
R mlmmm Package:
Fitting Multivariate Linear Mixed Effects

Models with Missing Values

AABBSS  TTRRAACCTT  OObbjjeeccttiivvee::  Publicly available R package mmllmmmmmm is presented. mmllmmmmmm implements an
efficient estimation technique based on a hybrid of EM and Fisher scoring algorithm, operating
under a multivariate generalization of a well-known linear mixed-effects model in the presence
of incompletely observed grouped data. MMaatteerriiaall  aanndd  MMeetthhooddss::  mmllmmmmmm is specifically designed for
grouped data which are commonly encountered in longitudinal studies where the repeated ob-
servations are grouped within the individuals or in clustered sample surveys. The analyses of such
data are often more complicated by the inevitable missing data. RReessuullttss::  When the goal of the
analysis to model multiple characteristics jointly using incompletely-observed data, mmllmmmmmm can
be used to obtain maximum likelihood estimates of desired parameters, test variance components
or profile clusters using their empirical Bayes estimates. Some of the estimation procedure is based
on efficient model-fitting technique developed by Schafer and Yucel 2002. CCoonncclluussiioonn::  The algo-
rithms presented here provide excellent convergence and reliability. This behavior is best realized
when the missing data and number of response variables are in moderately low and when the aux-
iliary variables are informative not only in their predictiveness but also in their ability in ex-
plaining missingness in the response variables, making the the underlying MAR assumption more
plausible.

KKeeyy  WWoorrddss::  Missing data;  MLE; EM and Fisher-scoring;  
mixed-effects; longitudinal data;  clustered data

ÖÖZZEETT  AAmmaaçç::  Halka açık R paketi mmllmmmmmm sunulmuştur. mmllmmmmmm, eksik olarak gözlenen gruplanmış
verinin olması durumunda kullanıldığı bilinen doğrusal karma-etkili modellerin çok değişkenli ge-
nelleştirilmiş hali üzerine çalışan, EM ve Fisher skorlama algoritmasının hibridi üzerine temelle-
nen etkin bir tahmin tekniği sağlamaktadır. GGeerreeçç  vvee  YYöönntteemmlleerr::  mmllmmmmmm,  tekrarlı gözlemlerin
birimler içinde ya da kümelenmiş örnekleme çalışmalarında gruplandığı uzunlamasına çalışma-
larda genellikle karşılaşılan gruplanmış veriler için özel olarak tasarlanmıştır. Bu tip verilerin ana-
lizleri, kaçınılmaz kayıp veriler nedeniyle genellikle daha da zor bir hale gelir. BBuullgguullaarr::  Analizin
amacı, eksik olarak gözlenen veriler kullanarak çoklu özellikleri birleşik olarak modellemek oldu-
ğunda, istenen parametrelerin en çok olabilirlik tahmin edicilerinin, test varyans bileşenlerinin
veya deneysel Bayes tahminlerini kullanarak profil kümelerin elde edilmesi için mmllmmmmmm kullan-
ılabilir. Bazı tahmin yöntemleri Schafer and Yucel 2002 tarafından geliştirilen etkin model-uyum
tekniklerine dayanmaktadır. SSoonnuuçç::  Burada sunulan algoritmalar mükemmler bir yakınsama ve gü-
venilirlik sağlamaktadır. Bu davranış, kayıp veri ve yanıt değişkeni sayısı kısmen düşük olduğunda
ve yardımcı değişkenler sadece kendi tahmin edilebilirlikleri yönünden değil, aynı zamanda yanıt
değişkenlerindeki kayıp veriyi açıklama kabiliyetleri yönünden de aydınlatıcı olduklarında en iyi
şekilde ortaya çıkmaktadır. 
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BACKGROUND

resence of missing data is a highly prevalent
problem in most applications. In applications
with grouped data (e.g. longitudinal or clus-

tered data), handling missing values in a principled
manner is an important task. Because most statistical
methods and their implementations are not specifi-
cally designed to handle missing values, practition-
ers are often faced with making undesired choices
such as case deletion,  last observation carried for-
ward (in longitudinal applications) which can do se-
rious harm to the inferences such as biased estimates,
artificially increased precision.  In designs resulting in
grouped data (e.g. longitudinal or clustered data),
such ad-hoc methods can potentially be very dam-
aging to the inferences as important relationships
among incompletely-observed variables and others
as well as distinct variation sources (within-cluster
and between-cluster) are essentially ignored.

Since the seminal work by Dempster et al.1 on
model-fitting algorithms designed for missing data
problems or problems that can be formulated as
missing data, there has been many important devel-
opments in the statistical theory underlying missing
data methods (e.g. Rubin,2 Rubin,3 Little and
Rubin4). Advancement in computational statistics
has helped the dissemination of these developments
via software products. A particularly popular tech-
niques are model-based techniques where inferences
are produced by postulating models for the observed
data and basing the inferences on the implied like-
lihood or posterior distribution. Two of the most
preferred method of inference are maximum likeli-
hood (ML) inference (or inference based on poste-
rior modes)1,2,5 and multiple imputation (MI)
inference.2,5 Computational methods such as expec-
tation maximization (EM), Fisher scoring are often
used to obtain ML estimates under the postulated
observed data likelihood. MI inference consists of
two steps, replacing missing values by a moderate
number of plausible values typically drawn from the
predictive distribution of missing data given ob-
served data and combining estimates and standard
estimates obtained from the analyses of “completed
or imputed data”. The choice of the method often
depends on several criteria of which the most im-

portant is the availability of software and practical-
ity from the practitioners’ point of view.

