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ABSTRACT Objective: This study investigates the impact of class 

imbalance on the performance of Cox-based survival models, an impor-

tant issue in clinical research where event rates (e.g., death or disease 

recurrence) are typically low. Unlike previous studies that apply resam-
pling techniques to correct imbalance, we preserved the original data 

structure to evaluate model robustness under realistic conditions. Mate-

rial and Methods: Six modeling approaches were compared: Cox pro-

portional hazards model, the weighted Cox model, 3 regularized Cox 

models [least absolute shrinkage and selection operator (LASSO-Cox), 

Ridge-Cox, Elastic Net-Cox], and a Bayesian Cox model. Simulations 
were conducted across varying sample sizes (n= 50, 100, 250 ve 

500) and imbalance ratios (r= 0.1, 0.2, 0.3, 0.4 and 0.5) to evaluate 

each model’s statistical power and estimation accuracy. Results: 

The Bayesian Cox model consistently achieved the highest statistical 

power and estimation precision under conditions of severe imbalance 

and small sample sizes. However, its advantage diminished as sample 

size increased, with its power converging to that of the Cox model. 

Among regularized Cox models, Ridge-Cox regression demonstrated 

the most stable estimates, producing narrower confidence intervals than 

LASSO-Cox and Elastic Net-Cox. In contrast, the weighted Cox model 
consistently underperformed, showing lower power and unstable esti-

mates across all scenarios. Conclusion: These findings emphasize the 

importance of selecting modeling strategies. In scenarios with few ob-

served events, it is generally more effective to apply model-based ad-

justments rather than altering the original data distribution, which may 

distort event prevalence and compromise generalizability. The perform-

ance of Cox-based models improves as sample size increases; however, 

in small-sample, high-imbalance settings, the use of inherently robust 
models becomes more critical. 
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ÖZET Amaç: Bu çalışma, ilgilenilen bir olayın (örneğin ölüm veya hasta-

lığın nüks etmesi) görülme oranının genellikle düşük olduğu klinik araştır-

malarda yaygın bir sorun olan grup dengesizliğinin Cox tabanlı sağkalım 

modellerinin performansı üzerindeki etkisini incelemektedir. Önceki çalış-

maların aksine bu çalışmada, dengesizliği gidermek için yeniden örnekleme 

(resampling) yöntemleri uygulanmamış, bunun yerine orijinal veri yapısı 

korunarak modellerin gerçekçi koşullarda ne kadar dayanıklı olduğu değer-
lendirilmiştir. Gereç ve Yöntemler: Çalışmada, 6 Cox-tabanlı modelin 

performansı karşılaştırılmıştır: Cox orantılı hazard modeli, ağırlıklı 

(weighted) Cox model, Cezalandırılmış Cox regresyon modelleri [en az 

mutlak küçülme ve seçim operatörü (least absolute shrinkage and selection 

operator “LASSO-Cox”), Ridge-Cox ve Elastic Net-Cox] ve Bayesçi Cox 

modeli. Farklı örneklem büyüklüğü (n=50, 100, 250, 500) ve dengesiz-

lik oranı (r=0.1, 0.2, 0.3, 0.4, 0.5) dikkate alınarak bir benzetim çalış-
ması yapılmıştır. Elde edilen sonuçlar ile her modelin istatistiksel gücü ve 
tahmin doğruluğu değerlendirilmiştir. Bulgular: Bayesçi Cox modeli, özel-

likle ciddi dengesizlik ve küçük örneklem durumlarında, istatistiksel güç ve 

tahmin doğruluğu açısından en iyi performansı göstermiştir. Ancak örnek-
lem büyüklüğü arttıkça, klasik Cox modeli ile benzer performanslar gös-

termeye başlamıştır. Cezalandırılmış Cox modeller arasında Ridge regres-

yonu en kararlı kestirimleri sağlamış ve LASSO ile Elastic Net-Cox ile 

karşılaştırıldığında daha dar güven aralıkları elde edilmiştir. Buna karşılık, 

ağırlıklı Cox modeli tüm senaryolarda en zayıf performansı gösteren yön-

tem olmuştur. Sonuç: Bu çalışma, modelleme stratejilerinin seçilmesinin 

önemini vurgulamaktadır. İlgili olayın daha az gözleme sahip olduğu du-

rumda, orijinal veri dağılımını değiştirmek, olayın prevelansının değişmesi-
ne ve genellenebilirliğin azalmasına neden olacağı için bu durumda model 

