ROC) curves are statistical methods which can be used when the
specified outcome is an event which can take place at any time after the
diagnostic test has been measured and may be right censored. This work
presents an approach for making inference related to the performance of
prognostic biomarker which can be measured from smaller number of
patients, by borrowing information from the other biomarker(s) which
can be measured from larger number of patients for right censored sur-
vival data. Material and Methods: Simulation studies were performed
to see the performance of the proposed modification. We evaluated es-
timators related to the time dependent ROC function and the area under
the curve (AUC) in terms of efficiency and unbiasedness to see whether
proposed modification provides benefit over the original method. Re-
sults: It is observed that proposed approach yielded smaller bias, mean
square error and standard deviation values for most scenarios in the si-
mulation studies. Conclusion: The proposed approach, which combines
information from different samples with different biomarkers may be
useful to make inference related to the biomarker of interest which is
measured from sample with a smaller size.
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OZET Amac: Zamana bagli ROC egrileri sonug, tam testinin 0l-
¢uilmesinden sonra herhangi bir zamanda gerceklesebilen ve sagdan
sansurlu olay olarak tanimlandiginda kullanilabilen istatistiksel yon-
temlerdir. Bu caligma, sagdan sansurlu sagkalim verileri icin daha
fazla sayida hastadan ol¢uilebilen diger biyobelirteglerden bilgi ali-
narak az sayida hasta icin ol¢uilebilen prognostik biyobelirtecin per-
formansi ile iligkili ¢ikarim yapan bir yaklagim sunmaktadir. Gereg
ve Yontemler: Onerilen modifikasyonun performansini gormek i¢in
simiilasyon ¢aligmalar1 yapilmistir. Onerilen yontemin orijinal yonte-
me ustunluk saglayip saglamadigini gormek icin etkinlik ve yansiz-
Iik acisindan egri altinda kalan alanla (AUC) ve zamana bagli ROC
fonksiyonuyla iligkili tahmin ediciler degerlendirilmistir. Bulgular:
Onerilen yaklagimin simulasyon c¢aligmalarindaki bircok senaryo
icin daha kuiguk yanlilik, hata kareler ortalamas1 ve standart sapma
degerleri verdigi gorulmustur. Sonuc: Farkli biyobelirtecler ile fark-
It orneklemlerden elde edilen bilgiyi birlestiren Onerilen yaklagim,
orneklemden daha kiigiik olan ilgilenilen biyobelirtecle ilgili ¢ikarim
yapmak i¢in yararli olabilir.

Anahtar kelimeler: Biyobelirtec; sansurli1 veri;
zamana bagli ROC egrileri

Biomarkers are used in detection and diagnosis of a disease, provide information on the disease phase, and
monitor its progression, to predict probable outcomes of a disease, to identify patients who are most likely to
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benefit from selected treatments and to guide clinical decision-making. Determining the biomarker’s ability
to accurately predict the probability of a specified outcome such as disease onset, disease progression or death
is fundamental for their being used effectively in clinical practice. This encourages the development of new
statistical methodologies to assess the relationship between biomarkers specific to a disease and the clinical
outcomes.'”’

The diagnostic performance of a continuous biomarker X is often evaluated by receiver operating charac-
teristics (ROC) curve analysis which displays the false positive rates (the probability that X be above given
cut-off point for an healthy subject) versus the true positive rates (the probability that X be above given cut-off
point for a diseased subject) for all possible cut-off points and the diagnostic accuracy is often summarized
by the area under the ROC curve (AUC) which the statistical methods used to estimate these statistics need
often large sample sizes.®'? In biomarker research, collecting large amounts of experimental data is crucial to
process the data and draw conclusions. The studies conducted for evaluating the biomarkers can be expensive
in terms of cost. Usually the power gained by a large sample size is being tried to be balanced against the cost
of performing assays.'* In addition, newly developed expensive biomarkers cannot be applied in most centers
routinely to all patients due to financial constraints. For this reason, fewer patients can benefit from these
newly developed biomarker.

Pooling and random sampling are two approaches commonly used by investigators to reduce overall cost.
Due to high costs of evaluation the effectiveness of some biomarkers, several authors have proposed the poo-
ling samples and statistical methods for ROC curve analysis when dealing with such data.'>!*'® On the other
hand many statistical approaches have been proposed to make inference about one population by combining
information from other sources, especially when the sample size is small. Stein showed that precision could
be “borrowed” from data drawn independently from populations other than the one which is inferential of in-
terest.'” Cox gave a general discussion for merging information from such data by using weighted means and
pooling in the presence of over-dispersion.” Like the James-Stein estimator, Hu and Zidek suggested weighted
likelihood (WL) estimator, which provides making inference on one sample by using the additional informa-
tion from different populations.”'*> Wang, Wang et al and Wang and Zidek proposed adaptive weights which
were allowed to depend on data.?** Plante has showed that WL can be derived from the entropy maximization
principle using weighted empirical distribution function and he suggested minimum averaged mean squared
error (MAMSE) weights.” Plante have used MAMSE weights for right censored data and proposed adaptively
weighted Kaplan-Meier estimate, which borrows strength from different populations to make inference for just
one population of interest.?*’

