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A Discrete Quasi Akash Distribution with
Applications

Kesikli Quasi Akash Dagilimi ve Uygulamalan

ABSTRACT A two-parameter discrete quasi Akash Distribution (DQAD) which includes one
parameter discrete Akash distribution as a particular case has been obtained using infinite series
method of discretization from quasi Akash distribution. Its moments about origin and central
moments have been obtained. Behaviors of statistical constants including coefficients of vari-
ation, skewness, kurtosis and index of dispersion have been discussed. Maximum likelihood
estimation has been discussed for estimating its parameters. Finally, applications of the proposed
distribution have been explained using two real datasets form thunderstorm events and the
goodness of fit has been compared to other discrete distributions.

Keywords: Quasi Akash distribution, discretization, moment generating function, moments,
maximum likelihood estimation, goodness of fit.

OZET Ozel durum olarak tek parametreli kesikli Akash dagilimini kapsayan iki parametreli ke-
sikli quasi Akash dagilimi (DQAD), quasi Akash dagiliminin kesikli hale getirilmesinde sonsuz
seriler yontemi kullanilarak elde edilmistir. Dagilima ait merkezi momentler elde edilmistir.
Yayilim indeksi, carpiklik, basiklik ve degisim katsayini kapsayan istatistiksel sabitlerin 6zellik-
leri tartigtlmigtir. Dagilim parametrelerini tahmin etmek i¢in en ¢ok olabilirlik tahmini tartigil-
mustir. Son olarak, 6nerilen dagilimin uygulamalari firtina olaylarini igeren iki gercek veri seti
kullanilarak agiklanmig ve uyum iyiligi diger kesikli dagilimlarla kargilastirilmistir.

Anahtar Kelimeler: Quasi Akash dagilimi; kesikli hale getirme; moment iireten fonksiyon;
momentler; en ¢ok olabilirlik tahmini; uyum iyiligi

n the last few decades, many efforts have been done to derive a disc-

rete analogue of continuous distribution. The main reasons for disc-

retizing continuous distributions are (i) to derive alternative discrete
distributions to the classical discrete distributions commonly used in the
analysis of count data, failure data and reliability data (ii) the discrete
analogue of continuous distributions avoids the use of continuous distri-
butions in the case of strictly discrete data.

In many practical life situations, the observed values are measured on
discrete scales or even if they are measured on continuous scales, they are
measured to two or three decimal places and do not contain all points in
the interval. For instance in case of lifetime data (waiting time or survi-
val time), even if the measurements are taken on a continuous scale, the
observations may be recorded in a way that makes a discrete distribution
more appropriate model. Again, in survival analysis, it is most common
to use continuous distributions to model discrete data. The discretization
of a continuous distribution acts as a subterfuge to avoid the use of con-
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tinuous distribution to model discrete time data. It has been pointed by Lai (2013) that discretization of a
continuous lifetime model is an interesting and intuitively appealing approach to derive a discrete lifetime
model corresponding to the continuous one.! It has been observed that in real world the original variables
may be continuous in nature but discrete by observation and , therefore, it is reasonable and convenient
to model the situation by an appropriate discrete distribution generated from the underlying continu-
ous distribution preserving one or more important characteristics including probability density function
(pdf), moment generating function (mgf), moments, hazard rate function, mean residual life function etc.,
of the continuous distribution.

A number of methods are available in Statistics literature to derive a discrete analogue of continuous dist-
ribution. One of the first proposed discretization methods is based on the definition of pmf that depends
on an infinite series. The method of discretization by an infinite series has been proposed by Good (1953)
who has proposed the discrete Good distribution to model the population frequencies of species and dis-
cussed the estimation of parameters.” A random variable Y'is said to have a discrete Good distribution if
its pmf can be expressed as

ayyﬁ
P(Y=y)=——:;y=0,12,....,8ER and a€(0,1)

=

The method of infinite series is characterized by the following definition

Definition 1.1: Let X be a continuous random variable having pdf f, (x) and parameter with support on
R. Then the corresponding discrete random variable Y has pmf given by

P(Y=y)=P(y:0)= wax(j;ﬁ) (1.2)

where 6 may be the vector of parameters indexing the distribution of X

This method of discretizing a continuous distribution has been studied by several researchers including
Kulasekara and Tonkyn (1992), Doray and Luong (1997), Sato et al (1999), Nekoukhou et al (2012), are
some among others, who proposed a version of the method when the continuous random variable of
interest is defined on R, 3436, Thus, if the continuous random variable Xis defined on R, , the pmf of cor-
responding discrete random variable Y can be defined as

P(Y =y)=P(y:0)= LB0) ey

D )

Using (1.3), Berhane and Shanker (2018) introduced a discrete Akash distribution (DAD) defined by its
pmf”?

