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n recent decades, the discretization of continuous distributions has been 

widely considered. The main reasons for discretizing a continuous 

distributions are twofold, namely, (i) the discrete analogue of a 

continuous distribution provide probability mass function (pmf) that can 

compete with the classical discrete distributions commonly used in the 

analysis  of  count  data  and  (ii) the  discrete  analogue of a continuous  
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ABSTRACT The discretization of continuous distribution has drawn the attention of 
researchers in the recent decades due to the fact that it generates distributions that can be used 
for strictly discrete data. In this paper, a discrete Akash distribution, a discrete analogue of 
continuous Akash distribution, has been proposed and investigated. Its moment generating 
function, moments and moments based measures including coefficients of variation, skewness, 
kurtosis and index of dispersion have been obtained and discussed. For estimating its parameter 
the method of moments and the method of maximum likelihood estimation have been 
discussed. The usefulness and the goodness of fit of the proposed distribution have been 
explained using some real datasets and found that it gives better fit as compared to other 
discrete distributions. 
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ÖZET Son yıllarda tamamen kesikli veri için kullanılabilen dağılımlar oluşturulması nedeniyle 
sürekli bir dağılımın kesikli hale getirilmesi araştırmacıların ilgisini çekmiştir. Bu makalede 
sürekli Akash dağılımının kesikli benzeri olan, kesikli Akash dağılımı sunulmuş ve araştırılmıştır. 
Dağılımın moment çıkaran fonksiyonu, momentleri ve momentlere dayalı olan değişim katsayısı, 
çarpıklık, basıklık ve yayılım indeksi de elde edilmiş ve tartışılmıştır. Parametrelerin tahmini için 
moment ve en çok olabilirlik yöntemi kullanılmıştır. Önerilen dağılımın uyum iyiliği ve 
kullanışlılığı bazı gerçek veri setleriyle açıklanmış ve diğer kesikli dağılımlarla karşılaştırıldığında 
daha iyi sonuçlar vermiştir.  
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distribution avoids the use of a continuous distribution in the case of strictly discrete  

data.  

In many real life situations, it is difficult or inconvenient to get samples from continuous 

distributions. The observed values, in general and almost always, are actually discrete in nature 

because they are measured to only finite number of decimal places and cannot really constitute all 

points in a continuum. In case of lifetime data (waiting time or survival time), even if the 

measurements are taken on a continuous scale, the observations may be recorded in a way that 

makes a discrete distribution more appropriate model. For example, in survival analysis, it is most 

common to use continuous distributions to model discrete data. A discretization of a continuous 

distribution acts as a subterfuge to avoid the use of continuous distribution to model survival time 

data. According to Lai (2013), discretization of a continuous lifetime model is an interesting and 

intuitively appealing approach to derive a discrete lifetime model corresponding to the continuous 

one.1 It has been observed that in real world the original variables may be continuous in nature but 

discrete by observation and, therefore, it is reasonable and convenient to model the situation by an 

appropriate discrete distribution generated from the underlying continuous distribution preserving 

one or more important characteristics including probability density  function (pdf), moment 

generating function (mgf), moments, hazard rate function, mean residual life function etc., of the 

continuous distribution.  

There are several methods available in Statistics literature to derive a discrete distribution from a 

continuous distribution. One of the first proposed discretization methods is based on the definition of 

pmf that depends on an infinite series. The method of discretization by an infinite series was firstly 

considered by Good (1953) who has proposed the discrete Good distribution to model the population 

frequencies of species and the estimation of parameters.2 A random variable Y  is said to have a discrete 

Good distribution if its pmf can be expressed as 

( )

0
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y

j
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P Y y y
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where ( )and 0,1Rβ α∈ ∈ . 

The method of infinite series is characterized by the following definition. 

Definition 1.1: Let X  be a continuous random variable having pdf ( )Xf x  with support on R . Then 

the corresponding discrete random variable Y  has pmf given by 

( ) ( ) ( )
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where θ  may be the vector of parameters indexing the distribution of X .  

