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Estimation of Right Censored Nonparametric 
Regression Solved by kNN Imputation:  

A Comparative Study

kNN Tamamlama Yöntemi ile Çözülen Sağdan 
Sansürlü Parametrik Olmayan Regresyon 

Modelinin Tahmini: Karşılaştırmalı Bir Çalışma

ABSTRACT This paper introduces an estimation procedure for the right-censored nonparamet-
ric regression model using smoothing spline method. In this process, to overcome the censors-
hip problem we used an imputation method based on k-nearest neighbors (kNN). Among some 
known censorship solutions, such as Kaplan-Meier weights (Kaplan and Meier, Miller) and Sy-
nthetic data transformation (Koul et al.), the most important advantage of the kNN imputation 
method is that it does not depend on a distribution. After solving the problem of censorship, 
the most important problem in obtaining the optimal estimation of non1parametric regression 
function by using smoothing spline will be the selection of the smoothing parameter. In order 
to achieve this aim, three commonly used criteria such as generalized cross-validation (GCV), 
Bayesian information criterion (BIC) and risk estimation using classical pilots (RECP) are con-
sidered in this study. A Monte-Carlo simulation study and a “kidney infection recurrence” data 
are carried out to realize the purposes of this study. Thus, it is determined that which selection 
criterion is more successful in estimating the non-parametric model with right censored data. 
Obtained results from both simulation and real-world studies show that BIC has remarkable 
performance among others. Also, it can be seen that GCV is better than BIC for large sample size. 
RECP has mediocre performance.  

Keywords: Censored data; nonparametric regression; smoothing spline; kNN imputation;  
  smoothing parameter   

ÖZET Bu makalede, düzleştirici splayn yöntemi kullanılarak sağdan sansürlü parametrik olma-
yan regresyon modeli için bir tahmin prosedürü sunulmaktadır. Bu süreçte, sansür sorununun 
üstesinden gelmek için, en yakın komşulara (kNN) dayanan bir tamamlama (yerine koyma) yön-
temi kullanıldı. Kaplan-Meier ağırlıkları (Kaplan ve Meier, Miller) ve Sentetik veri dönüşümü 
(Koul ve ark.) gibi bilinen bazı sansür çözümleri arasında, kNN değerleme yönteminin diğer-
lerine göre en önemli avantajı, bir dağılıma bağlı olmamasıdır. Sansür problemini çözdükten 
sonra, düzeltme parametresi kullanarak parametrik olmayan regresyon fonksiyonunun en uygun 
tahminini elde etmedeki en önemli problem, düzeltme parametresi seçimi olacaktır. Bu amaca 
ulaşmak için, genelleştirilmiş çapraz doğrulama (GCV), Bayes bilgi kriteri (BIC) ve klasik pilotlar 
kullanılarak risk tahmini (RECP) gibi yaygın olarak kullanılan üç kriter ele alınarak düzeltme 
parametresi seçilmiştir. Bu çalışmanın amaçlarını gerçekleştirmek için bir Monte-Carlo simülas-
yon çalışması ve “böbrek enfeksiyonun tekrar etmesi” verileri ile uygulama çalışması yapılmıştır. 
Böylelikle parametrik olmayan regresyon modelinin sağdan sansürlü verilerle tahmin edilmesin-
de hangi seçim kriterinin daha başarılı olduğu tespit edilmiştir. Hem simülasyon hem de gerçek 
veri çalışmalardan elde edilen sonuçlara göre, BIC yönteminin diğerleri arasında dikkate değer 
bir performansa sahip olduğu kolaylıkla görülmektedir. Ayrıca, GCV yönteminin büyük örnek-
lem büyüklüğü için BIC'den daha iyi sonuçlar verdiği söylenebilir. RECP yöntemi ise diğer iki 
yönteme göre vasat bir performans sergilemiştir. 
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Censored data is an important problem in many different fields, especially in survival analysis inc-
luding medical research studies. As is known, the completeness and quality of the data must be 
ensured in order to obtain a qualified model and inference, because the censored observations 

