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n the last decade, researchers are commonly interested in studying gene 

expression level changes through time and in evaluating trend 

differences between the various experimental groups and conditions.1-4 

The main purpose of time-course microarray experiments is to describe  

the changes in expression levels of genes over time and compare the pattern 

of that change across genes, tissue types,  or  experimental  conditions.1,4-12 
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ABSTRACT Objective: The objective of this study is to compare performances of maSigPro, BATS, 
Repeated Measures ANOVA (RM-ANOVA), and Classical RM-ANOVA, which are commonly 
used methods, for testing interaction effect in time-course microarray experiments. Material and 
Methods: We generated random time-course gene expression profiles from multivariate normal 
distribution based on two different covariance structures, three different time-series lengths, and 
two different profile types. Results: The results suggested that the BATS and the maSigPro are 
generally more superior methods to the ANOVA-based methods in terms of sensitivity and speci-
ficity measures. In general, the BATS was more appropriate for medium and especially for long 
term data sets while maSigPro was appropriate almost for all experimental conditions. On the 
other hand, the ANOVA-based methods had a good performance especially for the short-term 
time-course profiles. Conclusion: Thus, we concluded that length of time-course measurement 
and profile types are two major factors affecting the performances of these methods. 
 
Keywords: Gene expression profiles; microarray, time-course data; sensivity specifity;  
                    total accurary 
 
 

ÖZET Amaç: Bu çalışmanın amacı, zaman-üzeri mikro-array denemelerinde sıklıkla kullanılan, 
maSigPro, BATS, tekrarlanan ölçümler Varyans Analizi, ve Klasik Varyans Analizi yöntemlerinin 
performanslarının karşılaştırılmasıdır. Gereç ve Yöntemler: Bunun için, çok-değişkenli normal 
dağılımdan, iki değişik covaryans yapısı, üç zaman-serisi uzunluğu ve iki değişik profil tipini te-
mel alarak, rasgele zaman-serisi gen eksprasyonu profilleri ürettik. Bulgular: Sonuçlar, BATS ve 
maSigPro yöntemlerinin, duyarlılık ve özgüllük açısından ANOVA-temelli yöntemlerden daha 
güçlü olduğunu gösterdi. Genel olarak, BATS yönteminin, orta ve uzun ölçekli zaman-serileri 
için, maSigPro'nun da, tüm deney şartları için daha uygun oldugu gözlendi. Öbür taraftan, 
ANOVA temelli yöntemlerin, kısa zaman-serili profiller için iyi performans gösterdiği gözlendi. 
Sonuc: Böylece, zaman-serisi uzunluğunun ve profil tipinin, karşılaştırılan bu yöntemlerin per-
formansında etkili olan iki faktör olduğu sonucuna ulaştık. 
 
Anahtar Kelimeler: Gen ekspresyon profili; mikro-dizin; saman serisi verisi; duyarlılık ve özgüllük;  
                                 toplam doğruluk 
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These analyses potentially lead to discoveries of genes that may be associated with the likelihood of certain 

phenotypes and diseases. With the microarray technology, it is possible to measure expression level of 

thousands of genes simultaneously in time-course microarray experiments, which creates various chal-

lenges for statistical analysis of the resulting data. The resulted ‘big’ data, number of time points as well as 

the number of replicates, multiplicity of experimental conditions, and dynamic nature of the experiment 

are some of these challenges.1,2,6,13-16 Therefore, choosing appropriate statistical methods becomes very crit-

ical for statistical analysis stage of such gene expression data sets. Several methods, and their corresponding 

computational tools, have been proposed in the literature to identify differently expressed gene profiles in 

time-course microarray experiments. Some of these methods are regression-based (e.g. microarray Signifi-

cant Profiles (maSigPro), Extraction of Differential Gene Expression (EDGE), maSigProFun and PCA-

maSigProFun, some of them are Analysis of Variance (ANOVA)-based (e.g. two-way mixed effects ANO-