Previous methodology on missing data and its
implementation in software products have mostly
focused on the data problems where the observa-
tions are independently drawn from identical dis-
tributions. Some examples include a key book by
Schafer5 providing a thorough treatment of miss-
ing data techniques in widely encountered prob-
lems, which are later implemented in several
software packages including Splus missing library,
R packages nnoorrmm, ccaatt and mmiixx.*,6 These packages
implement algorithms for finding ML estimates as
well as creating multiple imputations of missing
values for continuous data (operating under a mul-
tivariate normal model), categorical data (operat-
ing under a loglinear model) and mixed data (under
a general location model), respectively. A useful al-
ternative approach based on variable-by-variable
approach was developed by Raghunathan et al. for
creating multiple imputations to conduct infer-
ences in surveys which typically more prone to
missing data and other complications such as skip
patterns, bounds, etc.7 This method is available as a
SAS-callable macro IveWare; a similar approach
has also been developed by Buuren and Groothuis-
Oudshoorn8 and implemented in R package called
mmiiccee. Another commonly used set of procedures
for the analysis of ungrouped data was imple-
mented in a SAS procedure called SAS PROC MI.9

As the design used to draw observations be-
comes complicated, sound statistical technique
specifially designed to handle missing values also be-
come complicated. In longitudinal studies or clus-
tered data, for example, statistical methods for
handling missing values should take into account of
important relationships such as variation within and
between subjects and clusters. The studies on this
topic have so far focused on creating multiple impu-
tations. Schafer and Yucel;10 Liu, Taylor and Belin11

develop methods on creating multiple imputations
in correlated data. The multiple imputation frame-
work for grouped data as described by Schafer and
Yucel10 has also been implemented in R package ppaann.
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Recently, multilevel modeling software MlWin
using primarily Markov Chain Monte Carlo
(MCMC) techniques has also developed routines for
multiple imputation inference.12 Advantages of mul-
tiple imputations are reviewed by many including
Rubin,3 Schafer.5 From a practitioner point of view,
because these methods are mostly simulation-based
iterative techniques, a great care should be taken for
monitoring convergence, especially in methods
based on variable-by-variable approaches. For this
purpose, methods such as EM or Fisher scoring could
be beneficial for their stability (i.e. increasing the
likelihood) and speedy convergence.

R mlmmm PACKAGE

This paper introduces mmllmmmmmm package within a
publicly available R language and software envi-
ronment, to fit multivariate linear mixed-effects
models in the presence of missing values.*,10,11

These models are often utilized to simultaneously
model several continuous characteristics observed
over time for a group of individuals or for a group
of individuals nested within units (e.g. patients
within doctors). Examples where these models may
be desired include joint modeling of substance use
characteristics such as nicotine level in saliva and
alcohol level over time as a function of individual
characteristics and intervention; in clustered sam-
plings where the schools are sampled at the first
stage followed by a selection of students, a joint
modeling of test scores might be of interest. In gen-
eral, mmllmmmmmm is used to fit a joint model of incom-
pletely-observed multiple characteristics, allowing
means and covariances to vary across the clusters.

There have been other similar models and
techniques for model fitting under the similar mod-
els, however, the development of these models has
not been equal to its univariate counterparts. There
is vast literature on the mixed-effects models start-
ing with studies by Laird and Ware,13 Jennrich and
Schluchter.14 With the computational advances,
many software products have been available to the
consumers including HLM, SAS, R packages llmmee
and llmmee44. The multivariate extensions have been
studied by Liu, Taylor and Belin11 by means of

MCMC, Shah, Laird and Schoenfeld15 who devel-
oped a conventional EM algorithm for bivariate
case. Schafer and Yucel developed a fast MLE algo-
rithm based on a hybrid of EM and Fisher scoring
algorithm, which was used in conjunction with
MCMC algorithm for multiple imputation infer-
ence.10 The focus of the current paper is to provide
computational principles of this hybrid EM algo-
rithm as implemented in the R package called
mmllmmmmmm.

Installation of mlmmm proceeds in the same
fashion as other R packages using install.pack-
ages(“mlmmm”). There are a total of three com-
mands within this package: mlmmm.em() fits a
multivariate linear mixed-effects model with un-
structured covariance matrix on the random-effects
covariance matrix; mlmmmbd.em() fits a multi-
variate linear mixed-effects model with block-di-
agonal covariance matrix on the random-effects
covariance matrix; and mlm.em() fits multivariate
linear regression model with missing response val-
ues (fixed-effects only version). An example script
can be run by the following command: exam-
ple(mlmmm) after executing library(mlmmm).
There are two datasets that come with the
mmllmmmmmm: data(adg) and data(pain). These datasets
are described in detail in Sections 3 and 4, and as-
sociated help files are also available within
mmllmmmmmm.

The rest of this paper is organized as follows.
Section 2 reviews the multivariate mixed-effects
model and gives the computational algorithm im-
plemented in mmllmmmmmm package. Section 3 and 4
provide examples illustrating mmllmmmmmm on two ex-
amples with clustered and longitudinal data. 

DATA, MODEL AND METHODS FOR
MODEL FITTING

MULTIVARIATE GROUPED DATA WITH MISSING VALUES

Longitudinal studies or studies conducted under
clustered sampling are subject to grouped data.
Multivariate longitudinal or clustered data occur
when multiple responses measured over time for a
group of subjects (possibly at different occasions for
each individual), or, multiple responses measured

Recai M. YÜCEL R mlmmm PACKAGE: FITTING MULTIVARIATE LINEAR MIXED EFFECTS MODELS WITH MISSING VALUES

Turkiye Klinikleri J Biostat 2015;7(1)

13

* R. R: A Language and Environment for Statistical Computing. Vienna: R Foundation
for Statistical Computing; 2011. URL http://www.R-project.org/.  ISBN 3-900051-07-0. 



for subjects nested within naturally occurring
groups. Examples include multi-stage sampling
where individuals are nested within a primary sam-
pling unit such as a county or a school; clinical
studies where individuals are observed for several
characteristics over time. Highly prevalent prob-
lem in such studies is missing data, and the under-
lying model estimated by mmllmmmmmm is based on a
multivariate extension of a popular linear mixed-
effects model for longitudinal or clustered data
with arbitrary patterns of missing values. Figures 1
and 2 depict the examples of longitudinal or clus-
tered data with missing values, respectively.
mmllmmmmmm assumes that mechanism producing these
missing values is missing at random in the sense de-
fined by Rubin2 and Little and Rubin.4