=)

P(y;6)= (e9 2)(1+y )™ 3 =0,1,2,..,0 >0 (1.4)
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Various statistical properties, estimation of parameter and applications of the DAD for count data have
been discussed by Berhane and Shanker (2018).” Note that DAD is a discrete analogue of a continuous
AXkash distribution proposed by Shanker (2015) having pdf and cdf®

0 e
fl(x;t9)=9+2(l+x2)e3; x>0, 6>0 (1.5)
E(x;9)=1-[1+%i:2)}e“’“; x>0,6>0 (1.6)

Shanker (2017) obtained Poisson—Akash distribution (PAD), a Poisson mixture of Akash distribution,
having pmf”®

o x+3x+(07+20+3)
Bx0)= . 1) : x=0,1,2,..0 >0 (1.7)
+

Important statistical and mathematical properties, estimation of parameter using the method of moments
and the method of maximum likelihood along with applications of PAD to model count data have been
studied by Shanker (2017).°

Shanker et al (2018) introduced a quasi Poisson-Akash distribution (QPAD) defined by its pmf

2 243 0% +2a6 +20
0 @ +xyh(a +3a + +a);x=Qle9>Qa6+2>O (1.8)
af +2 (6+1)"

B(x;0) =
It should be noted that QPAD is a Poisson mixture of quasi Akash distribution (QAD) proposed by Shan-
ker (2016) and defined by its pdf and cdf!!

02
b +2

£ (x:0)= Qx+0ﬁ)e”*; x>0, >0 af+2>0 (1.9)

9x(9x+2)

F(x:0,a)=1-|1
: (w0.a) [+ al+2

]e'ax; x>0,0>0,00+2>0 (1.10)

Shanker (2016) has discussed its various mathematical and statistical properties including its shapes for
varying values of parameters, moments based measures, hazard rate function, mean residual life function,
stochastic ordering, mean deviations, order statistics, Renyi entropy measure, Bonferroni and Lorenz cur-
ves and stress-strength reliability along with estimation of parameter and applications of the distribution
for modeling lifetime data from biomedical sciences and engineering."

A second common method of discretization of a continuous distribution is based on the survival functi-
on of the original continuous distribution and was proposed by Nakagawa and Osaki (1975) and has the
interesting feature of preserving the original survival function on its integer part for the generated pmf.'
According to kemp (2004), a discrete random variable Y corresponding to a continuous random variable
X can be defined as follows:*
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Definition 1.2: Let X be a continuous random variable having survival function S, (x)=1-F, (x)= P(X = x).
Then, the discrete random variable Y= [ X] has pmf given by

P(Y=y)=P(»:0)=S,(»:0)-S,(»+10), »=0,1,2,... , (1.11)

whereY = [ X]=largest integer less than or equal to X.

Note that the resulting pmf will be in closed form if the original survival function has closed form. Using
the method of survival function of distribution, Nakagawa and Osaki (1975) proposed a discrete Weibull
distribution, a discrete analogue of Weibull distribution, and studied its properties, estimation of parame-
ters and applications."

In the present paper, a discrete quasi Akash distribution (DQAD), a discrete analogue of continuous Quasi
Akash distribution introduced by Shanker (2016) has been investigated using a discretization method
based on an infinite series.!’ Some distributional properties including moment generating function, mo-
ments and moments based measures, behaviors of coefficient of variation, skewness, kurtosis and index
of dispersion of DQAD have been discussed. The estimation of parameters of the distribution has been
discussed using the method of maximum likelihood. The goodness of fit of DQAD has been carried out
using real datasets from thunderstorm events and the fit has been compared with one parameter discrete
distributions including discrete Akash distribution and Poisson-Lindley distribution (PLD) and two-para-
meter quasi Poisson-Akash distribution (QPAD).