seriously affect the accuracy and reliability of the analysis. Therefore, in order to avoid biased and ineffe-
ctive results, it is necessary to overcome the censored data in the modeling process. To achieve this goal, 
there are a number of ways in which censored observation can be removed from the data set, which is a 
primitive technique to overcome censorship, because it leads to loss of information and biased results. In 
the literature, there are more common methods to solve censorship such as Kaplan-Meier weights (Miller, 
Stute, ; Orbe et al.) and synthetic data transformation (Koul et al., Leurgans, Aydın and Yılmaz) but, such 
methods have some theoretical limitations.1-7 Although these common methods give efficient and con-
sistent results, they cannot provide the accuracy of censored observations individually. The imputation 
methods are preferred in this context. 

The imputation is expressed as a process that replaces censored observations with predicted values in a 
data set with the help of the specified method. In the literature, some examples of imputation include 
Schafer, Batista and Monard, Rubin and van der Laan, Yenduri and Iyengar and Andridge and Little.8-12 
There are also various imputation methods used for different types of data such as fuzzy K-means, singular 
value decomposition, multiple imputations by chained equations.13,14 Most of these methods are developed 
to solve missing data problems but some of these methods are also suitable for solving the right-censorship 
problems. The kNN imputation can be counted as one of them. The kNN method computes the imputed 
value from average of measured k records in the dataset and it replaces it with the censored observation. 
Most important advantage of the kNN method is that it allows the imputation for all kinds of data such as 
high-dimensional data, right, left censored or interval censored data and it is independent from distributi-
on assumptions. Some of the studies on the kNN imputation in the literature can be considered as Batista 
and Monard, Malarvizhi and Thanamani, and Chen and Shao.9,15,16

In this study, nonparametric regression model is estimated by smoothing splines under right-censored 
data problem solved by kNN imputation. However, as expressed earlier, in the smoothing method, the 
accuracy of the estimation is largely dependent on the smoothing parameter. The main purpose of this 
paper is to determine the optimum smoothing parameter by using GCV, BIC and RECP criteria. In order 
to observe how the criteria work, a comparative Monte-Carlo simulation study and then the kidney re-
currence data set are considered as a real data example

The paper is organized as follows. Section 2 includes the smoothing spline method based on kNN impu-
tation. Selection of the smoothing parameter is discussed in Section 2.3. Performance measurements for 
evaluate the estimated models are introduced in Section 2.4. Results of the simulation study and kidney 
recurrence dataset are presented in Section 3.1 and Section 3.2 respectively. Finally, the discussion and 
conclusions are given in Section 4 and Section 5.

MATERIAL AND METHODS

Consider the right-censored nonparametric regression model as follows

ti = g(zi) + εi,  1 ≤ i ≤ n (1)

where ti ’s are the data points of the right-censored response variable, zi ’s are the values of nonparametric 
explanatory variable, g(.) is an unknown smooth function to be estimated and εi ’s are the random error 
terms with mean zero and constant variance. Here, ti ’s are censored by some random variable ci . In this 
case, response variable is updated according to censor and new response variable can be written as



Turkiye Klinikleri J Biostat. 2019;11(2):83-92

85

Ersin YILMAZ et al.

𝑦𝑖 = min  (𝑡𝑖 ,𝑐𝑖 ) and 𝛿𝑖 = 𝐼(𝑡𝑖 < 𝑐𝑖 ) (2)

where 𝑦𝑖 ’s are the values of the new response variable and  𝛿𝑖 ’s contain censor information about the data 
points. If  𝑦𝑖  is censored then 𝛿𝑖 =0 and if not 𝛿𝑖 =1. In this context, modelling of the data can be possible 
with (𝑦𝑖 , 𝑧𝑖 ,𝛿𝑖 ) instead of (𝑡𝑖 ,𝑧𝑖 ). Thus, it can be said that in the real world the nonparametric regression 
model with right-censored data is given by

𝑦𝑖 = 𝑔(𝑧𝑖 ) + 𝜀𝑖 ,  1 ≤ 𝑖 ≤ 𝑛 (3)

k NN IMPUTATION

As mentioned above, to solve censorship in model (3), kNN imputation is used. It should be noted that 
kNN works independently of the distributions of both 𝑦𝑖  and 𝑐𝑖 . Basically, kNN estimates each censored 
observation by using the average value of its k-nearest neighbours. Some important properties can be 
considered as follows: (i) the kNN does not manipulate data, it uses actual data points to estimate censored 
ones. (ii) the kNN works with both discrete and continuous variables. (iii) the kNN is fully nonparametric, 
which makes it preferable.