MULTIVARIATE LINEAR MIXED-EFFECTS MODEL (MLMM)

Each of the responses matrices depicted in Figures
1 and 2 is denoted by (ni×r) for sample unit i ; i =
1, 2 . . . ,m. Note that each row of yi is a joint real-

ization of variables Y1, Y2, ..., Yr. Multivariate lin-
ear mixed-effects model is given by

yi = Xiβ + Zibi + ∈i (1)

where Xi (ni x p) and Zi (ni x q) are known covari-
ate matrices, β (p x r) is a matrix of regression co-
efficients common to all units, and bi (q x r) is a
matrix of coefficients specific to unit i. In popular
terminology, β and bi are called “fixed effects” and
“random effects”, respectively. The ni rows of ∈i are
assumed to be independently distributed as N(0; ∑),
and that the random effects are distributed as
vec(bi)~N(0;Ψ) independently for i = 1, . . . ,m (the
“vec” operator vectorizes a matrix by stacking its
columns). Alternatively, the model (1) can be rep-
resented as

vec(yi)~Nnir
(vec(Xiβ), (Ir�Zi) Ψ (Ir�Zi)T + ∑�Ini

) (2)

In longitudinal applications, the matrices Xi

and Zi may include times of measurements, allow-
ing relevant aspects of the growth to vary across
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FIGURE 2: Multivariate clustered data with missing values denoted by question Marks.



subject. Similarly, in clustered applications, clus-
ter-specific or individual-specific covariates may be
included in Xi or Zi. In applications where the data
are drawn under a cluster sampling, for example,
inclusion of an intercept in Zi may suffice to cap-
ture the variations at both levels of clusters and in-
dividuals.

mmllmmmmmm allows two structures on Ψ, the un-
derlying covariance matrix for the random-effects
b1, b2, ..., bm: unstructured and block-diagonal. Un-
structured Ψ allows the random effects for any two
responses Yi and Yk to be correlated, and block-di-
agonal Ψ assumes that the random effects for each
response are independent of those for any other
response. Note that block-diagonal assumption is a
priori assumption and relies on a previous knowl-
edge on the substantive problem. The choice also
relies on estimability; in clustered data applica-
tions, for example, estimation of the unstructured
Ψ may not be feasible if the number of responses is
large.

MODEL FITTING TECHNIQUE

mmllmmmmmm implements a model fitting method that
combines the speed of the Fisher’s scoring algo-
rithm and the stability and consistency of EM al-
gorithm.1 Below key points of the computational
algorithm are provided, I refer readers to Schafer
and Yucel for details.10

In our settings, a traditional EM algorithm re-
gards the missing data as well as random effects as
missing data, and bases its algorithmic details on
the following factorization of the augmented-data
likelihood: 

L(θ│B) = L(Ψ│B)L(β,∑│Y,B) (3)

where θ = (Ψ,β,∑), Y = (Y1, ..., Ym) and B = (b1, ...,
bm). The overall maximum of the above likelihood
with respect to θ can be found by maximizing each
of the two factors separately, neither of which re-
quires iteration. Each cycle of EM maximizes the
expected logarithm of (3), where the expectation is
taken with respect to the conditional distribution
of B given Y with the parameters fixed at their cur-
rent estimates. However, this conventional EM al-
gorithm may suffer from very slow convergence,

and this slow convergence may become worse as
the missing data portions become large.

Complete-Data Procedure

When there are no missing values in yi, Fisher scor-
ing algorithm can be a better and more computa-
tionally efficient method to maximize the
following complete-data likelihood function,

where δi = vec(yi − Xiβ). Unlike (3),
the likelihood function given above does not in-
clude the random-effects, and by working with this
likelihood function, mmllmmmmmm does not suffer from
slow convergence as the amount of “missing data”
is now reduced.

Note that the variance-covariance matrix
above requires inversion and finding the de-termi-
nant of a large matrix whose dimensions depend on
the number of observations, to overcome this prob-
lem, we use the following relationship:

where

The simplified

version of the log-likelihood is,

(4)

Fisher scoring updates the current estimate
θt+1 by solving linear system C θt+1 = d, where
C = − E(ℓ"(θ(t))) and d = C(θ(t) + ℓ’(θ(t)). Upon
convergence, the final value of C −1 provides an es-
timated covariance matrix for θ.

For convenience of calculating respective de-
rivative, mmllmmmmmm operates on β and the nonredun-
dant elements of Ψ−1 and ∑−1. These matrices can
be expressed as
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observations, to overcome this problem, we use the following relationship:| | = ( ) ( ) ) = | | | |, where+ ( )) . The simplified version of the log-likelihood is,( ) | | | | + | | (4)

Fisher scoring updates the current estimate by solving linear system= , where ( ) ) and = ( ( ) ( )). Upon convergence,
the final value of provides an estimated covariance matrix for .

For convenience of calculating respective derivative, mlmmm operates on and

the nonredundant elements of and . These matrices can be expressed as= ,= ,
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where G1,G2,...,Gg and F1,F2,...,Fh are known sym-
metric matrices of dimensions  rq x rq and  r x r, re-
spectively. The number of free parameters in Ψ is
g = rq(rq + 1) / 2 when  Ψ is  unstructured and
g = rq(rq + 1) / 2 when it is block-diagonal.

Incomlete-Data Procedure

mmllmmmmmm combines a traditional EM with Fisher
scoring on  as explained above to overcome slow
convergence when portions of Y = (y1, y2, ..., ym)
are ignorably missing.2,4 In other words, Fisher
scoring is embedded within an EM algorithm
which augments the observed data with missing
portions of yi but not random effects. As in many
missing-data algorithms, the performance of this
algorithm is best when the proportion of partially
observed rows in yi is small, and degrades if the ob-
served data become very sparse; however, it does
not tend to slow down merely when the random
effects are poorly estimated.