VA, a functional mixed-effect ANOVA, Permutation-based two-way ANOVA, RM-ANOVA) and some of 

them are Bayesian-based (e.g., Bayesian Analysis of Time Series (BATS), Multivariate Empirical Bayes 

(MB-statistic)).1,2,5,18-25 Of these methods, maSigPro, EDGE, BATS, Significance Analysis of Microarrays 

(SAM), ANOVA-Simultaneous Component Analysis (ASCA), and ANOVA-based methods are the most 

commonly used ones. The literature suggests that each of these methods has been developed for certain 

experimental conditions, which limits the utility and generalizability of these methods for other experi-

mental conditions as researchers in different disciplines may consider different factors (e.g. group, time) 

and experimental conditions according to their study objectives. All these factors may affect the statistical 

methods that will use for analysis of data sets. Therefore, it is needed to investigate the performances of 

these tests under different experimental conditions that allow the researchers to choose the most appropri-

ate statistical method for their time-course microarray data analysis. 

In this study, we compared and contrasted the performances of the maSigPro, the BATS, the Re-

peated Measurement ANOVA (RM-ANOVA), and the Classical RM-ANOVA with Monte Carlo Simula-

tion Methods under different experimental conditions, in terms of sensitivity and specificity measures 

(Table 1).  

    MATERIAL AND METHODS 

MATERIAL 

Simulation Study 

For this study, we generated random numbers from multivariate normal distribution based on two most 

commonly used covariance structures, i.e. unstructured and autoregressive (Table 2) and two different 

gene profiles (Figure 1). We assumed that there were two conditions or groups, named ‘control’ and 

‘treated’. The profile of each gene had three replications under three different experimental time lengths 

 

TABLE 1: Possible outcomes from “m” hypothesis tests of a set of genes (DE= Differentially Expressed). 

Truth  

Result of Test 
Total 

# accept H0 (Non-DE) # reject H0
 (DE) 

H0: Expression profiles are not different A(TN) B (FP) m0 

H1: Expression profiles are different C(FN) D (TP) m1 

Total A+C B+D m 
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namely short-term (four time points: t1, t2, t3, t4), medium-term (six time points: t1, t2, t3, t4, t5, t6), 

and long-term (eight time points: t1, t2, t3, t4, t5, t6, t7, t8). Profile 1 represents interaction profile 

where gene expression does not have a linear relationship with time and the difference between treat-

ment and control decreases as time increases. Profile 2 represents interaction profile where gene expres-

sion has linear relationship with time and as time increases, the difference between treatment and con-

trol increases. To assess the likelihood of differential expression, we were only interested in Group x 

Time interaction. Under each simulation scenario and for each replication, 1000 random gene profiles 

were generated. We randomly selected 25% of those 1000 gene profiles and we shifted the profile to 

create differently expressed gene profiles, the ‘treatment’ group, leaving the remaining 75% as control 

cases. Then, we applied maSigPro, BATS, RM-ANOVA, and Classical Repeated Measurement ANOVA 

methods to our simulated samples, and the total number of significant genes, number of truly significant 

genes, and numbers of falsely significant genes were determined. Sensitivity, specificity and total accu-

racy measures were obtained for each method. We repeated the simulation 100 times in order to esti-

mate the standard error of the measures of comparison.   

In Table 1, A is the number of Non-differentially expressed (non-DE) gene profiles that were correctly 

classified, B is the number of non-DE gene profiles that were incorrectly classified, C is the number of 

Differentially Expressed (DE) gene profiles that were incorrectly classified, and D is the number of DE 

gene profiles that were correctly classified. 

Performance measures were computed as follows, where the components of each equation are provided 

in Table 1: 

TABLE 2. Covariance structures considered for the simulation study. 