I A DISCRETE QUASI AKASH DISTRIBUTION

Using equation (1.3), the pmf of the discrete random variable Y corresponding to a continuous random
variable X following QAD (1.5) can be obtained as

3
P (:0)= (e 1) )(a+0y2)e'9y;y=0,1,2,...,9>0, ab+2>0 (2.1)

e’ (a(eg—l)z+8 e6+l)

We would call this distribution, a discrete quasi Akash Distribution (DQAD). It can be easily verified that
DAD (1.4) is a particular case of DQAD for o = 6.

The corresponding cdf and the survival function of DQAD can be obtained as

[a (ee —1)Z +0{(y+1)(e9 —1)+1}+ Qe"]
a(eﬁ —1)z +09(e” +1)

a(e'-1) +0{r+1)(e’ -1)+1}+0e91
a(eﬁ —1)2 +0(e9 +1)

The behaviors of the pmf and cdf of DQAD for varying values of its parameter 6 and @ have been shown

F(y;0,0)=1- 0 5 20,1,2,..,0>0,a0+2>0, (2.2)

S(y;e,a)J e 1 =01,2,.,0 >0, a6 +2>0 (2.3)

graphically in figures 1 and 2, respectively.
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FIGURE 1: Behaviour of pmf of DQAD for varying values of the parameters 6 and o

2y +1

Since > ] ¢™ is a decreasing function for y =1, P, (;0,a ) is log-concave and the-

Py (v:6,a)
refore, the DQAD has an increasing hazard rate and unimodality. The interrelationship between log-con-

P4(y+1;9,a)_
[ I+y

cavity, unimodality and increasing hazard rate of discrete distributions are available in Grandell (1997).!*
Further, [P4 (y; 0,a )]2 =P, (y -1;0,a ) P, (y + 1;0,0() for y = 2, which implies unimodality, by theorem
3 of Keilson and Gerber (1971).5

I MOMENTS AND ASSOCIATED MEASURES

The probability generating function (pgf) and the moment generating function (mgf) of DQAD can be
obtained as
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FIGURE 2: Behaviour of cdf of DQAD for varying values of the parameters @ and a.

a(e" —t)2 +t9(e5 +t)

G(t)= (e(’—l)3

a e6—1)2+0(e6 +1)

and

)

(¢ -1)

Jfort=¢é’,

M(t)= e’ (a(ee —1)2 +0(e’ +1)

(1 - e'(g_')j
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T T | | T T
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X
(3.1)
Jfort=6 (3.2)

It can be easily verified that the function in (3.2) is infinitely differentiable with respect to ¢, since it invol-

. . . . . . 4
ves exponential terms of its argument. This means that one can derive all moments about origin u, ,r =1

of DQAD from its mgf.

The first four moments about origin of DQAD can thus be obtained as

192



Berhane ABEBE et al. Turkiye Klinikleri J Biostat 2018;10(3):187-99

, (6+a)ezg+(40 2a)e +0+a

%(e 1) +6(’ +1)}(e -1)

o (B+a)e’ +(110-a)e® +(110-a)e’ +0 +a

o %(e —1) +6(e +1)ke —1)Z

, (0+a)e” +(260 +2a)e” +(660 - 6a )e +(260 +2a )e’ +6 +a

ol {z(e 1) +0(e +1)}(e -1)

o (B+a)e +(9a+570)e* +(30260 -10a )™ +(3026 - 10ax )™ +(9a +570)e” +6 +a

<%z(e —1) +6(e +1 }(e —1)

uy =

' N7 ' A
Using the relationship & =£ (Y - )= 2( k)l‘k (‘Ml ) between central moments and moments
=0

about origin, the central moments of DQAD are obtained as

, {(az +00 )e” + (80— 4a* )e +(6a* ~146ct +46% )e*’ + (407 - 4a* ) }
e

+(0:2 +46* +5a6)

fe@ -1 o )b 1)

W, =

(o +a0? )" + (1860 —ad” -5a° )" +(9a* - 5100 +12a6” )e”
+(46° +1000 - 5067 - 50 ) + (7500 - 50 +86° +160:6” )™
+(9a’ +246" - 5106 - 6600 - 6606” ) +(76a’ + 760 +20a:6” )™
+(60a” +900” + & +46° )’

{((e" -1) +Q(e9 +1)}(e" -1)

(a4 + a39) 1o (46a9 —a’0 -a )e“” + ((x03 ~27a* -850°0 + 630.°6> )e”
+ (1320(4 — 40000 +132¢26> + 40a6° )e89 + (14900(30 — 628007 +232a6° + 460 - 294" )e79