tabanlı yöntemlerin kullanılması önerilir. Örneklem büyüklüğü arttıkça Cox 

tabanlı modellerin gücü artar, ancak, küçük gözleme ve yüksek dengesizlik 

oranına sahip verilerde sağlam modeller kullanılmalıdır. 
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Survival analysis encompasses a set of statistical methods used to examine the time until the occur-

rence of a specific event, such as death, disease progression, or recovery. In medical research, where out-

comes often unfold over time and are not always fully observed within the study period, this approach is 

particularly valuable. Unlike standard regression models that assume complete outcome information, sur-

vival analysis is uniquely equipped to handle censored data-instances where the event has not yet occurred 

or remains unobserved.
1
 This allows for more accurate modeling of real-world clinical scenarios and sup-

ports more reliable estimation of risks, treatment effects, and prognostic factors across varying follow-up 

durations. 

The Cox proportional hazards (PH) regression model is a widely used statistical modeling approach in 

clinical research. It is particularly valued for its ability to identify prognostic biomarkers or estimate mortal-

ity risk in patients with life-threatening diseases, such as cancer.
2
 Today, the Cox PH model remains the 

standard method for mortality risk estimation in most real-world applications.
3
 Its semi-parametric nature, 

interpretability, and applicability to censored data make it a standard tool in survival modeling. Over time, 

however, with the increasing complexity of biomedical data and the growing demand for more accurate pre-

dictions, extended versions of the Cox model-such as regularized Cox models [least absolute shrinkage and 

selection operator (LASSO-Cox), Ridge-Cox, Elastic Net-Cox] and Bayesian formulations-have gained 

prominence.
4-8

 

One major challenge in clinical survival analysis is class imbalance, where the number of censored 

cases substantially exceed the number of observed events. This often reflects high overall survival rates in 

many healthcare settings, resulting in relatively few patients experiencing the event of interest.
9
 For instance, 

in acute coronary syndrome, one study reported that fewer than 2% of patients die within 90-days, resulting 

in a predominance of censored observations. Similarly, in a large-scale cohort of 7,606 coronavirus disease-

2019 patients, only 1% experienced mortality.
9,10

 In the presence of such class imbalance, the model is pri-

marily influenced by the majority class, while the minority class (i.e., the event group) may be underrepre-

sented. This may lead to unstable or imprecise estimates, inflated Type 1 and 2 error rates, and reduced sta-

tistical power. 

There is an extensive body of research in the field of machine learning (ML) focused on addressing 

class imbalance. Building on these developments, researchers have begun adapting ML-based techniques to 

the analysis of imbalanced survival data to improve the predictive performance of trained models and to 

more effectively handle rare event scenarios.
3,11,12

 To mitigate this problem, ML literature has proposed data-

level interventions such as undersampling the majority class, oversampling the minority class, or applying 

the Synthetic Minority Over-sampling Technique (SMOTE).
13-15

 These methods aim to balance the ratio of 

events to censored cases by incorporating aforementioned data processing procedures, thereby improving 

model performance. However, altering the natural data distribution may result in overfitting and introduces a 

fundamental limitation: the resulting survival probabilities may no longer represent the original population, 

thereby threatening the external validity of the findings.
16

 Moreover, performance gains achieved in artifi-

cially balanced datasets may not generalize well to real-world, imbalanced scenarios, and may increase the 

risk of overfitting. 

These approaches offer greater flexibility than traditional survival models by improving predictive per-

formance and more effectively handling rare event scenarios.
 

Despite these concerns, most research to date has focused on manipulating the data rather than enhanc-

ing the model’s ability to handle class imbalanced.
10,16-18

 This raises a critical question: Is it possible to 

achieve accurate and reliable survival estimates under class imbalance by modifying model settings-such as 

weighting or regularization-without altering the original data distributions? If so, which strategies are most 

effective in such scenarios? 

This study aims to fill this gap by systematically evaluating 6 Cox-based survival models across varying 

sample sizes and class imbalance ratios. These include the Cox PH model, a weighted Cox PH model using 
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inverse probability of censoring weights (IPCW), three regularized Cox models (LASSO, Ridge, Elastic 

Net), and a Bayesian Cox regression model. Importantly, no resampling methods were applied; all analyses 

were conducted on the original, imbalanced datasets. 

This study uses a simulation-based design in which both the total sample size and the degree of class 

imbalance are systematically varied. Sample sizes ranged from small (n=50) to highly large (n=500). Imbal-

ance ratio was defined based on the proportion of individuals who experienced the event of interest, with the 

event group treated as the minority class. The imbalance ratio varied from a balanced scenario (r=0.5) to an 

extreme imbalanced 1 (r=0.1). 