Working procedure of the kNN imputation is quite simple. It works with distances between data points 
and uses them as a measure of similarity. There are different distance measures such as Minkowski, Man-
hattan, Euclidean and Mahalanonbis. In general, the Euclidean distance is used in kNN problems and is 
used here, which can be defined as follows

In order to obtain the estimations of the right-censored response observations, an algorithm is developed 
for kNN imputation, given in the following Table 1.

TABLE 1: Algorithm for kNN imputation method.

Algorithm1: kNN imputation for right censored dara

Input:Right-censored dataset 𝑦𝑖 

Censoring indicator 𝛿i

Number of nearest neigbours 𝑘

Values of  explanatory variable 𝑧𝑖 

Output:Imputed dataset 𝐲𝑘𝑛𝑛 = (𝑦1
𝑘𝑛𝑛,…, 𝑦𝑛

𝑘𝑛𝑛)𝑇

1 𝐛𝐞𝐠𝐢𝐧

2 𝐟𝐨𝐫 (𝑖 = 1 to 𝑛) do

3 𝐢𝐟 (𝛿𝑖 = 0) 𝐝𝐨  (if data point is censored)

4 𝐟𝐨𝐫(j = 1 to 𝑛)   do

5 Find the Euclidean distances (4) between 𝑧𝑗 𝑎𝑛𝑑 𝑧𝑖  for each censored data point

6 sort the distances from small to large

7 𝐟𝐨𝐫 (𝑗 = 1 to 𝑘)  do

8 Take the first 𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑘 values of 𝑦𝑖  associated to sorted distances 

9 Calculate the 𝑖 𝑡h imputed value (𝑦1
𝑘𝑛𝑛) with average of nearest 𝑘 records of 𝑦𝑖 

10Replace the imputed values  (𝑦1
𝑘𝑛𝑛)  with censored data points (𝑦𝑖 ,𝛿𝑖 =0) in censored data set 𝐲=(𝑦1,…,𝑦𝑛)

11 Return 𝐲𝑘𝑛𝑛=(𝑦1
𝑘𝑛𝑛,…, 𝑦𝑛

𝑘𝑛𝑛)𝑇

12 𝐞𝐧𝐝

 Σ𝑖 =1
  (𝑎𝑖 - 𝑏𝑖 )2 (4)
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As stated in the Algorithm given above, it is important the choice of number of neighbours k. In this con-
text, Cartwright et al.17 recommended as k = 1 or 2. However, if k=1, the method will be highly sensitive 
to outliers. Since this study uses medical data, it is more appropriate to use a k value between the interval 
(see, Batista and Monard).2,10,9 Now, imputed values can be used in smoothing spline method to estimate 
the nonparametric model.

SMOOTHING SPLINES

Smoothing spline method produces the estimations that fit perfectly to the data by using each data point as 
a knot. A roughness penalty term is added to the goodness of fit to avoid this perfect approach. For some 
constant 𝜆 > 0, smoothing spline estimates are obtained by minimizing the penalized least squares, given by

𝑃𝑅𝑆𝑆 = Σ  (𝑦𝑖 −𝑔(𝑧𝑖 ))2 + 𝜆 ∫(𝑔′′(𝑧) ) 2𝑑 𝑧 (5)

where the first term in the right side of the equation  (5) represents the goodness of fit and the second 
term denoted as ∫(𝑔′′(𝑧) ) 2𝑑 𝑧 shows the penalty term controlled by a smoothing parameter 𝜆 where fun-
ction 𝑔(𝑧𝑖 ) is continuous on the interval [𝑎,𝑏] and notation 𝑔′′ means second derivative of the function. 
As mentioned before, the choice of the parameter  𝜆 is highly important and it is discussed in Section 2.3.