This method of discretizing a continuous distribution has been studied by several researchers including 

Kulasekara and Tonkyn (1992), Doray and Luong (1997), Sato et al (1999), Nekoukhou et al (2012), are 

some among others, who proposed a version of the method when the continuous random variable of 
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interest is defined on R+ .3-6 Thus, if the random variable X  is defined on R+ , the pmf of Y can be 

defined as 

( ) ( ) ( )
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; ;
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          (1.3) 

Recently Josmar et al (2017), using above method of discretization, has obtained a discrete Shanker 

distribution (DSD) with parameter 0θ >  and having pmf7 

( ) ( ) ( ) ( )
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Josmar et al (2017) have discussed its statistical properties, estimation of parameter and applications to 

model count datasets.7 Recall that DSD is a discrete analogue of continuous Shanker distribution 

proposed by Shanker (2015 a) having pdf8 
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2

1 2
; ; 0, 0

1
xf x x e xθθθ θ θ

θ
−= + > >

+
          (1.5) 

Using infinite series method of discretization, the pmf of discrete Lindley distribution (DLD) obtained 

by Berhane and Shanker (2017) is given by 9 

( ) ( ) ( )
2

2 2

1
; 1 ; 0,1,2,...y

e
P y y e y

e

θ
θ

θθ −
−

= + =          (1.6) 

where the parameter 0θ > . 

Recall that the DLD is a discrete analogue of continuous Lindley distribution introduced by Lindley 

(1958) having pdf10 
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Note that the discrete distribution generated using the method of infinite series may not always have a 

compact form due to the normalizing constant.  

A second common method of discretization of a continuous distribution is based on the survival 

function of the original continuous distribution and was proposed by Nakagawa and Osaki (1975) and 

has the interesting feature of preserving the original survival function on its integer part for the 

generated pmf 11. Kemp (2004) pointed that a discrete random variable Y  from a continuous random 

variable X  can be defined as follows:12 

Definition 1.2: Let X  be a continuous random variable having survival function

( ) ( ) ( )1X XS x F x P X x= − = ≥ . Then , the discrete random variable Y X=    has pmf given by 
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( ) ( ) ( ) ( ); ; 1; ; 0,1,2,...X XP Y y P y S y S y yθ θ θ= = = − + =   ,        (1.8) 

where Y X= =   largest integer less than or equal to X . 

Note that the resulting pmf will be in closed form if the original survival function has closed form. Using 

the method of survival function of distribution, Nakagawa and Osaki (1975) proposed a discrete Weibull 

distribution, a discrete analogue of Weibull distribution, and studied its properties, estimation of 

parameters and applications.12 

In the present paper, a discrete Akash distribution, a discrete analogue of continuous Akash distribution 

proposed by Shanker (2015 b) has been introduced using a discretization method based on an infinite 

series.13 Its moment generating function, moments and moments based measures have been obtained 

and discussed. The estimation of parameter of the distribution has been discussed using both the method 

of moments and the method of maximum likelihood estimation. The usefulness and the goodness of fit 

of the proposed distribution have been explained using some real datasets and the fit has been compared 

with other discrete distributions. 

    A DISCRETE AKASH DISTRIBUTION 

The pdf and the cdf of a continuous random variable X  having Akash distribution introduced by 

Shanker (2015 b) are given by13 
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Shanker (2015 b) has discussed its various mathematical and statistical properties including its shapes for 

varying values of parameters, moments based measures, hazard rate function, mean residual life function, 

stochastic ordering, mean deviations, order statistics, Renyi entropy measure, Bonferroni and Lorenz curves 

and stress-strength reliability along with estimation of parameter and applications of the distribution for 

modeling lifetime data from biomedical sciences and engineering.13 Shanker (2017) has also introduced a 

Poisson-Akash distribution (PAD), a Poisson mixture of Akash distribution having pmf14 
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Shanker (2017) has discussed its various statistical and mathematical properties, estimation of parameter 

using both the method of moments and the method of maximum likelihood estimation and applications 

to model count data.14 

Using the definition (1.1), the pmf of the discrete random variable Y , corresponding to a continuous 

random variable X following Akash distribution (2.1) with parameter 0θ >  , can be obtained as 

( ) ( )
( ) ( )

3

2
4 2

1
; 1 ; 0,1,2,...