Models which are developed to predict patient survival using prognostic and predictive biomarkers are increa-
singly getting important in clinical research and practice. Various definitions and estimators of time-dependent
ROC curves have been proposed which can be used when the specified outcome is an event which can take
place at any time after the diagnostic test has been measured and may be right censored.” In their seminal
work, Heagerty et al. defined cumulative sensitivity and dynamic specificity as time-dependent function at
time point t as below:*

sens(t,c)=P(X > c|T <t) (1
spec(t,c) =P(X < C|T >t) )

where T denotes the time from baseline to the occurrence of the disease or death, X be the continuous bio-
marker measured at baseline with the larger values are associated with higher probabilities of the event and ¢
denotes the cut-off value. In this approach, let the sample size includes n independent and identically distri-
buted subjects. So the i** individual is considered as positive if t, < t, and as negative if t >t at time point t.
When there is no censored data it is easy to calculate the estimators for these quantities. We have a complete
information at time point ¢ for the subjects who have experienced the event of interest before time t, or for the
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subjects who haven’t experienced the event yet and have a follow-up longer than t. The main complexity of
the time-dependent ROC curve comes from those subjects who are censored before time point ¢.

Cumulative/dynamic, incident/static and incident/dynamic estimators for time-dependent sensitivity/specifi-
city and related ROC curves were defined by Heagerty and Zheng and also discussed by Cai et al. and Pepe
et al.?®3%3! Etzioni et al. and Slate and Turnbull adopt an incident/static time dependent sensitivity/ specificity
approach, in which cases are stratified according to the time at which the event occurs (incident) and controls
are defined as those subjects who are event free through a fixed follow-up period.***

In the present paper we deal with the cumulative/dynamic type of the ROC curves. Heagerthy et al. proposed
cumulative/dynamic versions of time-dependent estimation methods where i individual plays the role of
control for times t < t,, and then contributes as a case for times ¢ > t.* They proposed two estimators which
are based on traditional Kaplan-Meier survival function and based on bivariate distribution function provided
by Akritas which uses nearest neighbor estimator.** Although the former gives good results when there is no
dependence between the censoring time and biomarker, it does not guarantee monotonicity for sensitivity and
specificity and can give values greater than 1. The second one needs a bandwidth since it uses a kernel func-
tion. Chambless and Diao also proposed two methods.*® The first one estimates time-dependent ROC curves
by using a recursive approach akin to the Kaplan-Meier method, again which does not guarantee the mono-
tonicity. The second one uses Cox model to estimate conditional distribution of the survival time given the
biomarker. Song and Zhou define the covariate specific time-dependent ROC curve using both the cumulative
and the incident sensitivity.*® Uno et al. and Hung and Chiang also have proposed estimators based on inverse
probability of censoring weighting (IPCW).?7*® Wolf et al. introduced a method for calculating sensitivity
and specificity for censored data based on the Nelson-Aalen estimator and they used isotonic regression to
achieve monotonicity for the ROC curve.* Blanche et al. proposed a conditional IPWC method which is the
modified version of IPCW to obtain a nonparametric estimator robust to marker-dependent censoring.* They
gave a detailed review of the time-dependent ROC curve estimators proposed in the literature and compare
their properties. Li et al. and Martinez-Camblor et al. studied estimators where the missing status indicator
is replaced by weights obtained from conditional survival functions.*#* Li et al. proposed a kernel weighting
method to estimate cumulative/dynamic time-dependent sensitivity/specificity and related ROC curve nonpa-
rametrically.*! They calculated a probability weight for being a case to those subjects who are censored before
time point ¢, by proportioning the kernel-weighted Kaplan-Meier estimator for time t to follow-up time of the
related subject. Again this method require a bandwidth parameter but the authors showed that their proposed
methods was not sensitive to the bandwidth choice.*' Martinez-Camblor et al. estimated cumulative/dynamic
sensitivity/specificity by assigning a probability of belonging to the negative group to those subjects who are
censored before time point t.*> They proposed two methods to estimate this probability: the semi-parametric
one which uses proportional hazard Cox regression model; and the non-parametric one using directly the
Kaplan-Meier estimator. In the second one they noted that for the Kaplan-Meier method since X is a continu-
ous variable, the probability was calculated, by proportioning the usual Kaplan-Meier estimator for time t to
follow-up time of the related subject, for those subjects satisfying X < x,. It has been shown that the proposed
methods were monotone, ranges between 0 and 1, and also does not depend on any smoothing parameter.*
Martinez-Camblor and Pardo-Fernandez used a bivariate kernel density estimator which accounts for censored
observations in the sample and proposed smooth estimators of the cumulative/dynamic and incident/dynamic
time-dependent ROC curves.*

In the present study we aimed to propose a method for making inference about a new prognostic biomarker
that cannot be applied, to large samples, by using information obtained from other biomarkers routinely used
in the same situation, measured in different samples with bigger sizes. As an example, consider the case where
a newly investigated biomarker is evaluated for its performance in predicting prognosis in a group of patients
of a certain disease or condition. Due to certain limitations, this biomarker can only be applied to a particular
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portion of these patients. Thus, when measuring this biomarker from this small sample, another biomarker
used routinely can be measured from the remaining patients, and the information to be obtained can be used
to assess the performance of the new biomarker. Or a similar situation may be encountered when the biomar-
kers used to evaluate the prognosis of a disease may be change over time with advances in technology. In this
case, in the evaluation of the performance of the newly developed biomarker the data of the samples that were
obtained from the old biomarker/biomarkers used in a similar situation can be utilized. We evaluated the per-
formance of the proposed method by simulation studies.