Let 𝑦𝑖 
𝑘𝑛𝑛 be the values of the response variable which is formed by kNN imputation method. In this case, 

the equation (5) can be rewritten as follows

𝑃𝑅𝑆𝑆 = Σ (𝑦𝑖 
𝑘𝑛𝑛−𝑔(𝑧𝑖 ))2 + 𝜆 ∫(𝑔′′(𝑧) ) 2𝑑 𝑧 (6)

In matrix and vector form, the equation (6) can be defined as

𝑃𝑅𝑆𝑆 = (𝐘𝑘𝑛𝑛−𝐍𝐠) 𝑇 (𝐘𝑘𝑛𝑛−𝐍𝐠) + 𝜆𝐠𝑇𝐊𝐠 (7)

where 𝐍 is a 𝑛×𝑞 incidence matrix with elements 𝑁𝑖 𝑗=1 if 𝑧𝑖 =𝑚𝑗 and 𝑁𝑖 𝑗=0 otherwise where 𝑚1,…,𝑚𝑞 are 
the ordered distinct values of 𝑧𝑖 ′𝑠. 𝐊 is a 𝑞×𝑞 positive definite symmetric penalty matrix, given by

𝐊 = 𝐐𝑇𝐑−1𝐐

where 𝐐 and 𝐑 are the (𝑞−2)×𝑞 and 𝑞−2×𝑞−2 dimensional symmetric and tri-diagonal matrices, respecti-
vely. Elements of these matrices can be calculated as

𝑄𝑗𝑗 = 1/h𝑗, 𝑄𝑗,𝑗+1 = −(1/h𝑗 + 1/h𝑗+1), 𝑄𝑗,𝑗+2 = 1/h𝑗+1, 

𝑅𝑗−1,𝑗 = 𝑅𝑗,𝑗−1 = h𝑗/6, 𝑅𝑗𝑗 = (h𝑗+ h𝑗+1)/3, 

After some mathematical calculations, the fitted values of function 𝐠 that minimizes the equation (7) can 
be written as follows

ĝ𝑘𝑛𝑛 = (𝐍′𝐍 + 𝜆𝐊) −1𝐍′𝐘𝑘𝑛𝑛 (8)

for a chosen parameter 𝜆>0. Also, if 𝑧𝑖 ’s are ordered and distinct, then the incidence matrix can be consi-
dered as 𝐍=𝐈, which is also stated as a special case of the smoothing spline method. Using equation (8), the 
mean vector for the model can be written as follows

𝛍 = ĝ𝑘𝑛𝑛 =  (𝐇𝜆
𝑘𝑛𝑛𝐘𝑘𝑛𝑛)  =  (Ŷ𝑘𝑛𝑛 =  𝐸[𝑌|𝑧]) (9)

where 𝐇𝜆
𝑘𝑛𝑛=𝐍(𝐍′𝐍+𝜆𝐊) −1𝐍′ is a smoothing matrix. From here, the estimates of the variance of the error 

terms (𝜎𝜀
2) can be obtained by residual sum of squares

𝑅𝑆𝑆 = Σ𝑖 =1
   (𝑦𝑖 

𝑘𝑛𝑛 − 𝑦𝑖 
𝑘𝑛𝑛)2 = (𝐘𝑘𝑛𝑛 − Ŷ𝑘𝑛𝑛)𝑇 (𝐘𝑘𝑛 𝑛− Ŷ𝑘𝑛𝑛) (10)
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Here, if we replace  Ŷ𝑘𝑛𝑛 with (𝐇λ
𝑘𝑛𝑛𝐘𝑘𝑛𝑛) then

𝑅𝑆𝑆 = (𝐘𝑘𝑛𝑛 − 𝐇λ
𝑘𝑛𝑛𝐘𝑘𝑛𝑛)𝑇 (𝐘𝑘𝑛𝑛 − 𝐇λ

𝑘𝑛𝑛𝐘𝑘𝑛𝑛) = ||(𝐈 − 𝐇λ
𝑘𝑛𝑛) 𝐘𝑘𝑛𝑛||2

Thus, the estimate of 𝜎𝜀
2 for kNN imputation method based on smoothing spline is given by