2
y

e
P y y e y

e e e

θ
θ

θ θ θθ −
−

= + =
− +

.       (2.4) 



Berhane ABEBE et al.                                                                                                                                                         Turkiye Klinikleri J Biostat 2018;10(1):1-12 
 

 5

We would call this distribution, a discrete Akash distribution (DAD). The nature and behavior of DAD 

for varying values of its parameter θ  has been shown graphically in Figure 1. 

 

 

Figure 1: The pmf plot of DAD for varying values of the parameterθ . 

 

The survival function, ( );S y θ and the cumulative distribution function (cdf), ( );F y θ  of DAD can be 

obtained as 
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Graph of cumulative distribution function of DAD has been shown in Figure 2. 
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FIGURE 2: The cdf plot of DAD for varying values of the parameterθ . 

 

Since ( )
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is a decreasing function of 3y ≥ , ( );P y θ is log-concave and therefore, the 

DAD has an increasing hazard rate. Further, ( ) ( ) ( )2
; 1; 1;P y P y P yθ θ θ≥ − ⋅ +   for 2y ≥ , which implies 

unimodality, by theorem 3 of Keilson and Gerber (1971)15. The interrelationship between log-concavity, 

unimodality and increasing hazard rate of discrete distributions are available in Grandell (1997).16 

    MOMENTS AND ASSOCIATED MEASURES 

The probability generating function (pgf) and the moment generating function (mgf) of DAD can be 

obtained as 
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It can be easily verified that the function in (3.2) is infinitely differentiable with respect to t , since it 

involves exponential terms of its argument. This means that one can derive all moments about origin 

, 1r rµ ′ ≥  of DAD from its mgf. 

The first four moments about origin of DAD can thus be obtained as 
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∑ between central moments and moments 

about origin, the central moments of DAD are obtained as 
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The coefficient of variation (C.V), coefficient of skewness ( )1β , coefficient of kurtosis ( )2β and index 

of dispersion ( )γ of DAD are obtained as 
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Table 1 summarizes the nature and behavior of coefficient of variation (C.V), coefficient of skewness, 

coefficient of kurtosis and index of dispersion (ID) for selected values of the parameter θ . 
 

TABLE 1: Values of descriptive statistics of DAD for varying values of parameter θ . 

 

Values of Descriptive statistics 

Mean Variance C.V Skewness Kurtosis ID 

0.5 5.3905 13.2355 0.6749 1.0136 4.6169 2.4553 

1.0 1.9381 3.5169 0.9676 1.1411 4.5637 1.8146 

1.5 0.8343 1.3082 1.3709 1.6152 5.9718 1.5681 

2.0 0.4007 0.5507 1.8519 2.1775 8.5435 1.3745 

2.5 0.2091 0.2585 2.4315 2.7875 12.1121 1.2364 

3.0 0.1154 0.1323 3.1519 3.4922 17.0323 1.1462 

3.5 0.0661 0.0720 4.0603 4.3623 24.2542 1.0895 

4.0 0.0387 0.0408 5.2206 5.4749 35.4751 1.0546 
 

It is obvious from above table that the mean, variance, and index of dispersion of DAD are decreasing 

for increasing values of the parameterθ , while coefficient of variation, coefficient of skewness and 

coefficient of kurtosis of DAD are increasing for increasing values of parameterθ . Since 2σ µ> ,  DAD 

is a suitable model for over-dispersed data.  

PARAMETER ESTIMATION 

Method of Moment Estimate (MOME): Equating the population mean to the corresponding sample 

mean, the MOME θɶ of the parameter θ  is the solution of the following non-linear equation 

( ) ( ) ( )3 22 1 3 2 2 1 0y e y e y e yθ θ θ− + + − − + = , 

 where y is the sample mean. 

Maximum Likelihood Estimate (MLE): Let ( )1 2 3, , , ... , ny y y y  be a random sample from DAD (2.3)). 