Some of the noteworthy points of the algo-
rithm for the users of mmllmmmmmm are given below.
The loglikelihood function given in (4) is a linear
function of the sufficient statistics vec(yi) and
vec(yi)vec(yi)T. The expectations of these two sta-
tistics given the observed data are calculated as fol-
lows:

where ∑11 is the square sub-matrix of ∑ correspon-
ding to the observed elements, ∑21 is the rectangu-
lar sub-matrix of covariances between the missing
and observed elements, and                 and
denote the missing and observed portions of the j th
row of                                          Because         is a
linear function of bi, the expectation of yi without
conditioning on bi is obtained by direct substitu-
tion of                          for bi. Notice that the value
of ∑21∑11 varies by missingness pattern but not by
observational units  i = 1,2,...,m; computations can
be reduced by grouping rows with identical miss-
ingness patterns across units. The parameters of the
distribution of bi given yi(obs) are obtained by ap-
plying a reverse-sweep procedure to     and Ui to
de-condition upon yi(mis).

For the second sufficient statistic vec(yi)
vec(yi)T, one can apply a similar argument, first cal-
culating the conditional expectation given bi and
yi(obs), then averaging over the distribution of bi

given yi(obs). Let  yijk denote the kth element of the
jth row of yi. The formula for the expectation of
yijkyij’k’ depends on whether yijk and   yij’k’ are ob-
served or missing, and whether they are in the
same (j = j´) or different (j ≠ j´) rows. It is easy to
see that the expectation of yijkyij’k’ given yi(obs) is
given by: yijkyij’k’ if both are observed; yijk

E(yij’k’|yi(obs)) if yijk is observed and yijkyij’k’ is missing;
and

if both are missing. The covariance between yijk and
yij’k’ given yi(obs) is equal to 

if they are in the same row, and

if they are in different rows, where

comes from the regression predictions for the miss-
ing elements in the jth row of yi given the observed
elements. The covariance 
is obtained by noting that it is a linear function of
the elements of the covariance matrix for bi given
yi(obs).

The M-step requires us to maximize the ex-
pected loglikelihood computed in the E-step. This
expected loglikelihood has nearly the same form as
(4) and can be maximized by a slight modification
of the Fisher scoring procedure. 

Although the model fitting in the presence of
missing data in mmllmmmmmm is speedier than conven-
tional EM methods, it may be less stable when the
loglikelihood is oddly shaped. To improve stabil-
ity, mmllmmmmmm also implements a traditional EM pro-
cedure based on the augmented likelihood (3).
When the scoring fails to increase the loglikeli-
hood, the algorithm replaces our EM with the tra-
ditional EM step to guarantee the loglikelihood
increases.
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By-products of these algorithms that are avail-
able in mmllmmmmmm includes the followings:

Standard errors of β: It is well known that
conventional EM algorithm does not produce the
standard errors of the unknown parameters. Be-
cause the Fisher scoring algorithm is used in the M-
step, upon convergence, expected information
matrix is calculated to produce the standard errors.

Likelihood values: The likelihood values are
also calculated at each iteration, which can also be
used to assess the goodness-of-fit of the models
under investigation.

Estimates of the random-effects: Empirical
Bayes estimates of the random-effects are available,
which can be used in applications where the pro-
filing of individual clusters is required.

Missingness patterns: Functions of mmllmmmmmm
provide missingness patterns observed in y. See ex-
amples for detailed usage.

FURTHER NOTES

Algorithms designed to maximize likelihood func-
tions resulting from complex incompletedata prob-
lems, especially scoring, may require good starting
values. mmllmmmmmm, by default, obtains starting values
as follows: For each response variable Yj, a univari-
ate linear mixed model using the cases for which
Yj is observed. Fast and stable algorithms imple-
mented in llmmmm provide ML estimates for the por-
tions of ∑, Ψ and β pertaining to Yj. Off-diagonal
elements of ∑ and blocks of  are initially set to zero.

Sections 3 and 4 below demonstrate the details
of examples of mmllmmmmmm.

EXAMPLE 1: 
CLUSTERED DATA APPLICATION

Data example used here come from “SAS System
for Mixed Models” by Littell et al.16 and it is an ex-
ample data within PPRROOCC  MMIIXXEEDD documentation.
This dataset was collected to investigate average
daily gains (AGD) of steers fed for 160 days. Treat-
ments are four diets consisting of a base ration and
three levels of a medicated feed additive added to
the base ration. Objective of the experiment was to

determine the optimal level of feed additive to
maximize the average daily gain. Total of 32 steers
were housed in eight barns, the blocking factor,
where each barn held four steers which were indi-
vidually fed. Note that barns give rise to correlated
observational units, steers. Therefore, in the setting
below, we will view the barn as the clustering unit.
Steers were randomly assigned to treatments. For
the purposes of illustration we imposed missing
values on the response values under missing com-
pletely at random fashion. 

SET-UP

As any model-fitting procedure, functions of
mmllmmmmmm require assignments of response matrix Y
where the missing values should be denoted as
“NA”, predictor or design matrix X, specific
columns of X to indicate the fixed and the random-
effects are required and a vector indicating the
cluster number of observations. Here the response
variables are average daily gain in grams (add$y.1),
initial weight on the log scale (adg$y.2).

library(mlmmm)

data(adg)

y=cbind(adg$y.1,adg$y.2)#form the response matrix col-
names (y)=c(“adg”, “initwt”)

library(lattice)

xyplot(y[,1]~log(y[,2] | subj,ylab=”Average Daily Gain”,
xlab=”Initial Weight”, data=adg)

Figure 3 displays the relationship of daily gain
versus initial weight in each barn. To extent sam-
ple size allows for speculation, average daily gain
seems to be positively correlated with the initial
weight in barns 1, 3 and 8; no apparent relation-
ship is seen in barns 2, 4, 5, and 7; and small nega-
tive correlation in barn 6. The visual evidence
motivates the use of barn-specific effects, or ran-
dom-effects. However, the small number of obser-
vations per cluster limits the random-effects to
only intercept (i.e. Zi = 1).