 Unstructured Autoregressive 

Short term  
(4 time points) 

  

Medium term 
(6 time points) 

  

Long term  
(8 time points) 

  

 

















00.145.050.075.0

45.000.135.070.0

50.035.000.180.0

75.070.080.000.1

















00.180.064.051.0

80.000.180.064.0

64.080.000.180.0

51.064.080.000.1























00.155.045.030.035.055.0

55.000.170.050.045.065.0

45.070.000.160.055.072.0

30.050.060.000.175.060.0

35.045.055.075.000.185.0

55.065.072.060.085.000.1























00.185.072.061.052.044.0

85.000.185.072.061.052.0

72.085.000.185.072.061.0

61.072.085.000.185.072.0

52.061.072.085.000.185.0

44.052.061.072.085.000.1



























00.172.043.028.035.040.030.045.0

72.000.175.035.045.044.035.050.0

43.075.000.156.065.060.055.040.0

28.035.056.000.178.060.053.065.0

35.045.065.078.000.170.068.070.0

40.044.060.060.070.000.175.065.0

30.035.055.053.068.075.000.180.0

45.050.040.065.070.065.080.000.1



























00.180.064.051.041.033.026.021.0

80.000.180.064.051.041.033.026.0

64.080.000.180.064.051.041.033.0

51.064.080.000.180.064.051.041.0

41.051.064.080.000.180.064.051.0

33.041.051.064.080.000.180.064.0

26.033.041.051.064.080.000.180.0

21.026.033.041.051.064.080.000.1
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METHODS CONSIDERED FOR COMPARISON 

Various methods, approaches and tools have been developed to analyze time-course microarray data 

sets. In this study, we considered four of them which freely available and user-friendly namely 

maSigPro, BATS, RM-ANOVA, and Classical Repeated Measurement ANOVA.1,2,13,26 

maSigPro (MicoArraySIGnificantPROfiles) 

maSigPro is developed1 for the analysis of single and multiple time-course microarray data sets.1 The 

method uses two-step regression strategy. In the first step, differentially expressed genes are selected. 

The first step of the maSigPro approach applies the least-squares technique to estimate the parameters of 

the described general regression model for each gene. In the second step, variable selection procedure 

(stepwise regression) is applied and focused on genes selected in the first step. Once statistically signifi-

cant gene models have been determined, the regression coefficients of the models can be used to identify 

the conditions for which genes show statistically significant profile changes. Therefore, the new model 

is obtained through stepwise regression. Stepwise regression is an iterative regression approach that se-

lects from a pool of potential variables, the ‘best’ ones (according to a specified criterion) to obtain a bet-

ter fit to the available data.1,17 

BATS (Bayesian Analysis of Time Series) 

BATS software (http://www.na.iac.cnr.it/bats) is free and user-friendly for the analysis of both simulated 

and real microarray time course experiments. This software allows researchers to automatically identify 

and rank differentially expressed genes. It also enables one to describe expression profiles of differential-

ly expressed genes. This software has been reported to give satisfactory results especially when number 

of time point is more than 5.13 

Repeated Measurement ANOVA for Time-course Microarray Experiments (RM-ANOVA) 

RM-ANOVA, unlike the classical F-statistic, determines statistical significance by taking into account 

the time dependency of the microarray data.2 The algorithms presented are implemented in R and are 

freely available upon request. 

Classical Repeated Measurement ANOVA or Within-Subject 

Repeated Measures ANOVA is a technique that used to test the equality of means when the measure-

ment of the dependent variable is repeated over time or different experimental conditions.26  

0m

B
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FNRRate Negative False ==
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    RESULTS  

We summarized the simulation results as changes in the sensitivity, specificity and total accuracy values 

of the methods under different covariance structures, period lengths, and profile types are given in Table 

2 and Figure 1.  

As seen in Figure 2, there were obvious differences among the four methods in terms of sensitivity 

(true positives-vertical axis) and 1-specificity (false positives-horizontal axis) combinations depending 

on the period length and profile type. When the period length was short (4 time points), classical-RM 

and RM-ANOVA had higher sensitivity or better ability to identify true differentially expressed genes 

compared to BATS and maSigPro, although this was compromised by lower specificity (i.e. the tests 

falsely identified more genes that weren’t differentially expressed (Figure 2A). Within the short-term 

 

 

FIGURE 1: Simulation profiles considered for the simulation study. There are two profiles (1 and 2) and three different experiment period lengths (short: 4 time 

points, medium: 6 time points, and long: 8 time points). 