I MATERIAL AND METHODS
METHODS

We will consider the case where there are k samples, there are n, independent and identically distributed sub-
jects in the i*" sample and the first sample is the sample of interest. Let T, denote the time from baseline to oc-
currence of disease or event of interest and C i denote the censoring time, Yl.j= min (sz’ C l.].) denote the observed
time and SU =1 (Tij <C U_) is the indicator function for j=1,2, ...,n and i=1,.. .,k. So our observed data for the
Jjt subject in the i*" independent random sample with a marker value X ; can be presented by Z y= {Yl.j, 5ij, X ij}.

Let W, be the conditional probability of experiencing the event of interest at time ¢ for the j™ subject in the 15¢

sample, given ZU,:42‘43

S,(t|X )

w =Pt <t|Z)=1-——""_

) ) j ST(YU|X1]') (5)
Here we used the 0/1 symmetric nearest-neighbor kernel estimator of Akritas to calculate conditional survival
functions with a span of 0.25(n"'?) as suggested by Heagerthy et al.*** Let S 1(t1X ) be the Kaplan-Meier esti-
mate of the first sample calculated using the subjects which are found in the neighborhood of X - We calculated
1000 equally spaced quartile points for the biomarkers in each groups. Let the quartile order corresponding to
the X value be in the s™ order. For the markers found in the other groups, let the marker value corresponding
to the same order be X l.].(s) (i#1; s=1,...,1000). Then the Kaplan-Meier estimate for the iih sample, calculated
using the subjects which are found in the neighborhood of the X l.j(s) can be presented by S;(tl xl.j(s)) where i#1.
We used MAMSE weights to combine the estimations of conditional survival functions of k (i=1,...,k) groups
to obtain the estimates of ST(t|X ;) and ST(YU|X /) in equation-5 as follows: 4

S,(t1X,) = S:(t1X )y, + S;(t1 X,y )y, +ot Si(E X )Y, 6)
§T(Y1j|XU) = §;(YU|XU).y1 + §’2‘(Y1j| Xy ) ¥y +ot §;(YU| X )Y, (7

where y, (i=1,...,k) are the MAMSE weights which are calculated from the sub-samples of each sample, con-
sisted of the survival data of the subjects which are found in the neighborhood of X - (i=1,....k).

The empirical estimates of sensitivity and specificity can be written based on the vT/U.. Since we assume
without loss of generality that a higher value of biomarker is associated with higher risk of disease, it is
expected to be negative correlation between the real survival time and the biomarker value. The correlation
between the observed survival time and biomarker, cor(X, Y), would change depending on the cor(X, C)
and cor(X, T). It is observed that the values of sensitivity and specificity are affected from the correlation
between the observed survival time and the biomarker. We shifted the values of X so as to make a corre-
ction on sensitivity and specificity of the first population associated with cor(X, Y) which can be given in
Equation-8 and 9,
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_ "Iy I(x, —cor(X,Y)xe)>c
Sens_= Z’:l L . 8)

w._.
=1 U

ijll(l_wlj)l(xu-l-c/o\r(x)y)*g)gc
2 (1-w,)

Spec,

€))

,where I(.) is the indicator function, cor(X,Y) is the Pearson product-moment correlation coefficient and we
take £=0.00025.

SIMULATION

We conducted simulation studies to see whether proposed pooling modification provides benefit over the
method which just uses the information from the sample of interest. For that propose we compared our pro-
posed modification with the original method proposed by Li et al using tdROC() function from the R package
tdROC with default arguments.*'* We choose this method because it guarantees monotonicity, it takes into
consideration the structure which the censoring is dependent on the biomarker and the authors showed in the
simulation studies that it is insensitive to bandwidth selection and gave better performance than the other
time-dependent ROC curve methods in most cases. Simulations were performed for two groups (k = 2). Con-
tinuous biomarkers, survival times and censoring times were generated from multivariate normal distribution
[X, log(T), log(C)] ~ N(u,,,, Z, ) for the both samples, where, a variety of sample sizes (n,—n,: 50-100, 100-
200, 250-500, 500-1000; where n, is the sample size for the our sample of interest and n, is the sample size for
the second sample which the different biomarker has been measured and we use to borrow information). Since
in practice we evaluate the diagnostic performance of a biomarker on a specific disease, we simulated log(T)

and log(C) from the same distribution in both groups {‘ulong = Mypyry = 0,0 o

logT1 = logT2: 1’ 'ulogCI = 'ulogCZZ I'tC’