A vector, subj, indicating the cluster member-
ship needs to be specified to use the functions of
mmllmmmmmm:

subj=adg$subj # subj is barn
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Now we must specify the design matrix, or X.
Because the four treatment are not clearly ordered,
we choose X with columns corresponding to an in-
tercept and three dummy covariates for treatments.
This particular selection of X allows the population
means for the four subjects to be estimated freely.
We will also allow the intercept to randomly vary
by subject. When using the functions
(mlmmm.em(), mlmmmbd.em(), mlmm.em()), the
individual covariate matrices are combined into a
single matrix called pred. The pred matrix has the
same number of rows as Y. Each column of Xi and
Zi must be represented in pred. In this example, be-
cause Zi is merely the first column of Xi, we do not
need to enter that column twice. Finally, pred is
simply the matrix Xi, stacked upon itself eight
times, which corresponds to number of barns:

# dummies below are treatment indicators

pred<cbind(adg$pred.int,adg$pred.dummy1,adg$pred.d
ummy2, adg$pred.dummy3)

xcol<-1:4

zcol<-1

###### Brief look at the response, subj and pred:

> head(y)

adg Initwt

[1,] 1.03 5.823046

[2,] 1.54 6.167516

[3,] NA 6.095825

[4,] 1.86 5.913503

[5,] 1.31       NA

[6,] 2.16 6.111467

> head(subj)

># the first rows of y belong to barn 1, second four be-
long to barn 2, etc. :

[1] 1 1 1 1 2 2

> head(pred)

int trt1 trt2 trt3

[1,] 1    1     0    0

[2,] 1    0     1    0

[3,] 1    0     0    1

[4,] 1    0     0    0

[5,] 1    1     0    0

[6,] 1    0     1    0

The setup of the arguments required by the
functions of mmllmmmmmm is now complete. Next sec-
tion will focus on the three functions:
mlmmm.em(), mlmmmbd.em() and mlm.em:

MODEL FITTING VIA THE FUNCTIONS OF MLMMM

Here we fit three different models: unstructured Ψ,
block-diagonal Ψ and finally fixed-effects only
model.

# Model 1, unstructured Psi

# below the argument maxits indicate the maximum
number of iterations and

# eps indicates the convergence criteria

unst.psi.result<mlmmm.em(y,subj,pred,xcol,zcol,max-
its=200,eps=0.0001)

# results:

# estimates of the fixed-effects:

> unst.psi.result$beta

[,1]       [,2]

[1,] 1.80250000  5.87971447

[2,] -0.46625000 0.06618314

[3,] 0.06625000  0.12094579

[4,] -0.09433734 0.08992500
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FIGURE 3: Relationship of initial weight and daily gain before and after deletion.



#standard errors of these estimates, s.e.(vec(\hat{beta})):

> sqrt(diag(unst.psi.result$xtwxinv))

[1] 0.20734241 0.11940668 0.11940668 0.11940668
0.05418227 

[6] 0.07126197 0.07126197 0.07126197

# estimates of the variance components:

> unst.psi.result$sigma

[,1]       [,2]

[1,] 0.05703166 0.01981654

[2,] 0.01981654 0.02031310

> unst.psi.result$psi

[,1]        [,2]

[1,] 0.28689583 0.027679844

[2,] 0.02767984 0.003172657

# likelihood values at each iteration:

> unst.psi.result$$logll

[1] 54.44853 59.08997 65.07784 67.99571 68.81427
69.15461 [7] 69.21332 69.22813 69.23204 69.23318
69.23353 69.23364 [13]69.23368 69.23369

Investigating the fixed effects β and its stan-
dard errors indicate that only treatment 1 effect is
significantly associated with daily gain. For treat-
ments 1 and 3 this is a negative association, and the
estimates show that there is a decrease of -.46625
and -.09433 units in these gains for treatments 2
and 3. Initial weight (on the log scale) is not signif-
icantly associated with the treatments, which, sub-
stantively, provides an opportunity to see the
effects that are purely attributable to the treatment
rather that initial weight. Note, however, that the
size of clusters can be a barrier in obtaining consis-
tent estimates and presents a challenge in this ex-
ample, and these results should be interpreted with
this in mind. To overcome the challenge of estima-
tion, one might consider eliminating a priori as-
sumed dependency on the  random-effects b1 and
b2. Let’s see how the model assuming independent
random-effects t in this example:

# Model 2, block-diagonal Psi

# below the argument maxits indicate the maximum
number of iterations and

# eps indicates the convergence criteria

>bd.psi.result<mlmmmbd.em(y,subj,pred,xcol,zcol,
maxits=200,eps=0.0001)

# results:

# estimates of the fixed-effects:

> bd.psi.result$beta

[,1]        [,2]

[1,] 1.80250000  5.87971447

[2,] -0.46625000 0.06463376

[3,] 0.06625000  0.12094579

[4,] -0.09847355 0.08992500

#standard errors of these estimates, s.e.(vec(\hat{beta})):

> sqrt(diag(bd.psi.result$xtwxinv))

[1] 0.19593782 0.12305126 0.12305126 0.12305126
0.05396993 [6] 0.07355409 0.07355409 0.07355409

> bd.psi.result$sigma

[,1        [,2]

[1,] 0.06056659 0.02235376

[2,] 0.02235376 0.02164093

> bd.psi.result$psi

, , 1

[,1]

[1,] 0.2465655

, , 2

[,1]

[1,] 0.001661140

# likelihood values at each iteration:

> bd.psi.result$logll

[1] 53.76033 59.97957 65.15120 66.95766 67.42337
67.52435 [7] 67.54583 67.55096 67.55242 67.55289
67.55306 67.55313 [13]67.55315 67.55316