The likelihood function, L of (2.4) is given by 
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and so its natural log likelihood function is thus obtained as 
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∑                        

The maximum likelihood estimates (MLE) θ̂  of parameter θ  is the solution of the non-linear equation  

θ
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3 2

3 2 2ln 3
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= − − =
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This gives the following non-linear equation 

( ) ( ) ( ) ( )3 23 2 4 4 7 2 4 0y e y e y e yθ θ θ+ − + + + − + = . 

    DISCUSSION AND GOODNESS OF FIT 

Since DAD is over-dispersed, an attempt has been made to fit DAD to over-dispersed frequency 

distribution and compare its fit with equi-dispersed and over-dispersed discrete distributions. In this 

section, the goodness of fit of the DAD has been discussed with five count datasets and the fit has been 

compared with discrete Shanker distribution (DSD), discrete Lindley distribution (DLD), Poisson 

distribution (PD), Poisson-Lindley distribution (PLD) introduced by Sankaran (1970) and Poisson-Akash 

distribution (PAD) introduced by Shanker (2017).14,17 The dataset in table 2 is the data relating to the 

production of chromosome structural changes in Tradescannia microspores in relation to dosages, 

intensity and temperature, available in Catcheside et al (1946).18 The dataset in tables 3, 4 and 5 are the 

number of days that experienced X thunderstorm events at Cape kennedy, Florida for the 11-year period 

of record in June, July and the summer, January 1957 to December 1967, available in Falls et al (1971) 

and Carter (2001).19,20 The dataset in table 6 is the data relating to the number of red mites on apple 

leaves, available in Gosset (1908).21 

 

TABLE 2: Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by Streptonigen (NSC-45383), 
Exposure-70 gµ |kg. 

Class/Exposure  Observed Expected Frequncy 

μg|kg Frequency DAD DSD DLD PD PLD PAD 

0 200 193.2 187.9 184.1 172.5 191.8 194.1 

1 57 65.7 75.7 79.8 95.4 70.3 67.6 

2 30 27.9 25.4 25.9 26.4 24.9 24.5 

3 7 9.5 7.8 7.5 4.9 8.6 8.9 

4 4 2.8 2.3 2.0 0.7 2.9 3.2 

5 0 0.7 0.6 0.5 0.1 1.0 1.1 

6 2 0.2 0.3 0.2 0.0 0.5 0.6 

Total 300 300.0 300.0 300.0 300.0 300.0 300.0 

ML estimate ( )θ̂  1.77177 1.43696 1.52919 0.55333 2.35334 2.62674 
2χ  1.55 6.60 9.31 29.68 3.91 3.12 

d.f. 2 2 2 2 2 2 

p-value 0.6702 0.0860 0.0255 0.0000 0.2712 0.3731 
 

TABLE 3: Frequencies of the observed number of days that experienced X thunderstorm events at Cape kennedy, 
Florida for the 11-year period of record in the month of June, January 1957 to December 1967. 

X  Observed Expected Frequency 

  Frequency DAD DSD DLD PD PLD PAD 

0 187 186.2 177.8 174.3 155.6 185.3 187.9 
1 77 77.7 92.0 95.2 117.0 83.5 80.3 
2 40 40.5 38.2 39.0 43.9 36.0 35.3 
3 17 16.9 14.3 14.2 11.0 15.0 15.4 
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4 6 6.0 5.1 4.9 2.1 6.1 6.6 
5 2 2.0 1.7 1.6 0.3 2.5 2.7 
6 1 0.7 0.9 0.8 0.1 1.6 1.8 
Total 330 330.0 330.0 330.0 330.0 330.0 330.0 

ML estimate ( )θ̂
 1.5673 1.2478 1.29773 0.751515 1.80423 2.139736 

2χ  0.03 3.86 5.38 31.93 1.37 1.33 
d.f. 3 3 3 2 3 3 
p-value 0.9986 0.4250 0.2506 0.0000 0.8487 0.8564 

TABLE 4: Frequencies of the observed number of days that experienced X thunderstorm events at Cape kennedy, 
Florida for the 11-year period of record in the month of July, January 1957 to December 1967. 