0,,0c,= 1} We took pt . =—0.5 and p =1 which yields censoring rates approximately 64% and 24% respe-

logC1 = logC2
ctively. Since the biomarkers in Group 1 and in Group 2 are different, we simulated with different distribution

o

parameters for each biomarker. Three different situations were taken into account for the biomarker values,
where the difference between the measurements units of the two biomarkers were small, moderate and large.
For a small difference we simulated with the parameters {u,, =0, o, = 1; u,,= 4, o,,= 0.8}, for a moderate
difference we simulated with the parameters {u,, =0, o, =1; u,,=8, o,,= 1.6} and for a large difference we
simulated with the parameters {u,, =0, o, =1; u,,=16, 0,,= 3.2}, by taking the coefficient of variation 5%
for the second biomarker. We take p, = —0.6 to represent the correlation between the X and log(T); p,= 0.4,
0 or 0.4 to represent the correlation between the X and log(C), and p,p, to represent the correlation between
the log(T) and log(C) which gives conditional independence between log(T) and log(C) given X. ROC curve
estimations were computed for log(t) = 0.8. We performed 1000 repetitions for each simulation scenario and
the results were given as percent bias and mean square error (MSE) for the AUC, for the sensitivity when
the specificity is 0.9, 0.85 and 0.8 which are presented as ROC(0.1), ROC(0.15), ROC(0.2) respectively, and
for the specificity when the sensitivity is 0.9, 0.85 and 0.8 which hare presented as ROC-'(0.9), ROC-'(0.85),
ROC-'(0.8) respectively. All the ROC curves are evaluated over a grid of 1000 equally spaced points on the
specificity axis and all the AUC values are estimated by numerical integration. Simulations were performed
in R version 3.4.2].%

I RESULTS

In the tables we gave the results for the original method proposed by Li et al. in the single biomarker (SB)
column.* The original method was implemented on the biomarker value measured from the first group which
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is the biomarker of interest. The biomarker value measured from the first group (the biomarker of interest) was
generated with 1, =0, 0, =1 in all simulation scenarios. We gave the results of the combination method for three
situations. In the first situation the second biomarker values measured from the second group were generated with
u,,=4,0,,=0.8, where the difference between the measurements units of the two biomarkers were small. In the
second situation, the second biomarker values measured from the in the second group were generated with u,, =
8, 0,,=2.56, where the difference between the measurements units of the two biomarkers were moderate. In the
third situation, the second biomarker values measured from the second group were generated with u,, =16, g,,=
19.23, where the difference between the measurement units of the two biomarkers were large.

Tables 1-3 display the percent bias and MSE, for the estimate of AUC(t), sensitivity at three points and speci-
ficity at three points at log(t) = 0.8, for the data generated with a 64% censoring rate and p = —0.6 at different
sample sizes.

The simulation results for p,= 0 was given in Table 1. For p,= 0, percent bias and MSE values for all situations
decreased with the increase in the sample sizes. Smaller percent bias and MSE values were obtained for the mo-
dified method in most cases except the ROC'(0.9) and the ROC-'(0.8). For the AUC values, all the bias and MSE
values were smaller than that of the original method. The difference between the proposed modification and the
original method get smaller as the sample size get larger for AUC (t), ROC(0.1), ROC'(0.9) and ROC(0.2) esti-
mates and reached to minimum when the sample size was 500 for the sample of interest. Also it is observed that, the
difference was the same for biomarkers derived from the different parameter values in the second group (Table 1).

TABLE 1: Percent bias and MSE values for AUC, sensitivity, specificity for 11, =-0.5 and p,=0.
Percent Bias MSE
n,—n, u X2=4 ,uX2=8 u X2=1 6 SB u X2=4 u X2=8 ,uX2=1 6 SB
50-100 41869 11869  -1.1865  -11919 0008770  0.008770 0008770  0.008771
100-200 41166 14169 11164 11206 0004251 0004251 0004252  0.004252
AUCE)(0-780) 250-500 05617 05617 05610 05639 0001851 0001851 0001851  0.001852
500-1000 04741 04731 047338 -0.4742 0000871  0.000871  0.000871  0.000872
50-100 03655  -0.3657 03646 03735 0035531 0035530 0035531  0.035532
100-200 30615 -30612 30602 30754 0022335 0022338 0022338  0.022337
ROC(0.1) (0.420) 250-500 21473 21483 21448 21507 0010161 0010158 0010162 0010164
500-1000 04282 04286 04286  -0.4279  0.004608  0.004606  0.004606  0.004607
50-100 46069 46005 45869 45006 0039273 0039271 0039283  0.039267
100-200 05522 05736 05733 05410 0024451  0.024476 0024463  0.024471
ROCT(0.9)(0431) 5050 07588 07724 0794 07763 0011156 0011164 0011179 0011175
500-1000 05533 05559 05573 05490 0005608  0.005602  0.005606  0.005608
50-100 25110 25011 25101 25205 0038376 0038376 0038376  0.038377
100-200 29892 29912 29884 29906 0022769 0022768 0022772  0.022774
ROC(0-18)(0517) 550,509 47500 17512 17486 17530 0009611 0009609  0.009610  0.009611
500-1000 02693 02670 02687 02731 0004692 0004693 0004692  0.004694
50-100 00154 00135 00143 00052 0035813 0035812 0035810  0.035813
100-200 42012 12020 12007 12124 0022777 0022770 0022780  0.022783
ROCT(0.85)(0.525) 550 509 06281 06220 06252 06208 0009655 0009644 0009641  0.009644
500-1000 00711 00623  -0.0646  -0.0656  0.004974 0004974 0004972  0.004979
50-100 34945  -34942 34933 35067 0038215 0038215 0038214  0.038220
100-200 22800 -22001 22803 22097 0020242 0020242 0020244  0.020238
ROC(0:20)(0594) 550,509 43722 43717 13691 13734 0009037 0009032 0009034  0.009035
500-1000 02330 02294 02311 02325 0004440 0004442 0004442  0.004440
50-100 18475 18473 -1.8467  -18377 0032797 0032797 0032796  0.032791
100-200 19241 19169 19161 19336 0019880 0019873 0019874  0.019893
ROCT(0.8)(0.599) 5050 08786 08702 08747 08730 0008590 0008585  0.008581  0.008591
500-1000 01651 01628 04575  -0.1607  0.004496  0.004504  0.004502  0.004504
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The simulation results for p,= -0.4 was given in Table 2. For p,= 0.4, all the estimators were underestimated
in all situations with both methods. But smaller percent bias and MSE values were obtained for the modified
method in almost everywhere. The difference between the proposed modification and the original method get
smaller as the sample size gets larger for almost all cases except ROC™'(0.9) and ROC(0.2) estimates. This dif-
ference was the same for biomarkers derived from the different parameter values in the second group (Table 2).