𝑀𝑆𝐸(ĝknn) = 𝐸||𝐘𝑘𝑛𝑛 − ĝknn||2 = ||(𝐈 − 𝐇λ
𝑘𝑛𝑛) 𝐘𝑘𝑛𝑛||2 = (𝐠𝑘𝑛𝑛)𝑇 (𝐈 − 𝐇λ

𝑘𝑛𝑛) 𝐠𝑘𝑛𝑛 + 𝜎2(𝐈 − 𝐇λ
𝑘𝑛𝑛)2 (12)

See the study of Aydın and Yılmaz (2018) for more detailed discussions. In this context, depending on 
equation (12), relative efficiency can be written as follows

(11)𝜎𝜀
2 = 

𝑅𝑆𝑆
= 

||(𝐈 − 𝐇λ
𝑘𝑛𝑛) 𝐘𝑘𝑛𝑛||2

𝑡𝑟(𝐈 − 𝐇λ
𝑘𝑛𝑛)2 𝑡𝑟(𝐈 − 𝐇λ

𝑘𝑛𝑛)𝑇 (𝐈 − 𝐇λ
𝑘𝑛𝑛) 

where 𝑡𝑟(𝐈 − 𝐇λ
𝑘𝑛𝑛)2 denotes the degrees of freedom for a smoothing parameter 𝜆 and 𝑡𝑟(.) presents trace 

of a square matrix.

SELECTION OF THE SMOOTHING PARAMETER

In this study, choice of the smoothing parameter, which is of a crucial importance for the model estima-
tion, is performed by three selection criteria such as GCV, BIC and RECP, as mentioned earlier. Calcula-
tions of the values obtained from the criteria are given in the Table 2.

In the calculation of 𝑅𝐸𝐶𝑃(𝜆), Ŷ𝑝
𝑘𝑛𝑛 and 𝜎𝑝

2 denote the pilot estimates of fitted values and the variance of the 
error terms for chosen a pilot smoothing parameter (𝜆𝑝), respectively. In practice, since the variance 𝜎2 is 
generally unknown, 𝜎2 is used and it can be easily calculated by the equation (11). Note also that variance of 
error terms (𝜎𝜀

2) is called as a variance of the regression model. In order to compare the selection methods, 
two evaluation measurements are considered here and they are discussed in the following section.

EVALUATION MEASUREMENTS

To evaluate the performances of the estimated model based on different selection methods, mean squared 
error (𝑀𝑆𝐸(ĝknn)) and relative efficiencies (𝑅𝐸(ĝ𝑀1

  , ĝ𝑀2 )) are used in this study. Definitions of these mea-
surements are given, respectively, as.

(13)𝑅𝐸(ĝ𝑀1
  , ĝ𝑀2 )= 

𝑀𝑆𝐸(ĝ𝑀1  )
𝑀𝑆𝐸(ĝ𝑀2  )

where  ĝ𝑀1  represents the estimated function based on first method and similarly ĝ𝑀2  for the second 
one. It can be said that if 𝑅𝐸(ĝ𝑀1

  , ĝ𝑀2 )<1 then ĝ𝑀2   is more efficient than ĝ𝑀1
  . The measurements given 

in the equations (12-13) used in the simulation study and real data example to compare the selection 
methods.

This study is carried out in accordance with the principles of the Helsinki Declaration.

TABLE 2: Formulations for the selection criteria.

Criterion Formula

𝐺𝐶𝑉(𝜆) (Craven and Wahba)18 𝑛−1||(𝐈 − 𝐇λ
𝑘𝑛𝑛) 𝐘𝑘𝑛𝑛||2/𝑛−1𝑡𝑟(𝐈 − 𝐇λ

𝑘𝑛𝑛)2

𝐵𝐼𝐶(𝜆) (Schwarz)19 𝑛−1||(𝐈 − 𝐇λ
𝑘𝑛𝑛) 𝐘𝑘𝑛𝑛||2  + (log(𝑛) /𝑛) 𝑡𝑟(𝐇λ

𝑘𝑛𝑛)

𝑅𝐸𝐶𝑃(𝜆) (Lee)20 𝑛−1||(𝐘 − Ŷ𝑝
𝑘𝑛𝑛||2 +𝜎𝑝

2𝑡𝑟(𝐇λ
𝑘𝑛𝑛)
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RESULTS

SIMULATION STUDY

In this section, a Monte-Carlo simulation study is carried out to assess the performances of the smoothing 
parameter selection criteria under the right-censored data. As mentioned above, the response observations 
which is formed by kNN imputation are estimated by smoothing spline method based on different criteria. In 
this respect, it can be said that different modified spline estimators are also tested for the right censored data.