Regardless of the assumption on Ψ, exactly
same estimates are obtained for β. The standard er-
rors, however, differ. Differences are not large
enough to make any substantive difference in con-
cluding the significance of the treatment effects.
The final model to be fit is the fixed-effects-only
model: 

# Model 3: fixed-effects only:

# below the argument maxits indicate the maximum
number of iterations and
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# eps indicates the convergence criteria

no.psi.result<mlm.em(y,subj,pred,xcol,maxits=200,
eps=0.0001)

# results:

# estimates of the fixed-effects:

> no.psi.result$beta

[,1]       [,2]

[1,] 1.80250000  5.8797145

[2,] -0.46625000 0.0748543

[3,]  0.06625000 0.1209458

[4,]  0.09970017 0.0899250

# standard errors of vec(beta):

> sqrt(diag(no.psi.result$xtwxinv))

[1] 0.19500522 0.27577902 0.27577902 0.27577902
0.05413598 [6] 0.07655984 0.07655984 0.07655984

> no.psi.result$sigma

[,1]       [,2]

[1,] 0.30421628 0.04111835

[2,] 0.04111835 0.02344564

> no.psi.result$logoll

[1] 45.34702 45.18980 45.08828 45.05638 45.04649
45.04320 [7] 45.04203 45.04160 45.04144 45.04137
45.04135

While the similar substantive conclusions are
seen, the standard errors of the               is conside-
rably higher than the previous two estimates. An-
other interesting change is seen in the direction of
the estimate of β41. Treatment 2 effect still remains
to be the only significant effect.

The likelihood-ratio (LR) statistic for testing
the block-diagonal model against the unstructured
alternative is 2(69.23369-67.55316)=3.36106; com-
paring this value to      yields a p-value of 0.0667.
Inclusion of a nonzero Ψ12 would not make the
model fit significantly better than the one with Ψ12

= 0 at α = 0.05 level test. Conducting the test of H0:
Ψ = 0 require more careful handling as explained
by Stram and Lee.17 In such testing the difference in
the -2logL(θ) under the null and alternative hy-
pothesis is compared to the sampling distribution
of the LR statistic under H0. This is a 50:50 mixture
of  and        for unstructured (there are three

unknown parameters in Ψ. Testing unstruc-
tured Ψ versus fixed-effects-only model yields

which yields
a p-value of essentially zero. Similar result is ob-
tained under a block-diagonal version of Ψ as well,
indicating that in this application, block-diagonal
version of Ψ is well suited under the realized data.

Functions mlmmm.em, mlmmmbd.em and
mlm.em also provide users to see the missingness
patterns by calling the attribute names rmat, and
patt to see which missingness pattern each row of
y belongs: 

> unst.psi.result$rmat

[,1] [,2]

[1,]  1    1

[2,]  0    1

[3,]  1    0

> unst.psi.result$patt

[1] 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 [28]1
1 1 2 1

> y[3,]

adg   initwt

NA 6.095825

> y[4,]

adg initwt

1.860000 5.913503

> y[5,]

adg initwt

1.31    NA

EXAMPLE 2:
LONGITUDINAL DATA APPLICATION

Data example used here come from the observa-
tional study on pediatric pain as reported by Fa-
nurik, Zeltzer, Roberts and Blount.18 The data
consist of up to four observations on 64 children 8
to 10. The first response variable (y.tot below) is
the length of time in seconds that the child can tol-
erate keeping his or her arm in very cold water, a
proxy measure of pain tolerance. After cold be-
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pattern each row of y belongs:

> unst.psi.result$rmat

[,1] [,2]

[1,] 1 1

[2,] 0 1

[3,] 1 0

> unst.psi.result$patt

[1] 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

[28]1 1 1 2 1
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# eps indicates the convergence criteria

no.psi.result<mlm.em(y,subj,pred,xcol,maxits=200,

eps=0.0001)

# results:

# estimates of the fixed-effects:

> no.psi.result$beta

[,1] [,2]

[1,] 1.80250000 5.8797145

[2,] -0.46625000 0.0748543

[3,] 0.06625000 0.1209458

[4,] 0.09970017 0.0899250

# standard errors of vec(beta):

> sqrt(diag(no.psi.result$xtwxinv))

[1] 0.19500522 0.27577902 0.2757 7902 0.27577902 0.05413598

[6] 0.07655984 0.07655984 0.07655984

> no.psi.result$sigma

[,1] [,2]

[1,] 0.30421628 0.04111835

[2,] 0.04111835 0.02344564

> no.psi.result$logoll

[1] 45.34702 45. 18980 45.08828 45.05638 45.04649 45.04320

[7] 45.04203 45.04160 45.04144 45.04137 45.04135

While the similar substantive conclusions are seen, the standard errors of the vec( ) is

considerably higher than the previous two estimates. Another interesting change is seen in

the direction of the estimate of . Treatment 2 effect still remains to be the only significant

effect.
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comes intolerable, the child removes his or her
arm. The arm is toweled off and no harm is caused.
Missing data exist due to absenteeism, broken arms,
or other reasons. Two measures were taken during
a first visit followed by two more measures during
a second visit after a two-week gap. The second re-
sponse variable is the pain tolerance on log scale
(y.rat below).

During the first visit, children were classified
into one of two groups: attenders and distracters
according to the style of coping with the pain. The
children were asked what they were thinking
about during the trials. Those who were thinking
about the experiment, the experimental apparatus,
the feelings from their arms and so on were classi-
fied as attenders. Those who thought about other
things were classified as distracters. A treatment
was administered prior to fourth occasion, and the
treatment consisted of a ten-minute counseling in-
tervention to either attend, distract or no advice.
The no advice treatment consisted of a discussion
without advice regarding to any coping strategy.
Interest lies in the main effects of treatment, style
of coping and interactions between treatment and
counseling, which was expected. 