The simulation results for p,= 0.4, which was the correlation between the X and log(C), was given in Table 3.
For p,=0.4 smaller percent bias and MSE values were obtained for the modified method in most cases regard-
less of the difference between the measurement units of the two biomarkers. The performance of both methods
increased with the increase in the sample sizes (Table 3).

Table 4-6 displays the percent bias and MSE, for the estimate of AUC (t) , sensitivity at three points and
specificity at three points at log(t) = 0.8, for the data generated with a 24% censoring rate and p, = —0.6 at
different sample sizes. Table 4, 5 and 6 display the results for p,=0, p,=—-0.4 and p,= 0.4 respectively. The

TABLE 2: Percent bias and MSE values for AUC, sensitivity, specificity for u,.= -0.5 and p,= -0.4.
Percent Bias MSE
n,-n, “x2=4 MX2=3 u X2=1 6 SB “x2=4 MX2=8 u X2=1 6 SB
50-100 -5.2634 -5.2634 -5.2727 0.011321 0.011321 0.011321 0.011330 0.011330
100-200 -3.8129 -3.8130 -3.8212 0.005619 0.005620 0.005619 0.005623 0.005623
AUC(D) (0.780) 250-500 -2.2648 -2.2647 -2.2711 0.00232 0.00232 0.002320 0.00232 0.00232
500-1000 -1.2116 -1.2124 -1.2169 0.001070 0.001070 0.001070 0.001070 0.001070
50-100 -15.7891 -15.7892 -15.8120 0.046709 0.046709 0.046710 0.046711 0.046711
100-200 -14.8793 -14.8796 -14.9139 0.032232 0.032233 0.032232 0.032250 0.032250
ROC(0.1) (0:420) 250-500 -10.2092 -10.2097 -10.2379 0.015320 0.015318 0.015319 0.015336 0.015336
500-1000 -5.9796 -5.9805 -6.0092 0.007913 0.007913 0.007913 0.007918 0.007918
50-100 -3.7925 -3.7908 -3.8323 0.034354 0.034354 0.034359 0.034385 0.034385
100-200 -3.3816 -3.3468 -3.3750 0.019020 0.019046 0.019041 0.019030 0.019030
ROC-(0.9) (0.431)
250-500 -2.0132 -2.0075 -2.0228 0.008811 0.008812 0.008814 0.008821 0.008821
500-1000 -0.6449 -0.6334 -0.6572 0.004549 0.004544 0.004550 0.004561 0.004561
50-100 -15.9171 -15.9173 -15.9333 0.052416 0.052417 0.052416 0.052439 0.052439
100-200 -13.2714 -13.2725 -13.2958 0.032129 0.032130 0.032129 0.032135 0.032135
ROC(0.15) (0.517)
250-500 -8.3900 -8.3905 -8.4087 0.015172 0.015171 0.015171 0.015184 0.015184
500-1000 -4.5582 -4.5591 -4.5720 0.007053 0.007054 0.007053 0.007055 0.007055
50-100 -6.8639 -6.8661 -6.9022 0.034618 0.034620 0.034631 0.034629 0.034629
100-200 -5.0769 -5.0786 -5.0963 0.018982 0.018988 0.018986 0.018996 0.018996
ROC-(0.85) (0.525)
250-500 -2.2599 -2.2615 -2.2805 0.008308 0.008305 0.008305 0.008311 0.008311
500-1000 -1.0157 -1.0308 -1.0339 0.004381 0.004380 0.004384 0.004385 0.004385
50-100 -14.3317 -14.3322 -14.3467 0.051516 0.051516 0.051516 0.051534 0.051534
100-200 -11.1606 -11.1537 -11.1677 0.029846 0.029847 0.029839 0.029849 0.029849
ROC(0.20) (0.594)
250-500 -6.7316 -6.7321 -6.7541 0.013147 0.013146 0.013145 0.013153 0.013153
500-1000 -3.1787 -3.1785 -3.1979 0.005819 0.005819 0.005818 0.005831 0.005831
50-100 -7.8688 -7.8338 -7.8936 0.033902 0.033903 0.033862 0.033925 0.033925
100-200 -5.6822 -5.7017 -5.7114 0.019252 0.019243 0.019289 0.019266 0.019266
ROC-(0.8) (0.599)
250-500 -3.1799 -3.1801 -3.1933 0.007868 0.007874 0.007883 0.007890 0.007890
500-1000 -1.3738 -1.3733 -1.3850 0.004246 0.004247 0.004247 0.004252 0.004252
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TABLE 3: Percent bias and MSE values for AUC, sensitivity, specificity for p.= -0.5 and p,=0.4.
Percent Bias MSE