Profile 1 Profile 2 

Short-term  

Medium-term  

Long-term  
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period length, interaction profile 2 appeared to 

give lower sensitivity only in classical-RM. When 

the period length was medium (6 time points), all 

methods had comparable sensitivity although 

maSigPro gave the lowest sensitivity under the 

profile 1 (less than 0.68) (Figure 2B). BATS gave 

highest specificity while RM-ANOVA yielded the 

lowest specificity regardless which profile and co-

variance structure were used (Figure 2B). When 

the period length was long (8 time points), BATS 

performed the best in terms of sensitivity and spec-

ificity regardless of the covariance structures and 

profile types. Sensitivity of Classical-RM and RM-

ANOVA improved compare to the medium period 

length while the sensitivity of maSigPro reduced 

(Figure 2C). In general, the type of covariance 

structures did not affect greatly the sensitivity or 

specificity of any statistical methods. Profile 2, in 

general, yielded higher sensitivity within each 

method. Overall, classical-RM and BATS were 

more sensitive to the profile length and type. The 

sensitivity of classical-ANOVA, RM-ANOVA and 

BATS increased as the period length increased and 

remained unchanged across different covariance 

structures and profile types. BATS reached the 

highest sensitivity with long period length (i.e., 8 

time points) regardless the profile types. RM-

ANOVA appeared to have good sensitivity under 

medium (6 time points) and long period length. 

The sensitivity of maSigPro appeared to be optimal 

under the medium period length condition. In 

summary, under the long period length, RM-

ANOVA and BATS had reached the highest sensi-

tivity while under short (4 time points) and medi-

um period lengths, maSigPro and RM-ANOVA 

had better sensitivity compare to others. 

In terms of specificity, these methods appeared not to be affected by the period length and the pro-

file type. We classified these methods into two groups: ANOVA-based methods (RM-ANOVA and the 

Classical-RM) and the other methods (the BATS and the maSigPro). The specificity of the BATS and the 

maSigPro were consistently higher than those of the RM-ANOVA and the Classical-RM. Therefore, we 

concluded that the BATS and the maSigPro can be considered more specific than the ANOVA-based 

methods under these experimental conditions.  

 

FIGURE 2: Sensitivity and specificity of BATS, Classical-RM, RM-ANOVA, and 
maSigPro under different covariance matrix profiles (AR: autoregressive, UN: 
unstructured), interaction profile (1 and 2) and time lengths (A) short-term peri-
od, (B) medium-term period and (C) long-term period (see Figure 1 and Table 2 
for details). 
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The performance of these methods would not be fully evaluated if we just considered the sensi-

tivity and specificity. Thus, total accuracy, a joint summary of sensitivity and specificity, was also ex-

amined. As seen in Figure 3, the total accuracy values of all the methods except for maSigPro were af-

fected by the time-course length. For the short time course experiment, BATS had the lowest perfor-

mance in terms of total accuracy, as it would need more data for the data to be able to have higher 

weights on the posterior distribution compared to the weight of the prior distribution. However, as 

expected, the performance of the BATS got improved as the period length extended. Although BATS 

was a bit superior to the maSigPro for longer term profiles, maSigPro was more robust for the profile 

length and thus had good performance in general. The ANOVA-based methods had good performance 

under short-term, especially for RM-ANOVA, but did not retain their good performance under the 

medium and long-term cases. As a result, we concluded that maSigPro had good performance in gen-

eral. BATS was more suitable method for analyzing medium and especially long-term data sets while 

ANOVA-based methods were more suitable for analyzing short-term time-course microarray data 

sets. Comparisons of the methods regarding the total accuracy measure based on period length and 

profile type (Figure 3) suggested that the period length (short, medium, and long) and the profile 

types (AR-1, AR-2, UN-1, UN-2) are both factors that affect the performances of the four methods. 