X  Observed Expected Frequency 

  Frequency DAD DSD DLD PD PLD PAD 

0 177 177.9 167.9 165.1 142.3 177.7 180.0 
1 80 81.8 98.1 100.4 124.4 88.0 84.8 
2 47 47.0 45.0 45.8 54.3 41.5 40.9 
3 26 21.6 18.6 18.6 15.8 18.9 19.4 
4 9 8.4 7.2 7.1 3.5 8.4 8.9 
5 2 4.3 4.2 4.0 0.7 6.5 7.0 
Total 341 341.0 341.0 341.00 341.0 341.0 341.0 

ML estimate ( )θ̂  1.47054 1.15984 1.19041 0.873900 1.583536 1.938989 
2χ  1.17 6.88 7.98 39.74 5.15 4.99 

d.f. 3 3 3 2 3 3 
p-value 0.8833 0.1424 0.0923 0.0000 0.2725 0.2886 

 

TABLE 5: Frequencies of the observed number of days that experienced X thunderstorm events at Cape kennedy, 
Florida for the 11-year period of record in the summer, January 1957 to December 1967. 

X  Observed Expected Frequency 

  Frequency DAD DSD DLD PD PLD PAD 

0 549 549.1 521.6 511.8 449.2 547.5 555.1 

1 246 240.9 287.1 295.7 364.9 259.0 249.2 

2 117 132.1 125.4 128.1 148.2 116.9 144.9 

3 67 57.9 49.4 49.3 40.1 51.2 52.3 

4 25 21.6 18.4 17.8 8.1 21.9 23.2 

5 7 7.2 6.6 6.2 1.3 9.2 10.0 

6 1 3.2 3.5 3.1 0.2 6.3 7.3 

Total 1012 1012.0 1012.0 1012.0 1012.0 1012.0 1012.0 

ML estimate ( )θ̂   
1.517111 1.202505 1.24195 0.812253 1.687436 2.026172 

2χ  4.35 16.96 21.47 142.57 9.60 14.75 

d.f. 4 4 4 3 4 4 

p-value 0.4998 0.0046 0.0007 0.0000 0.0874 0.0115 
 

TABLE 6: Observed and expected number of red mites on apple leaves, available in Gosset (1908). 

Number of red mites Observed Expected Frequency 

 Frequency DAD DSD DLD PD PLD PAD 

0 70 66.1 61.7 60.6 47.6 67.3 68.3 
1 38 35.9 44.1 44.2 54.6 38.9 37.7 
2 17 24.4 23.8 24.1 31.3 21.2 21.0 
3 10 13.3 11.4 11.7 12.0 11.2 11.4 
4 9 6.1 5.2 5.3 3.4 5.7 5.9 
5 3 2.5 2.2 2.3 0.8 2.9 3.0 
6 2 1.0 0.9 1.0 0.2 1.4 1.5 
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7 1 0.7 0.7 0.8 0.1 1.4 1.2 
Total 150 150.0 150.0 150.0 150.0 150.0 150.0 

ML Estimate ( )θ̂  
1.302757 1.019163 1.0095 1.14666 1.260163 1.628089 

2χ  5.56 8.08 8.00 26.50 2.26 1.98 
d.f. 3 3 3 2 3 3 
p-value 0.2344 0.0889 0.0915 0.0000 0.6942 0.7403 

 

It is obvious from the goodness of fit in Tables 2, 3, 4, 5, and 6 that except in table 6, DAD gives much closer fit 

than other considered discrete distributions. Hence, DAD can be considered an important discrete distribution 

over these distributions. In Table 6, PAD gives much closer fit than other discrete distributions. 

    CONCLUDING REMARKS 

In this paper, a discrete Akash distribution (DAD), a discrete analogue of continuous Akash distribution, 

has been proposed and investigated. Its moment generating function, moments and moments based 

measures including coefficients of variation, skewness, kurtosis, index of dispersion have been obtained 

and their nature has been discussed numerically. Both the method of moments and the method of 

maximum likelihood estimation have been discussed for estimating its parameter. The goodness of fit of 

DAD has been explained using some real datasets. The DAD gives much closer fit over PD, PLD, PAD, 

DLD, and DSD in majority of datasets and hence it can be considered an important discrete distribution 

over these discrete distributions.  
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