n,—n, u X2=4 yX2=8 u X2=1 6 SB u X2=4 u X2=8 u X2=1 6 SB
50-100 14130 14133 14131 14137 0008322 0008322 0008321  0.008321
100-200 07211 07214 07210 07217 0004214 0004214 0004214  0.004214
AUC(D) (0.780) 250-500 01404 01414 01412 01409 0002036 0002036 0002036  0.002036
5001000 00054 0005 0005 00050 0001049 0001049  0.001049  0.001050
50-100 78005 78804 78004 78084 0034915 0034914 0034915  0.034916
100-200 35831 35875 35851 35042 0019984 0019984 0019987  0.019971
ROC(0.1) (0.420) 250-500 11670 11693 14715 14752 0008071 0008070 0008071  0.008073
500-1000 07187 07105 07081 07186 0004013  0.004011 0004013  0.004016
50-100 126441 126447 126080 125995 0045093  0.045002  0.044992  0.045012
100200 57889 57893 57800 57901 0029499 0029500  0.029500  0.029500
ROCT09) 0431 550500 18174 18213 18019 18194 0016537 0016534 0016529  0.016539
5001000 -0.3249 03227  -03342  -0.3289 0008788 0008786  0.008780  0.008791
50-100 49123 49135 49123 49149 0035612 0035612  0.035612  0.035615
100200 24535 24553 24537 24562 0018490  0.018494 0018495  0.0184%4
ROCOADOST7) 50500 07448 07495 07484 07484 0008109 0008108  0.008107 0008113
5001000 05076 05068 05070 05113 0004052  0.004050 0004051  0.004054
50-100 55045 55055 55047 55864 0040949 0040048 0040948  0.040973
100-200 19386 19373 19390 19436 0026012 0026012 0026013  0.026022
ROCT085)(0.528) 550500 04837 04888 04832 04770 0013028 0013029 0013028  0.013026
500-1000 04904 04907 04902 04958  0.006840  0.006836  0.006840  0.006842
50-100 34741 31760 34744 31715 0033539 0033540 0033538  0.033543
100-200 18882 18894 18882 18939 0018540 0018540 0018540  0.018538
ROC020)0594) 550500 06576 06606 06505 06588 0008004 0008007 0008010  0.008013
500-1000 04057 04071 04071 04066  0.003906  0.003906  0.003906  0.003910
50-100 25722 2573 25725 25731 0035207 0035204 0035206  0.035201
100-200 10110 10064 10059 10119 0021791 002179 0021797  0.021795
ROCT08)(0599) 550 500 01859 01832  -0.1835 01880 0010784 0010784 0010785 0010787
5001000 -0.3502 03428 03405  -0.3454 0005485 0005477 0005478  0.005483
TABLE 4: Percent bias and MSE values for AUC, sensitivity, specificity for .= 1 and p,=0.
Percent Bias MSE
n,—n, ,uX2=4 yX2=8 u X2=1 6 SB u X2=4 u X2=8 u X2=1 6 SB
50-100 09308 09300  -09314 09364 0004624 0004625  0.004624 0004628
100-200 02743 02742 02741 02787 0002125 0002125 0002125  0.002127
AL (D) 250-500 01699 04704  -0.1694 01752 0000895 0000895  0.000895  0.000897
500-1000 00535 00540 00543  -0.0605  0.000453  0.000453  0.000453  0.000454
50-100 13765  -13772 13783 -13804 002260 002260 002259  0.02260
100-200 05747 05730 05774 05794 001207 001208 001297 001299
ROC(0-1) (0.420) 250-500 02886 02883 02874 03089 000571 000571 000571  0.0057%
5001000 -0.1886  -0.1880  -0.1890 02110  0.002692  0.002692  0.002693  0.002695
50-100 03804 03745 03160 03521 002282 002291 00293 002274
100200 13318 13345  1.3303 12745 001184 001187 001186 001181
ROCT09)(0431) 50500 06788 06658 06677 06614 00053 000535 000534  0.00535
5001000 05373 05319 05374 05216 000289 000288 000289  0.00289
(continue)
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(continued)
TABLE 4: Percent bias and MSE values for AUC, sensitivity, specificity for .= 1 and p,=0.
Percent Bias MSE
n,—n, u X2=4 yX2=8 u X2=1 6 SB u X2=4 u X2=8 uX2=1 6 SB
50-100 24400 24418 24423 24530 002272 00272 002271 002272
100-200 08024 08016 08038 08113 001215 001215 001215 001216