We also conclude that none of the methods is uniformly the best, BATS was the best method in terms 

of total accuracy regardless of type of profile when the period length was long. This was true also in 

 

 

FIGURE 3: Total accuracy of different statistical methods under different time lengths and covariance matrix profiles. AR: autoregressive, UN: unstructured 

(see Figure 1 and Table 2 for details).  
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the case of the medium period length design except when the profile type was UN-2, maSigPro was 

better than BATS. For short profiles, none of the methods was best under any of these four profiles.  

     DISCUSSION 

Microarray technology enables us to measure expression levels for thousands of genes simultaneously, 

but it is a significant statistical challenge to identify differentially expressed genes that could be the po-

tential underlying mechanism in differing phenotypes and diseases. Therefore, using more appropriate 

statistical methods for analyzing time-course microarray data sets is critical to obtain reliable results. In 

this project, we compared the performances of 4 commonly used statistical methods under different ex-

perimental conditions through extensive simulation. We used sensitivity, specificity, and total accuracy 

measures to describe and compare diagnostic tests.  

Our results suggested that BATS and maSigPro are generally more superior methods to the ANO-

VA-based methods in analyzing time-course microarray data sets. Although the BATS did not perform 

well for analyzing the short-term time-course microarray data sets as it required more data for the data 

to overweight the prior distribution specifications in obtaining the posterior distribution, it worked well 

for medium- and especially for long-term data sets. BATS is a free user-friendly software for the analysis 

of both simulated and real microarray time course experiments. It was also reported to be particularly 

suitable for time course experiments where at least 5–6 time points were available, which corresponds to 

our ‘medium-term’ profiles simulated. BATS is also robust against various technical difficulties that arise 

in time-course microarray experiments, missing data, non-uniform sampling intervals and replication 

status.13 maSigPro is a powerful method for the analysis of time course microarray data. The method is 

very efficient tool in filtering out non-significant genes, fitting a model to the experimental conditions, 

and allowing the researchers to visualization of significant profiles.1Conesa et al. also reported that since 

the maSigPro is two-stage regression based methods, in experiments expanding a larger number of time 

points, more complex expression patterns could be expected and that may result in failures in identify-

ing some of differently expressed genes.  Although our findings are generally supportive of the findings 

reported by previous studies, there are also some differences between our findings and theirs.1,5,13 We 

think that differences in the experimental conditions as well as in the definition of period length possi-

bly resulted in these differences. For example in the literature, it is seen that generally two period 

lengths have been defined as a short-term (between 3 and 6 time points) and long-term (more than 6 

time points).1 On the other hand, we defined three different period lengths namely short (3-4 time 

points), medium (5-7 time points), and long-term (≥8 time points) to obtain more detail information.  

The performances of the ANOVA-based methods are generally inferior to those of the BATS and 

the maSigPro. In general, the ANOVA-based methods have a good performance for short-term data sets. 

However, when the period length extends, the performances of these tests get worse although their per-

formance should get better as the increasing time-course length is expected to impact the power posi-

tively under the normal circumstances. Based on these results it is possible to conclude that for the 

short-term time-course microarray data sets, the ANOVA-based methods may be preferred to the BATS. 