We first generate the response variable (𝑡𝑖 ) from the following nonparametric regression model 

𝑡𝑖 =𝑔(𝑧𝑖 )+𝜀𝑖  , 𝑖 =1,2,…,𝑛 (14)

where the nonparametric function 𝑔(.) is generated by 𝑔(𝑧𝑖 )=𝑒𝑧  /2cos (5𝑧  2) where 𝑧𝑖 ~𝑈0,1, and 
𝜀𝑖 ~𝑁(0,𝜎2=0.5).  To censor the observations of the response variable in the model (14), the censoring vari-
able 𝑐𝑖  is produced from normal distribution with some specific calculations, given by

𝑢𝑖 ~𝑁(𝜇𝑡,𝜎2=0.5)  and 𝑐𝑖 =𝑢𝑖 ∗𝜃

where 𝜃 determines the censoring level and 𝜇𝑡 is mean value of 𝑡𝑖 ’s. It should be noted that 𝜃=(1.2, 1.1, 1)  
corresponds to the censoring levels (C.L.) at (2%, 20%, 50%), respectively. Hence, the censored response 
variable 𝑦𝑖  is formed by the equation (2). Also, for each C.L in simulation experiments, we generated 1000 
random samples of size 𝑛=30, 100, and 250.

Before starting analysis, we first obtain the response variable (𝑦𝑖 
𝑘𝑛𝑛) which is formed by kNN method. Note 

that the obtained right-censored (𝑦𝑖 ), uncensored (𝑡𝑖 ) and imputed (𝑦𝑖 
𝑘𝑛𝑛) data points are provided visually 

in the following Figure 1 for some simulation configurations.

The numerical outcomes from the simulation study are summarized in the following Table 3 and Figure 2.

From Table 3, we see that large 𝑀𝑆𝐸 values are obtained for high censoring levels. It is also noted that 
there is an obvious negative correlation between the sample sizes and the 𝑀𝑆𝐸 values. As for selection 
criteria, it is clearly seen that 𝐵𝐼𝐶 gives better results than the others for small and medium sample sizes 
and 𝐺𝐶𝑉 has the best MSE scores for large samples. In this simulation study, 𝑅𝐸𝐶𝑃 did not perform well 
but it should be noted that it still has closer scores to 𝐵𝐼𝐶 and 𝐺𝐶𝑉. All criteria have almost same values, 
especially for large sample of size 𝑛=250.

FIGURE 1: For a small, two medium and a large sample sizes with C.L=2%, 20%, 50%, and 50%, each panel shows the scatter plots of the simulated data points.
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FIGURE 2: Each panel shows the response observations imputed by kNN, and the estimated curves from the smoothing spline estimators based on BIC, 
GCV, and RECP criteria using the data sets with different censoring levels for all simulation configurations.

The first row of the Figure 1 displays the results of the small sized samples (𝑛=30) with three censoring 
levels (𝐶.𝐿.=2%, 20% and 50%). Similarly, the second row shows the results for n=100 and the third for 
𝑛=250. As can be seen from Figure 3, all estimated curves give results that support the numerical outcomes 
given in Table 3. Note that as the sample sizes based on the same censoring levels get large, the spline 
estimates are get closer each other, as expected. When the estimated curves with high censoring rates are 
examined, it can be seen that these curves are forced to start from lower than others due to the effect of 
censorship. When the censoring level of 50% is really considered as heavy censored data, it is understood 
that kNN imputation can successfully overcomes this type of problematic data. 