ROC(015)(0517) 550509 02295 02207 02287 02475 000519 000520 000520  0.00519
5001000 00059 00057 00045 00262 000262 000263 000263  0.00262
50-100 04043 04347 03931 04677 0021827 0021870 0021781  0.021736
100-200 05208 05366 04853 04844 0010952 0010936 0010976  0.010966
ROCT(0.85) (0525) 550,599 00636 00666 00798 00486 0004935 0004931 0004936  0.004946
500-1000 03000 03009 03140 02949 0002754 0002753 0002757  0.002761
50-100 27875 27804 27908 28019 0021241 0021243 0021238  0.021248
100-200 06096 06071 06108 06141 0011093 0011091 0011092  0.011095
ROC(020)(0594) 550500 05156  -05150 05148 05278 0004657  0.004657 0004658  0.004660
500-1000 00731 00749  -0.0747  -0.0895 0002334 0002334 0002335  0.002331
50-100 14258 14308 14304 14510 0020341 002033 0020360  0.020343
100-200 02795 02725 02822 02946 0010027 0009980  0.009985  0.010002
ROCT(08)(0599)  p5509 01532 01555  -0.4490 01672 0004437 0004441 0004440  0.004445
5001000 00719 00681 00884 00527 0002372 0002369 0002374  0.002376
TABLE 5: Percent bias and MSE values for AUC, sensitivity, specificity for .= 1 and p,=-0.4.
Percent Bias MSE
n,-—n, uX2=4 uX2=8 u X2=1 6 SB u X2=4 u X2=8 u X2=1 6 SB
50-100 10320 10323 10328 10413 0004772 0004773 0004772  0.004774
100-200 03709 03706 03713 03791 0002251 0002251 0002250  0.002252
A1) (D) 250-500 01616 01609  -0.4612 01705 0000923 0000923  0.000923  0.000924
500-1000 00676 00679  -0.0678  -0.0773  0.000475  0.000475  0.000475  0.000476
50-100 16536 16534  -16551  -17100 0025091  0.025091 0025089  0.025106
100-200 07344 07338 07357 07803 0013389 0013388 0013385  0.013374
ROC(0-1) (0.420) 250-500 06283 -06280 06283 06829 0006121 0006121 0006121  0.006124
500-1000 04073 04081 04080  -0.4283  0.003050  0.003050  0.003050  0.003049
50-100 03400 03848 02895 03245 0021861 0021869 0021846  0.021808
100-200 12837 12398 12867 12301 0012149 0012141 0012127  0.012139
ROCT(0.9)(0431) 550500 05886 06013 05890 05682 0005316  0.005317 0005316  0.005319
5001000 04948 04952 04982 04631 0002839 0002843 0002839  0.002840
50-100 30243 30236 30251 30473 0024011 0024010 0024007  0.024013
100-200 44197 14188 14205 14467 0013076 0013074 0013072 0013079
ROCO15)(0517) 250500 02271 0224 02267 02583 0005656 0005655  0.005655  0.005658
500-1000 02749 02759 02756  -02998 0002827 0002828  0.002828  0.002827
50-100 07726 07733 07509 08218 0020653 0020669 0020686  0.020676
100-200 06084 05928 05914 05800 0011361 0011354 0011374  0.011344
ROC(085)(0525) 554,509 05516 05504 05516 05266 0004612  0.004607 0004610  0.004605
5001000 04628 04611 04617 04331 0002546 0002545 0002546  0.002543
50-100 31257 31262 34272 31358 0023012 0023012 0023010  0.023046
100-200 4441 11428 11455 11523 0011668 0011668 0011664  0.011650
ROC(0:20)(05%4) 550,509 04634 04628 04640 04855 0004768 0004766 0004768  0.004768
5001000 01365  -0.1368  -0.1368 01602 0002544  0.002544 0002545  0.002546
50-100 12005 12188 12275 12487 0018861 0018867 0018861  0.018854
100-200 03038 -03060  -0.3089 03246 0010057 0010069 0010055  0.010067
ROCT(08)(05%) 50559 02985 02954 02968 03128 0004103 0004101 0004100  0.004102
500-1000 00668 00669 00678 00519 0002332 0002331 0002332  0.002330
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TABLE 6: Percent bias and MSE values for AUC, sensitivity, specificity for i1 = 1 and p,=0.4.
Percent Bias MSE
n,—n, K= MX2=3 u X2=1 6 SB “x2=4 MX2=8 u X2=1 6 SB