However, the ANOVA model is one of the most criticized methodologies, used in many papers as a 

comparative method to introduce a novel technique. It is argued that he ANOVA model does not take 

the temporal ordering into account. Especially during the last decade, since the majority of authors have 

generally concentrated on the regression-based and Bayesian-based methods, the studies about ANO-
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VA-based methods are limited. ANOVA-based methods can still be very useful when very short time 

course experiments have to be analysed (up to about 4–5 time points), however the shortcoming of these 

approaches is that they ignore the biological temporal structure of the data producing results that are in-

variant under permutation of the time points.13,21 In addition, it is suggested that  ANOVA should be 

applied on background-normalized data.27 Another functional ANOVA mixed-effect model was devel-

oped and reported to have higher power than those of EDGE and classical two-way ANOVA.23 A gen-

eral statistical method based on repeated measures (RM) ANOVA was proposed for detecting changes in 

microarray expression over time within a single biological group. This method outperformed EDGE, 

SAM, and Oriogen methods under different experimental conditions.2 

Results of this project also suggested that the performances of the methods are affected by different 

factors where the two major factors are the period length and profile types. On the other hand, even 

though the period length and the profile type are two important factors that affect the performances of 

the methods, they may not be enough to evaluate the performances of these methods in full detail. Since 

gene expression levels in a given cell can be influenced by different factors, it may be necessary to con-

sider some other new factors especially population prevalence values, changes in number of replication, 

effect of missing value, effect of outliers as well. That is, multi-factors time course experiments are need-

ed. The multiple series time-course microarray experiments are useful approaches for exploring biologi-

cal processes. However, the large amount of data, multiplicity of experimental conditions and the dy-

namic nature of the experiments pose great challenges to data analysis.1,6,28 Therefore, in the light of the 

results of this study, we think that new and more comprehensive studies are needed to:  

a) Investigate the effect of the factors that affect the performances of the methods more detail,  

b) Determine optimum factor levels (e.g. determining optimum period length, profile type, etc.),  

c) Compare the performances of these methods under different population prevalence values 

d) Investigate the effects of missing values,  

e) Investigate the effects of outliers, and  

e) Investigate the possibility of develop a new novel method. 

Acknowledgment 

This manuscript has been created from BIDEB-2219 International Post-Doctoral Research Fellowship Program in 

2013 (first term) which supported by the Scientific and Technological Research Council of Turkey (TUBITAK). 

Conflict of Interest 
Authors declared no conflict of interest or financial support. 

Authorship Contributions 

Idea/Concept: Constructing the hypothesis or idea of research and/or article: Quynh Tran, Mehmet Mendes; De-

sign: Planning methodology to reach the conclusions: Quynh Tran, Mehmet Mendes, Mehmet Koçak; Con-

trol/Supervision: Organizing, supervising the course of progress and taking the responsibility of the research/study:  

Mehmet Kocak, Mehmet Mendes; Data Collection and/or Processing Taking responsibility in patient follow-up, 

collection of relevant biological materials, data management and reporting, execution of the experiments: Quynh 

Tran, Mehmet Mendes; Analysis and/or Interpretation: Taking responsibility in logical interpretation and conclu-

sion of the results:  Quynh Tran, Mehmet Mendes, Mehmet Koçak; Literature Review: Taking responsibility in 

necessary literature review for the study:   Mehmet Mendes, Quynh Tran; Writing the Article: Taking responsibil-



Nhu Quynh TRAN et al.                                                                                                                                                     Turkiye Klinikleri J Biostat 2017;9(1):35-44 

 44

ity in the writing of the whole or important parts of the study:  Mehmet Mendes, Mehmet Koçak; Critical Review: 

Reviewing the article before submission; Scientifically besides spelling and grammar: Mehmet Koçak, Mehmet 

Mendes; References and Fundings: Providing personnel, environment, financial support tools that are vital:  

Mehmet Mendes, Mehmet Koçak. 

 

REFERENCES 
1. Conesa A, Nueda MJ, Ferrer A, Talón M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray 

experiments. Bioinformatics 2006;22(9):1096-102. 

2. ElBakry O, Ahmad MO, Swamy MN. Identification of differentially expressed genes for time-course microarray data based on modified RM ANOVA. 
IEEE/ACM Trans Comput Biol Bioinform 2012;9(2):451-66. 

3. Liu X, Yang MC. Identifying temporally differentially expressed genes through functional principal components analysis. Biostatistics 2009;10(4):667-79. 