The primary goal of this study is to compare the statistical power of Cox-based models under different 

scenarios in estimating regression coefficients. To this end, 2 covariates-a binary variable (X1) and a con-

tinuous variable (X2)-were generated as explanatory variables in the models. Each model was assessed based 

on its statistical power and the width of the 95% confidence intervals for the regression coefficients, calcu-

lated as the distance between the upper and lower bounds.  

    MATERIAL AND METHODS  

STUDY POPULATION  

This study is a methodological simulation study and does not involve the inclusion of any human partici-

pants or patient data. Therefore, ethical approval was not required. Since primary objective of the study was 

to compare the performance of various adaptations of Cox models including weighted and regularized ap-

proaches across different sample sizes and effect sizes, no sample size or post-power calculation was per-

formed. 

STATISTICAL METHODS AND STUDY DESIGN 

In survival analysis, the primary outcome is the time until the occurrence of a specified event. Let    denote 

the survival time, and    represent the censoring time for the i-th individual. The observed survival time is 

defined as   
          and the event indicator is given by            , where      indicates that the 

event occurred, and      indicates censoring. 

Assuming continuous event times, the survival function at time t is defined as:  

                    
 

 
                                                                             (1) 

The hazard function, which describes the instantaneous event rate at time t given survival up to that 

point, is expressed as:
 

           
                 

  
 .                                                                                      (2) 

This study compared 6 different adaptations of the Cox model to assess their performance under condi-

tions of class imbalance.  

Cox PH REGRESSION MODEL 

The Cox PH model is a semi-parametric method that estimates the effect of covariates on survival time.
1
 

Given the typically right-skewed distribution of survival times, the model uses a log transformation of the 

hazard function:  

                      
 
                                                                                           (3) 
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Here,       is the unspecified baseline hazard function, and    represents the regression coefficient for 

covariate   . Coefficients are estimated via partial likelihood, considering only those individuals who ex-

perience the event. Let F denote the set of failure times, then the partial likelihood is: 

      
      

     

                 
 
                                                                                             (4)  

WEIGHTED Cox PH MODEL 

To account for class imbalance, the IPCW method was used. IPCW adjusts for the potential bias by weight-

ing observations based on the estimated probability of being uncensored up to the observed time.
19,20

 These 

probabilities are estimated via a Cox PH model, and weights are defined as              . The IPCW-

adjusted partial likelihood becomes: 

      
        

     

                   
 
                                                                                           (5) 

REGULARIZED Cox REGRESSION MODELS 

To enhance predictive accuracy and perform variable selection, regularization techniques were incorporated. 

 The LASSO introduces a regularization technique that applies an L1 penalty to the regression coef-

ficient within the framework of penalized partial likelihood. This approach shrinks some coefficients toward 

zero by minimizing the residual sum of squares under an L1-norm constraint, as shown in Equation (6). 

            , subject to                                                                                         (6) 

Here, s is a positive constant term chosen by the researcher. Equation (6) is integrated into the partial 

likelihood function, used in the Cox PH model, as a penalty term with tuning λ, 

                          λ   
 
  

                                                                         (7) 

● Ridge uses an L2 penalty, adding the squared sum of coefficients as a penalty term:
18,21

  

                 λ  
 
  

                                                                                             (8) 

 

● Elastic Net combines L1 and L2 penalties, enabling both variable selection and shrinkage:
18,21

 

                        λ    
 
  

     λ   
 
  

                                                           (9) 

BAYESIAN Cox MODEL 

Unlike the Cox PH model, the Bayesian approach incorporates prior distributions for the model parameters. 

The posterior distribution is obtained by combining the likelihood with the prior using Bayes’ theorem
7,8 

P       
          

              
 

 

                                                                                                    (10) 

Here, D represents the observed data,   is the vector of unknown parameters, and L(θ|D) is the likeli-

hood. Because posterior distributions often lack closed-form solutions, Markov Chain Monte Carlo methods-

such as Gibbs sampling or Metropolis-Hastings sampling-are used to approximate them.
7 
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SIMULATION SCENARIOS 

To evaluate model performance under varying levels of class imbalance, a simulation study was conducted 

using the 6 survival models: Cox PH model, weighted Cox PH, regularized Cox models (LASSO-Cox, 

Ridge-Cox, Elastic Net-Cox), and the Bayesian Cox model. 