Another substantive interest is to jointly
model pain rating and pain tolerance (on the log

scale). Figure 4 displays this relationship over time
for some children, showing the existence of child-
specific effects. For example, while child 2, 4, 6
show a positive correlation of pain rating and tol-
erance over time, this is rather neutral for child 3
and 7, and negative for child 1 and 8. Fitting mod-
els with random slope allowing different growth
trajectory for kids as well as random intercept
model could be of interest.

SET-UP

Original data was in a short form, repeated obser-
vations were provided as a single entry, first step
was to transform this data into the long form. The
example data within mmllmmmmmm  package is in the long
form with up to four repeated observations for each
child id. This data is called via

data(pain)

:

> data(pain)

> head(pain)

y.tol y.rat intercept agey cs tmt.1 tmt.2 subj

1 3.022861     3       1      1  0     1     0    1

2 3.564166     4       1      1   0    1     0    1

3 2.659560     7       1      1   0    1     0    1

4 2.460443     8       1      1   0    1     0    1

5 3.336837     6       1      1   1    0     1    2

6 3.187179     5       1      1   1    0     1    2

# univariate summaries of the response variables:

> summary(pain$y.tol)

Min.  1st Qu.  Median  Mean  3rd Qu. Max.  NA’s

1.831  2.781    3.166   3.315   3.691    5.481 16.000

> summary(pain$y.rat)

Min.  1st Qu.  Median  Mean  3rd Qu.  Max.   NA’s

1.000  4.000    5.500  5.544  7.000   10.000  15.000

Now form the response matrix y, design ma-
trix pred and subject vector subj. I also create a
“time” vector to be included in the pred matrix so
that measurement times can be incorporated in fit-
ting the models.

y=as.matrix(cbind(pain$y.tol,pain$y.rat))
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FIGURE 4: Relationship of y1 and y2 over four occasion for selected children.



Recai M. YÜCEL R mlmmm PACKAGE: FITTING MULTIVARIATE LINEAR MIXED EFFECTS MODELS WITH MISSING VALUES

# Note that tolerance is already on the log scale

#

# now form the pred matrix:

time=rep(c(1:4),64)

pred=as.matrix(cbind(pain$intercept,time,pain$agey,
pain$cs,pain$tmt.1,pain$tmt.2))

#

subj=pain$subj

xcol=1:ncol(pred)

zcol=1

MODEL FITTING

First, let’s focus on the random-intercept model.
Three models assuming unstructured, block-diago-
nal Ψ and fixed-effects models can be fit executing
the following commands at the R prompt:

long.res=mlmmm.em(y,subj,pred,xcol,zcol,maxits=200,
eps=0.0001)

longbd.res=mlmmmbd.em(y,subj,pred,xcol,zcol,max-
its=200, eps=0.0001)

longfixed.res=mlm.em(y,subj,pred,xcol,maxits=200,
eps=0.0001)

#

> long.res$beta

[,1]        [,2]

[1,] 2.78010388  5.84824480

[2,] -0.02358553 0.04208358

[3,] 0.31310707 -0.36155428

[4,] 0.40946967  0.10651299

[5,] 0.18166287 -0.47664034

[6,] 0.35006801 -0.15425094

> longbd.res$beta

[,1]        [,2]

[1,] 2.78191892  5.83114245

[2,] -0.02403048 0.04440265

[3,] 0.30645353 -0.34965681

[4,] 0.40401472  0.10901264

[5,] 0.18845836 -0.47448911

[6,] 0.35568336 -0.14704982

> longfixed.res$beta

[,1]        [,2]

[1,] 2.7835930  5.78420103

[2,] -0.0249679 0.04240086

[3,] 0.3091541 -0.30784237

[4,] 0.4314645  0.06151034

[5,] 0.1822180 -0.45719037

[6,] 0.3221639 -0.07203939

> sqrt(diag(long.res$xtwxinv))

[1] 0.22291995 0.02383897 0.17190954 0.16453747
0.19596008 [6] 0.19225994 0.58827661 0.09208623
0.44245824 0.42486540 [11]0.50663055 0.49779217

> sqrt(diag(longbd.res$xtwxinv))

[1] 0.22157118 0.02388268 0.17079559 0.16349014
0.19491453 [6] 0.19123704 0.58478712 0.09227789
0.43936606 0.42195669 [11]0.50366088 0.49489902

> sqrt(diag(longfixed.res$xtwxinv))

[1] 0.15978309 0.04112023 0.10048185 0.09641079
0.11513351 [6] 0.11353507 0.47047000 0.12107561
0.29586172 0.28387475 [11]0.33900248 0.33429598

Initial examination of the fixed-effects reveal
that significant effects include the coping style
(slight significance) on the pain tolerance. Age,
treatment 2 appear to be slightly significant with
the pain tolerance. The realized data fail to show
significant association of time and treatment 1 with
pain tolerance, as well as any association of time,
age, coping style and treatment with pain rating.
While pain tolerance is decreasing over time, cop-
ing pain is improving over time. Although not sig-
nificant, pain rating is negatively impacted by age
and treatment; positively impacted by time and
coping style, as expected intuitively. 

LR test can be performed using the last values
of the output similar to the clustered data applica-
tion given in Section 3:

> long.res$logll[long.res$iter]

[1] -254.1050

> longbd.res$logll[longbd.res$iter]

[1] -255.1398

> longfixed.res$logoll[longfixed.res$iter]

[1] -344.798
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showing that the unstructured version of Ψ is not
supported by data, in other words, the random-ef-
fects can be assumed independent apriori. Note
that, under any of these three models, the error
terms’ covariance matrices reveal the negative cor-
relation of residual terms of pain tolerance and pain
coping: 

> long.res$sigma

[,1]        [,2]

[1,] 0.17190333 -0.09755071

[2,] -0.09755071 2.58807873

> longbd.res$sigma

[,1]       [,2]

[1,] 0.1726225 -0.1057802

[2,] -0.1057802 2.5994805

> longfixed.res$sigma

[,1         [,2]

[1,] 0.5224774 -0.2720314

[2,] -0.2720314 4.5297034

To see how the models with random intercept
and random slope fit, we modify the argument
zcol:

zcol=1:2

long.res=mlmmm.em(y,subj,pred,xcol,zcol,maxits=200,
eps=0.0001)

longbd.res=mlmmmbd.em(y,subj,pred,xcol,zcol,max-
its=200, eps=0.0001)

longfixed.res=mlm.em(y,subj,pred,xcol,maxits=200,
eps=0.0001)

> long.res$logll[long.res$iter]

[1] -247.6662

> longbd.res$logll[longbd.res$iter]

[1] -249.6028

> longfixed.res$logoll[longfixed.res$iter]

[1] -344.798

Examining these log-likelihood values against
the ones obtained under random-intercept only
model show that the model allowing different in-
tercepts as well as growth over time for children
for pain tolerance and pain coping is better sup-
ported by data.