+ (378a4 +640* ~18280a° +2340%a° + 56a6° )e‘“’ + (7349a3 +5700%6% - 486a6° - 294a* +18860* )e”
+ (32000{3 ~ 124007 -104a0’ +1320* +2086" )e“" + (18894 ~27a* -3550°6 - 46800 + 486° )e”

+(2000°a + 7000’ +2076%a” ~ o' +646* e + (' +46° + 700 +150°60> +1306” )e’

{z(e” 1) +6(ef +1)}(e" -1)

u, =
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The coefficient of variation (C.V), coefficient of skewness (\/ﬁl ), coefficient of kurtosis (6, ) and index of

dispersion (y ) of DQAD can be expressed as

a’ +0a e’ +(8ab -4a’ ) +(6a” —140a + 46° )™ +(46* - 40’ )¢’
0

+(a2+402+5a9)
u B (a+0)e” +(40-2a)e’ +60 +a

(¢ +a0? ) + (1800 ~a6” ~50* )" + (90 - 510 a” +120067 )™
+(40° +100 @ 506" ~ 50 )e™ + (750 a* =50 +86° +160:67 Je™?
+(9a’ +246° - 510007 - 660 6” ~ 6600 )™ + (70a’ +700” + 20067 )™’
+(60a” +906” + o +46° e’

JB

__
l (1, )3/2 , (a2 +0a)e49 +(8a0—4a2)e39 +(60¢2 —1490{+492)€26
n (4(92 -4a’ )e9 + (a2 +46° + 50{6)

%

(ot +a'0)e" +(4606° -6 —a* )™ + (ab® ~27a* -850 + 63a°60* )™

+(132a" - 40000 +1320°0” + 4020° )™ + (149000 - 628a°0° + 23200 +46°* ~294a* )

+(378a" +640° ~18280c" +2340°a’ +5600° )e*” + (73400 +570a°0” — 4860:6° ~294c* +1886°* )e™?
+(32000" ~1240°07 ~1040:6° +132a* +2086* )e*? + (1886* ~27a* — 3550’0 — 4686°a* + 480°cr )™

+(2000°a + 7000 +2070°a” —a* +646* )’ + (o' +46* + 72’0 +15°0” +13a0’ )’
B, =t -
2 2 2

o , (@ +6a)e* + (800 - 4a” )’ + (60 ~ 140t +40° )e*’
+(492 —4a? )eg + (oz2 +46% + 5a0)

) (oc2 + 6 )e‘m + (8a9 —4a? )e” + (6052 —146a + 46> )eze
o2 {+ (492 —4a’ )e’9 +(oc2 +40* +5a0) }

=‘u—l,= {(9+a)629+(46_2a)ee+H+a}%(eﬁ_1)2+9(e’9+1)ke9_1)

4

The following tables 1, 2, 3, 4, 5 and 6 summarize the behavior of mean, variance, coefficient of variation,

coefficient of skewness, coefficient of kurtosis and index of DQAD for varying values of the parameters

0 and o .
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TABLE 1: Mean of DQAD for varying values of parameters 8 and « .

9 0.2 0.5 1.0 2.0 3.0 4.0 5.0
02 14.7738 14.4520 13.9584 13.1050 12.3930 11.7901 11.2729
0.5 5.7355 5.3905 4.9264 4.2687 3.8251 3.5056 3.2645
1 26814 2.3235 1.9381 1.5220 1.3013 1.1645 1.0715
2 1.1199 0.8027 0.5737 0.4007 0.3291 0.2900 0.2653
3 0.5879 0.3494 0.2229 0.1444 0.1154 0.1003 0.0911
4 0.3131 0.1601 0.0945 0.0580 0.0452 0.0387 0.0347
5 0.1564 0.0724 0.0407 0.0240 0.0183 0.0155 0.0138

TABLE 2: Variance of DQAD for varying values of parameters 6 and o .