A total of 1,000 datasets were generated for each simulation scenario. Survival times were simulated 

from an exponential distribution with a median of 24 months and a maximum follow-up of 120 months. The 

regression model included 2 covariates:  

● X₁: a binary variable with equal probabilities (p=0.5), 

● X₂: a continuous variable from a normal distribution with a mean of 40 and a standard deviation of 5. 

Hazard ratios were set as exp(β₁) = 2 for X1 and exp(β₂) = 1.1 for X2. The null and alternative hypothe-

ses were defined as H₀:  ᵢ = 0 vs HA:  ᵢ ≠ 0 for i = 1, 2. Statistical power was calculated as the proportion of 

simulations in which the model correctly rejected the null hypothesis in favor of the alternative hypothesis. 

Additionally, 95% confidence intervals and their sizes were also assessed, with narrower intervals indicating 

more precise estimates. Simulation scenarios were constructed by varying the total number of observations 

and the imbalance ratio between the 2 groups as follows: 

● Sample sizes: n={50, 100, 250, 500} 

● Imbalance ratios: r={1:1, 2:3, 3:7, 1:4, 1:9} which corresponds to the event proportions {0.5, 0.4, 

0.3, 0.2 and 0.1}, respectively. 

The imbalance ratios were selected to allow to evaluate the power across a spectrum ranging from bal-

anced (r=0.5) to highly imbalanced scenarios (r=0.1). It was defined based on the proportion of individuals 

who experienced the event of interest, with the event group treated as the minority class. The scenarios 

ranged from a balanced distribution (r=0.5) to extreme imbalanced settings (r=0.1). For example, in the ex-

treme imbalanced case, only 10% of the observations experienced the event, while 90% were censored. 

All simulation were conducted in R version 4.4.2. The simsurv package (v1.0.0) was used for data gen-

eration.
22

 Cox PH and weighted Cox PH models were implemented via the survival package (v3.8-3), with 

IPCW calculated using pec package (v 2023.04.12) package.
23,24

 Regularized Cox models (LASSO-Cox, 

Ridge-Cox, Elastic Net-Cox) were estimated using glmnet (v 4.1-8), setting α=0 (Ridge), α=1 (LASSO), and 

α=0.5 (Elastic Net).
25,26

 Confidence intervals were calculated using 1,000 bootstrap samples. The Bayesian 

Cox model was estimated via the Bayes Cox PH function in the Bolstad2 package (v1.0-29), employing the 

Metropolis-Hastings algorithm.
27 

    RESULTS 

Figure 1 presents the power values for each model for categorical variable (X₁). The x-axis denotes sample 

sizes, while the y-axis displays power values. Separate panels correspond to each imbalance ratio, with the 

statistical models differentiated by color. 

The results show that all models, except the weighted Cox PH model, demonstrated comparable per-

formance. The weighted Cox PH model consistently failed to achieve power values above 80% across all 

scenarios. Among the remaining methods, the Bayesian model yielded comparatively higher power from 

others, particularly under high imbalance. In the most imbalanced scenario (r=0.1), only the Bayesian and 

Cox PH models reached power levels above 80% when the sample size was n=500. 

Figure 2 shows the power values for each model with respect to the continuous variable (X₂). Again, the 

weighted Cox PH model demonstrated substantially lower performance compared to the other models. It 

achieved power above 80% only under balanced conditions (r=0.4 and r=0.5) and with a sample size of 

n=500. The Bayesian model showed higher statistical power, particularly in scenarios with small sample 

sizes. Under balanced conditions (r=0.5), the Cox PH model performed similarly to the Bayesian model. 
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FIGURE 1: Power of 6 Cox models in each sample size and imbalance ratio for categorical independent variable X1 
PH: Proportional hazards 

 
 

 
 

FIGURE 2: Power of six Cox models in each sample size and imbalance ratio for continuous independent variable X2 
PH: Proportional hazards 
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FIGURE 3: Median values of lower and upper confidence limits for X1 variable across 1,000 simulated datasets in each model. (a) Results sample size  

n = 50; (b) Results for sample sizes n=100, 250, and 500 
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FIGURE 4: Median values of the lower and upper confidence limits for X2 variable across 1,000 simulated datasets in each model 

 

 

To assess the precision of the regression coefficient estimates, Figure 3(a-b) display the median values 

of the lower and upper confidence interval bounds for X₁. Due to the large confidence interval observed 

when n=50, these results are shown separately in Figure 3(a) to preserve the scale of other results. In Figure 

3(b), sample sizes are presented in rows, and imbalance ratio in columns. The red vertical line represents the 

true hazard ratio for X₁ scenario (exp( ₁)=2). The lines for each model indicate the median lower and upper 

confidence bounds for X₁. 