REAL DATA EXAMPLE

In this section, a kidney data set provided by McGilehrist and Aisbett is used for comparing the selection 
methods on real data.21 The authors estimated the recurrence times of infection by Cox regression model 
with four predictor variables. Note that dataset is also supplied from frailtyHL package in R software. This 
dataset includes information about 76 kidney patients. In this study, only frailty (sensitivity to infection) 
is used as a nonparametric variable and recurrence time of infection (rtime) is used as a response variable 

TABLE 3: The estimated MSE values and relative efficiencies from the smoothing spline estimators based on three different 
selection criteria for all simulation configurations.

n 30 100 250

C.L.  2% 20% 50% 2% 20% 50% 2% 20% 50%

MSE

GCV 0.2902 0.3034 0.3893 0.2771 0.2811 0.3260 0.2391 0.2671 0.2898

BIC 0.2314 0.2233 0.3470 0.2749 0.2747 0.3260 0.2394 0.2690 0.2917

RECP 0.3614 0.3665 0.4803 0.3033 0.3110 0.3484 0.2541 0.2734 0.2962

Relative 
Eff.

GCV 1.3063 0.9624 0.8192 1.0157 0.9567 0.9197 0.9959 0.9673 0.9776

BIC 0.7667 0.7658 0.6659 0.9845 0.9531 0.9094 1.004 0.9742 0.9842

RECP 1.60 1.3146 1.2207 1.1177 1.0817 1.0875 1.0389 1.0391 1.0228
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for construction of the nonparametric regression model. This dataset also contains a censoring indicator 
(1= infection occurs; 0 = censored) associated with rtime. The number of censored observations is calcu-
lated as 18 from the censoring indicator variable, which means that the censoring rate in this data set is 
23.68%. This rate indicates that kidney data is moderate censored.

The nonparametric model with kidney data is defined as

𝑟𝑡𝑖 𝑚𝑒𝑖 =𝑔(𝑓𝑟𝑎𝑖 𝑙𝑡𝑦𝑖 )+𝜀𝑖 ,   𝑖 =1,…,76  (15)

Firstly, the imputed response values (𝑟𝑡𝑖 𝑚𝑒𝑖 
𝑘𝑛𝑛) are provided by algorithm given in Table1. The estimation 

of nonparametric regression function in the model (15) can then be obtained by smoothing spline using 
different criteria. Accordingly, the outcomes from the real data set are given in Table 4 and Figure 3.

As can be seen from Table 4, it can be said that BIC criterion has good results in terms of MSE and rela-
tive efficiency. The BIC is followed by GCV and RECP, respectively. The same comments can be said for 
Figure 4. It should also be noted that it is important to say that the results obtained from simulation and 
real data studies support each other.

DISCUSSION

In this paper, right-censored data imputed by kNN method is modelled non-parametrically by smoothing 
spline method based on three different selection criteria. This study focuses on the selection of an opti-
mum smoothing parameter for smoothing spline method under right censored data. Performances of the 
smoothing spline estimators based on three selection criteria are compared with the help of a simulation 
study and real-world data. 

TABLE 4: MSE values and relative efficiencies from real data.

C.L. GCV BIC RECP

MSE 1.2679 1.2296 1.3061

RE 1.0009 0.9556 1.0461

FIGURE 3: The imputed response values and their fitted curves obtained by smoothing spline using BIC, GCV and RECP. Also, the censored response values are 
marked by black points and imputed data observations are marked by green points in the left panel. The relative efficiencies of the selection criteria are displayed 
by bar plot in right panel.
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Finally, based on simulation and real data outcomes, the following conclusions can be noted:

• BIC method gives the best estimates for both simulation and real data studies, if right censored observa-
tions are completed with kNN imputation method. 

• Although RECP does not show a good performance, GCV and RECP methods gives similar results. 
However, when they are inspected in terms of relative efficiencies, it can be seen that three criteria have 
satisfying results.

• When details of simulation study is examined, GCV has given better results than BIC for large sized 
samples. In this sense, GCV can be recommended as a good selection criterion for large sample sizes.

CONCLUSION

The results of this paper show that BIC is the most appropriate selection criterion for the choice of the 
smoothing parameter when the kNN imputation method is considered in order to cope with censored 
data.
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