4. Sohn I, Owzar K, George SL, Kim S, Jung SH. Robust test method for time-course microarray experiments. BMC Bioinformatics 2010;11:391. 

5. Angelini C, De Canditiis D, Mutarelli M, Pensky M. A Bayesian approach to estimation and testing in time-course microarray experiments. Stat Appl 
Genet Mol Biol 2007;6:Article24. 

6. Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics 2004;20(16):2493-503. 

7. Jonnalagadda S, Srinivasan R. Principal components analysis based methodology to identify differentially expressed genes in time-course microarray 
data. BMC Bioinformatics 2008;9:267. 

8. Rajendran S, Natarajan J. A comparative study of the efficiency of four differentially expressed gene selection programs for microarray data analysis. Int 
J of Geno and Prot 2009;5(2). 

9. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc 
Natl Acad Sci U S A 2001;98(26):15149-54. 

10. Stegle O, Denby KJ, Cooke EJ, Wild DL, Ghahramani Z, Borgwardt KM. A robust Bayesian two-sample test for detecting intervals of differential gene 
expression in microarray time series. J Comput Biol 2010;17(3):355-67. 

11. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 
2001;98(9):5116-21. 

12. Kocak M. Identifying Cyclic Genes in Time-Course Gene Expression Studies Using Proc Traj. Turkiye Klinikleri J Biostat 2015;7(2):47-54. 

13. Angelini C, Cutillo L, De Canditiis D, Mutarelli M, Pensky M. BATS: a Bayesian user-friendly software for analyzing time series microarray experiments. 
BMC Bioinformatics 2008;9:415. 

14. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006;7:191. 

15. Han X, Sung WK, Feng L. Identifying differentially expressed genes in time-course microarray experiment without replicate. J Bioinform Comput Biol 
2007;5(2a):281-96. 

16. Kerr MK, Afshari CA, Bennett L, Bushel P, Martinez J, Walker N, et al. Statistical analysis of a gene expression microarray experiment with replication. 
Statistica Sinica 2002;12:203-17. 

17. Nueda MJ, Conesa A, Westerhuis JA, Hoefsloot HC, Smilde AK, Talón M, et al. Discovering gene expression patterns in time course microarray 
experiments by ANOVA-SCA. Bioinformatics 2007;23(14):1792-800. 

18. Leek JT, Monsen E, Dabney AR, Storey JD. EDGE: extraction and analysis of differential gene expression. Bioinformatics 2006;22(4):507-8. 

19. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. Significance analysis of time course microarray experiments. Proc Natl Acad Sci U S A 
2005;102(36):12837-42. 

20. Nueda MJ, Sebastián P, Tarazona S, García-García F, Dopazo J, Ferrer A, et al. Functional assessment of time course microarray data. BMC 
Bioinformatics 2009;10 Suppl 6:S9. 

21. Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data. J Comput Biol 2000;7(6):819-37. 

22. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, et al. Assessing gene significance from cDNA microarray expression data via 
mixed models. J Comput Biol 2001;8(6):625-37. 

23. Ma P, Zhong W, Liu JS. Identifying differentially expressed genes in time course microarray data. Stat Biosci 2009;1(2):144-59. 

24. Park T, Yi SG, Lee S, Lee SY, Yoo DH, Ahn JI, et al. Statistical tests for identifying differentially expressed genes in time-course microarray experiments. 
Bioinformatics 2003;19(6):694-703. 

25. Tai YC, Speed TP. A multivariate empirical Bayes statistic for replicated microarray time course data. Ann Statist 2006;34(5):2387-412. 

26. Winer BJ, Brown DR, Michels KM. Statistical Principles in Experimental Design. 3rded. New York: McGraw-Hill, Inc; 1991. p.1057. 

27. Fischer EA, Friedman MA, Markey MK. Empirical comparison of tests for differential expression on time-series microarray experiments. Genomics 
2007;89(4):460-70. 

28. Androulakis IP, Yang E, Almon RR. Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng 
2007;9:205-28. 

 