In Figure 3(a), the LASSO and Elastic Net models produced extremely wide upper confidence bounds 

in scenarios with r=0.1 and r=0.2, making them unvisualisable. These 2 models also yielded wide intervals 

when n=100. In contrast, the Ridge regression model provided narrower intervals under small sample sizes 

compared to the LASSO and Elastic Net models. The weighted Cox PH model consistently produced nar-

rower confidence intervals across almost all scenarios. The Bayesian and Cox PH had similar confidence in-

terval bounds in nearly all scenarios. 

Figure 4 presents the median confidence interval bounds for the regression coefficients of the continu-

ous variable X₂. As with X₁, the LASSO and Elastic Net models produced larger confidence intervals at the 

smallest sample size (n=50). The overall patterns observed for X₁ also held for X₂, reinforcing the consis-

tency of the model performances across variable types. 

    DISCUSSION 

In clinical research, where time-to-event outcomes such as death or disease progression are of critical inter-

est, survival models-particularly the Cox PH model-remain indispensable tools. However, many real-world 

survival datasets suffer from substantial class imbalance, often due to low event rates. This imbalance can 

distort the estimation process, reduce statistical power, and limit the generalizability of model results. The 

primary goal of this study was to evaluate the performance of several Cox-based modeling approaches under 

varying degrees of class imbalance, without applying data-level modifications to alter the original distribu-
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tion. The results highlight key differences in model performance, particularly in scenarios involving small 

sample sizes and highly imbalance. 

In this study, we evaluated the performance of 6 Cox-based survival models-classical, weighted 

(IPCW), 3 regularized variants (LASSO, Ridge, Elastic Net), and Bayesian-under various degrees of class 

imbalance and sample sizes, without applying any resampling or data balancing methods. By preserving the 

original data structure, our simulation framework allowed a more realistic assessment of model performance 

in scenarios that closely mirror clinical datasets. 

To address imbalance in time-to-event data, we evaluated the performance of the weighted Cox model, 

which assigns greater weight to uncensored observations rather than treating all participants equally. Our 

simulation showed that weighted Cox model consistently yielded lower statistical power and narrower con-

fidence intervals compared to other Cox-based regression models, particularly under conditions of extreme 

imbalance (r=0.1) and small sample size (n=50). The reduced statistical power may be attributable to the nar-

rower, and potentially biased, confidence intervals, which fail to capture the true parameter values.  

Among the regularized Cox regression models, LASSO-Cox and Elastic Net-Cox generally produced 

larger confidence intervals, particularly in small samples with severe imbalance. In contrast, Ridge-Cox 

regression yielded narrower confidence intervals and more stable coefficient estimates compared to other 

regularized Cox models. In the literature, these models are often evaluated after data-level interventions 

such as undersampling, oversampling, or SMOTE to balanced the groups. Mulugeta et al., compared the 

statistical (Cox PH and regularized Cox models) and some ML methods following SMOTE-based balanc-

ing in predicting survival after kidney transplantation. While stochastic gradient boosting, one of the ML 

method, achieved the best overall performance, Ridge model performed better than other regularized Cox 

models. Although tree-based ML models showed higher predictive performance in that study, the authors 

suggested that Ridge regression may still be preferable in some contexts due to its ability to provide more 

interpretable estimates of predictor effects, particularly in clinical research.
18 

Similarly, Andishgar et al., 

found that Ridge regression outperformed other regularized Cox models after oversampling and produced 

results comparable to those of the Cox PH model.
17

 Our findings, based on the simulated datasets without 

any data-level modification (i.e., using the original imbalance structure), are consistent with these results. 

In contrast, Datta et al., compared the Elastic Net and Cox PH models after applying both under- and 

oversampling. Although, the Elastic Net model demonstrated better performance, the authors emphasized 

that resampling alters the prevalence of the event and may limit the generalizability of survival esti-

mates.
16

 In our study, where no resampling was performed, the Cox PH model yielded more favorable re-

sults. 