50-100 -0.7169 -0.7165 -0.7161 -0.7217  0.004763  0.004762  0.004762  0.004765

100-200 -0.2976 -0.2973 -0.2985 -0.3010  0.002213  0.002214  0.002214  0.002215
AUC(¢) (0.780)

250-500 -0.1691 -0.1687 -0.1685 -0.1712  0.000892  0.000893  0.000893  0.000894

500-1000 -0.1008 -0.1013 -0.1021 -0.1053  0.000457  0.000457  0.000457  0.000458

50-100 0.2628 0.2632 0.2641 0.2559 0.021596  0.021594  0.021592  0.021596

100-200 -0.0097 -0.0119 -0.0126 -0.0208  0.012704  0.012704  0.012703  0.012702
ROC(0.1) (0.420)

250-500 -0.1494 -0.1521 -0.1502 -0.1649  0.005254  0.005255  0.005253  0.005256

500-1000 -0.0426 -0.0443 -0.0435 -0.0563  0.002494  0.002494  0.002494  0.002495

50-100 0.1690 0.0966 0.0987 0.0921 0.024265  0.024280  0.024268  0.024202

100-200 1.0216 0.9939 0.9777 1.0459 0.013293  0.013331  0.013323  0.013301
ROC(0.9) (0.431)

250-500 0.5499 0.5385 0.5341 0.5562 0.005874  0.005882  0.005873  0.005884

500-1000 0.0045 0.0131 0.0046 -0.0036 0.003015 0.003012 0.003015 0.003025

50-100 -0.9013 -0.9014 -0.9007 -0.9121 0022101 0.022099  0.022097  0.022092

100-200 -0.5873 -0.5862 -0.5870 -0.5892 0.011457 0.011455 0.011455 0.011452
ROC(0.15) (0.517)

250-500 -0.1657 -0.1665 -0.1627 -0.1702  0.004986  0.004986  0.004984  0.004988

500-1000 0.0111 0.0085 0.0105 -0.0026  0.002501  0.002500  0.002502  0.002503

50-100 -0.5910 -0.5876 -0.5389 -0.6340 0.022442 0.022448 0.022427 0.022371

100-200 -0.0006 -0.0069 0.0128 -0.0237 0011555  0.011556  0.011537  0.011546
ROC-(0.85) (0.525)

250-500 -0.0276 -0.0224 -0.0296 -0.0258  0.005027  0.005035  0.005025  0.005035

500-1000 0.0386 0.0335 0.0273 0.0166 0.002763  0.002765  0.002764  0.002772

50-100 -1.5945 -1.5939 -1.5921 -1.6028  0.020500  0.020501  0.020502  0.020510

100-200 -0.8599 -0.8581 -0.8609 -0.8594  0.010779  0.010779  0.010781  0.010780
ROC(0.20) (0.594)

250-500 -0.2663 -0.2662 -0.2652 02730 0.004465  0.004465  0.004465  0.004464

500-1000 -0.0852 -0.0867 -0.0859 -0.0939  0.002324  0.002323  0.002324  0.002327

50-100 -1.2631 -1.2100 -1.1911 -1.2629  0.020372  0.020333  0.020377  0.020320

100-200 -0.4368 -0.4296 -0.4403 -0.4260  0.010302  0.010307  0.010300  0.010297
ROC(0.8) (0.599)

250-500 -0.2863 -0.2694 -0.2890 -0.2888  0.004571  0.004567  0.004576  0.004583

500-1000 -0.2892 -0.2985 -0.2944 -0.2974  0.002405  0.002414  0.002409  0.002414

results for the p,=0 and the p,= 0.4 were similar and smaller percent bias and MSE values were obtained
for the modified method in most cases except the ROC~'(0.9) and the ROC~'(0.85). Percent bias and MSE of
the AUC(t) values were smaller for the combination method in all situations.

I DISCUSSION

In this article, we introduce an approach which provides to make inference related to the diagnostic performan-
ce of a biomarker from population of interest, by pooling data from other sources which different biomarkers
were measured, when the event of interest is right-censored. The simulation study demonstrates that the pro-
posed approach provided an improvement in the performance of estimating the ROC curve.

The novel biomarkers may not be used in all medical centers since they are more expensive. Therefore fewer
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patients can benefit from those markers. We consider the situations where there are additional populations
from different medical centers or data from other studies for ROC curve estimation in the presence of ri-
ght-censored data. We used MAMSE weights proposed by Plante et al. to combine the nearest-neighbor kernel
weighted Kaplan-Meier functions calculated from the sub-samples we created based on the neighborhood of
the biomarker values.”® When the performance of this method has been compared with the classical method
proposed by Li et al. via simulation studies, it is seen that the combination yielded smaller MSE and bias va-
lues in most cases.*! The performance of the modified method was not affected by the difference between the
measurements units of the biomarkers. Percent bias and MSE values did not changed for small, moderate and
large difference between the measurements units of the biomarkers. This is an expected results since we used
the quartiles to provide a matching between the two biomarker values by taking into account the order. We
used biomarker values to obtain a subsample for calculating the conditional survival functions in both groups.

As expected, it is seen in most cases that performance of both methods increased as the sample size increased.
The difference between the proposed modification and the original method gets smaller as the sample size gets
larger and reached to minimum when the sample size was 500. The results show that it is not plausible to pool
data when the sample size of the sample of interest is as large as 500. However despite that, bias and MSE
values of the proposed method remained smaller than that of the original method’s in most cases.

We follow the methodology proposed by Li et al. since the authors showed that the time-dependent ROC
analysis method proposed by them demonstrated notable better performance compared the other methods in
both dependent and independent censoring settings.*' But it is possible that the other time-dependent ROC
approaches can be used to estimate sensitivity and specificity values from the populations.

I CONCLUSION

Specifically, we have proposed a pooling method for constructing time-dependent ROC curves related to target samp-
le, borrowing information from additional sample where a different biomarker has been measured from more indivi-
duals, while our biomarker of interest is measured on a sample consisting of fewer units. The modified method gave
smaller MSE and bias values, except when the sample size was 500 where there was no difference between the two
methods. Percent bias and MSE values for the proposed combination method were not affected by the change in me-
asurements units of the biomarkers. Although the simulation results which we are given in this study are promising,
in the future studies theoretical properties of the presented methodology should be studied. Also the studies on the
performance of the proposed modification should be investigated when the number of biomarkers is greater than two.
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