DISCUSSION

R package mmllmmmmmm presents an important compu-
tational tool to help researchers in the analysis of
multivariate longitudinal or clustered data with
missing values. It should be noted that this pack-
age can also be used as a great companion to pack-
ages such as ppaann, which is ideal for conducting
inference via multiple imputation.10 mmllmmmmmm
should be used in incomplete-data problems con-
sisting of many small clusters in which case its per-
formance is near optimal. If the problem contains
large clusters (e.g. multi-stage surveys) where large
amounts of missing data are seen, MCMC-type al-
gorithms should be preferred as the computational
cost required by mmllmmmmmm can be high.

It is straightforward to show that the multi-
variate mixed-effects model underlying mmllmmmmmm
implies a set conditional univariate models for each
response variable given the others, where the oth-
ers are incorporated into the columns of Xi. Thus,
the estimation procedures implemented in
mmllmmmmmm are also appropriate for longitudinal
analyses with partially missing covariates, when
those covariates are later going to be incorporated
into an analytic model as linear fixed effects. Fu-
ture extensions of mmllmmmmmm will address nonlinear
associations and interactions, which is not possible
to address in the current settings. 

Future implementations will also address
higher levels of clustering where missing values are
not restricted to higher level of observational units
(i.e. missing covariates at the subject or cluster
level, for example, non-time-varying covariates).
Finally note that models in mmllmmmmmm assume that
the rows of yi are conditionally independent given
B with common covariance matrix ∑. In the uni-
variate case, this assumption is commonly relaxed
by allowing a residual covariance matrix of the
form            where Vi has a simple (e.g., autore-
gressive or banded) pattern with a small number of
unknown parameters. Sensible multivariate exten-
sions of these patterned covariance structures pro-
duces models and algorithms that are complicated
even apart from missing data. For example, the 
obvious extension of                                             to 
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Examining these log-likelihood values against the ones obtained under random-

intercept only model show that the model allowing different intercepts as well as growth over

time for children for pain tolerance and pain coping is better supported by data.

5. Discussion

R package mlmmm presents an important computational tool to help researchers in the

analysis of multivariate longitudinal or clustered data with missing values. It should be noted

that this package can also be used as a great companion to packages such as pan, which is

ideal for conducting inference via multiple imputation.11 mlmmm should be used in

incomplete-data problems consisting of many small clusters in which case its performance is

near optimal. If the problem contains large clusters (e.g. multi-stage surveys) where large

amounts of missing data are seen, MCMC-type algorithms should be preferred as the

computational cost required bymlmmm can be high.

It is straightforward to show that the multivariate mixed-effects model underlying

mlmmm implies a set conditional univariate models for each response variable given the

others, where the others are incorporated into the columns of . Thus, the estimation

procedures implemented in mlmmm are also appropriate for longitudinal analyses with

partially missing covariates, when those covariates are later going to be incorporated into an

analytic model as linear fixed effects. Future extensions of mlmmm will address nonlinear

associations and interactions, which is not possible to address in the current settings.

Future implementations will also address higher levels of clustering where missing

values are not restricted to higher level of observational units (i.e. missing covariates at the

subject or cluster level, for example, non-time-varying covariates). Finally note that models

in mlmmm assume that the rows of yi are conditionally independent given B with common

allowing a residual covariance matrix of the form | , where has a simple (e.g.,

31

autoregressive or banded) pattern with a small number of unknown parameters. Sensible

multivariate extensions of these patterned covariance structures produces models and

algorithms that are complicated even apart from missing data. For example, the obvious

extension of ( )~ (0, ) to ( )~ (0, ( )) seems too restrictive for
many longitudinal datasets, because the response variables , … , would be required to

have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible

manner may prove be a daunting task in the multivariate case. In many cases, apparent

nonzero correlations among the rows of may arise because of a misspecified model for the

mean structure over time. The problem may sometimes be reduced or eliminated by

including additional (e.g., higher-order polynomial) terms for time in the covariate matrices

or .
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seems too restrictive for
many longitudinal datasets, because the response
variables Y1,...,Yr, would be required to have an
identical autocorrelations. Accounting for autocor-
related residuals in a plausible manner may prove
be a daunting task in the multivariate case. In many
cases, apparent nonzero correlations among the
rows of ∈i may arise because of a misspecified
model for the mean structure over time. The prob-
lem may sometimes be reduced or eliminated by in-
cluding additional (e.g., higher-order polynomial)
terms for time in the covariate matrices Xi or Zi.
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autoregressive or banded) pattern with a small number of unknown parameters. Sensible

multivariate extensions of these patterned covariance structures produces models and

algorithms that are complicated even apart from missing data. For example, the obvious

extension of ( )~ (0, ) to ( )~ (0, ( )) seems too restrictive for
many longitudinal datasets, because the response variables , … , would be required to

have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible

manner may prove be a daunting task in the multivariate case. In many cases, apparent

nonzero correlations among the rows of may arise because of a misspecified model for the

mean structure over time. The problem may sometimes be reduced or eliminated by

including additional (e.g., higher-order polynomial) terms for time in the covariate matrices

or .
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