In our setting, with 2 predictors having true non-zero effects, Ridge’s superior power is consistent with 

both theory and prior evidence for penalized Cox models. The L2 penalty shrinks coefficients but does not 

set them to zero, thereby preserving true signals and reducing estimator variance. In Cox regression, such 

penalization is known to stabilize coefficient estimates and improve finite-sample behavior, particularly 

when incidental collinearity arises.
28,29

 By contrast, the LASSO’s L1 penalty performs hard selection, driv-

ing smaller effects to zero and, under correlation, often selecting only one variable from a group a behavior 

that can depress coverage and power when effects are modest but non-null. Elastic Net partially mitigates 

this via its L2 component, yet still inherits L1-induced sparsity.
5,25,30,31 

These mechanisms align with how 

glmnet fits L1-, L2-, and Elastic Net-penalized Cox models via coordinate descent, helping explain why 

Ridge produced the most stable estimates and the highest power across our scenarios. 

The Bayesian Cox model outperformed all other approaches in terms of statistical power, particularly 

under extreme imbalance (e.g., r=0.1) and small sample sizes (n=50). The advantage of Bayesian methods 

lies in their ability to incorporate prior distributions, which can stabilize estimates when data are sparse.
7,8

 

However, as the sample size increased, the performance of the Bayesian and Cox PH models converged-

suggesting that the added complexity of the Bayesian approach may offer limited benefit in large sample set-
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tings. To our knowledge, there are no prior studies that have applied Bayesian Cox model specifically to 

class-imbalanced survival data.  

A notable strength of this study is its decision to preserve the original imbalance structure throughout 

the analysis. Unlike previous studies that utilized oversampling, undersampling, or synthetic techniques like 

SMOTE, we evaluated model performance without altering data. While resampling methods can improve 

metrics like area under the curve or the concordance index, these improvements often come at the cost of 

distorting the event prevalence and reducing the interpretability of survival probabilities.
10,16-18

 As noted by 

Datta et al., resampling may also lead to overfitting, particularly when models are applied to independent test 

sets that reflect real-world imbalance.
16

 This reinforces the rationale for maintaining the original data distri-

bution and instead focusing on model-based strategies that are robust to imbalance. 

There were several limitations of this study: (i) Exclusive reliance on simulated datasets without valida-

tion on clinical or other real‐world cohorts may restrict the generalizability of findings; (ii) The simulation 

framework’s focus on a single binary and one continuous covariate under an exponential survival distribu-

tion limits applicability to high‐dimensional settings or alternative hazard structures; (iii) These points un-

derscore that simulation-only results may not directly translate to practical datasets and that the narrow co-

variate and distributional assumptions constrain the study’s scope. Including them will enable readers to as-

sess the work’s validity and applicability better. 

In summary, our findings suggest that: 

• Although conceptually appealing, the weighted Cox model underperformed across most scenarios in 

terms of both statistical power and reliability. 

• Among the regularized models, Ridge regression consistently yielded more stable coefficient esti-

mates and narrower confidence intervals than LASSO and Elastic Net, particularly in small, imbal-

anced. 

• Bayesian Cox model achieved the highest statistical power and estimation accuracy in settings with 

severe imbalance and small sample sizes. However, its advantage diminished as sample size in-

creased, with performance converging toward that of the classical Cox PH model. 

    CONCLUSION 

Class imbalance is a common yet often underappreciated issue in survival analysis, particularly in clinical 

research where events such as death or disease recurrences are relatively rare. While traditional data-level 

strategies such as oversampling or synthetic data generation (e.g., SMOTE) are frequently used to address 

imbalance, these approaches can distort the original data distribution and compromise the real-world appli-

cability of model results. 

This study highlights the importance of selecting modeling strategies that are inherently robust to im-

balance, rather than relying on external data manipulation. For studies where modifying the dataset is not 

feasible-especially those aiming to produce generalizable survival probability estimates-model-based ap-

proaches such as Bayesian and Ridge regression may provide more reliable alternatives. Bayesian Cox, Cox 

PH and Ridge-Cox regression models consistently demonstrated higher statistical power with extreme im-

balance, particularly when sample size reached at least 500. In contrast, under more balanced conditions 

(r=0.4 and r=0.5), all Cox-based models-except the weighted Cox model-achieved comparable power levels 

with sufficient sample size (n≥200).  

Future research should further investigate the sensitivity of Bayesian approaches to prior selection, par-

ticularly in sparse data contexts, and explore hybrid or ensemble methods that balance interpretability with 

robustness to imbalance. Overall, our results emphasize the need for methodological rigor and the simula-

tion-based evaluations when modeling survival data with pronounced censoring and event rarity. 
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