B 0.2 0.5 1.0 2.0 3.0 4.0 5.0
02 76.2384 77.8252 79.8573 82.2208 83.0780 83.0112 82.3746
05 12,6237 13.2355 13.6829 135792 13.0206 12.3745 11.7518
1 3.3793 3.5835 3.5169 31114 2.7559 2.4866 2.2820
2 0.9468 0.8997 0.7405 0.5507 0.4547 0.3979 0.3605
3 04576 0.3492 0.2455 0.1652 0.1323 0.1146 0.1034
4 0.2586 0.1558 0.0973 0.0610 0.0477 0.0408 0.0366
5 0.1401 0.0708 0.0410 0.0245 0.0187 0.01580 0.0140

TABLE 3: C.V of DQAD for varying values of parameters 6 and « .

0 0.2 0.5 1.0 2.0 3.0 4.0 5.0
02 0.5910 0.6104 0.6402 0.6919 0.7355 0.7728 0.8051
05 0.6194 0.6749 0.7509 0.8632 0.9434 1.0033 1.0501
1 0.6856 0.8147 0.9676 1.1589 1.2757 1.3541 1.4099
2 0.8688 1.1847 1.4999 1.8521 2.0489 21752 2.6230
3 1.1507 1.6912 22231 2.8134 3.1509 3.3731 35313
4 1.6239 2.4645 33010 4.2607 4.8323 5.2206 5.5039
5 2.3927 3.6740 4.9729 6.5106 7.4590 8.1206 8.6134

TABLE 4: Skewness of DQAD for varying values of parameters 6 and o .

0 0.2 0.5 1.0 2.0 3.0 4.0 5.0
0.2 1.1255 1.0936 1.0631 1.0515 1.0720 1.1062 1.1461
05 1.0659 1.0136 1.0209 1.1301 1.2527 1.3630 1.4586
1 09710 0.9834 11411 1.4338 1.6438 1.7963 1.9105
2 0.9005 1.2377 1.6741 21775 2.4579 26338 2.7520
3 0.9595 1.6836 23717 3.0976 3.4922 37411 39115
4 1.3339 24011 3.3831 4.4542 5.0683 5.4749 5.7656
5 2.1288 3.5930 5.0022 6.6234 7.6043 8.2805 8.7798
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TABLE 5: Kurtosis of DQAD for varying values of parameters € and o .

0 0.2 0.5 1.0 2.0 3.0 4.0 5.0
02 4.9347 4.8533 4.7542 4.6553 4.6421 4.6808 4.7520
05 4.7988 4.6169 45152 4.6519 4.9514 5.2937 5.6381
1 45321 4.3438 45637 5.4151 6.2576 6.9856 7.5983
2 41397 4.6292 6.0795 8.5435 10.2775 115043 12.3912
3 37986 5.8038 9.1002 13.8928 17.0323 19.1868 20.7265
4 4.0260 8.4824 14.9126 24,3392 30.8064 35.4751 38.9829
5 6.3473 15.3388 28.2938 48.2803 62.9261 74,0981 82.8908

TABLE 6: Index of Dispersion of DQAD for varying values of parameters 6 and c .

P 0.2 0.5 1.0 2.0 3.0 4.0 5.0
02 5.1604 5.3851 5.7211 6.2740 6.7036 7.0408 7.3073
05 2.2010 2.4553 2.7775 3.1811 3.4040 3.5300 35999
1 1.2603 1.5423 1.8146 2.0443 2.1178 2.1353 2.1298
2 0.8454 1.1208 1.2008 1.3745 1.3816 1.3721 1.3587
3 0.7784 0.9995 1.1015 1.1433 1.1462 11417 1.1357
4 0.8258 0.9726 1.0296 1.0526 1.0556 1.0546 1.0526
5 0.8956 0.9775 1.0063 1.0184 1.0205 1.0207 1.0202

It is obvious from above tables that the mean, variance, and index of dispersion of DQAD are decreasing
for increasing values of the parameters 6 and «, while coefficient of variation, skewness and kurtosis are
increasing for increasing values of parameters 6 and « . Since the index of dispersion of DQAD is some-
times greater than 1 and less than 1 for some values of parameters 6 and «, it is a suitable model for both
over-dispersed and under-dispersed data.

I MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS

Let ( VisVas Vis eees V) ) be a random sample from DQAD (2.1). The likelihood function, L of (2.1) is given by

I (eg—l)j
e’ (a (ee —1)2 +6(e9 +1))

The natural log likelihood function is thus obtained as

)
e’ (a(eg —1)2 +6 (e’ +1))

n

ﬁ[(a +0y} )e”’y' .

L=nln

+2ln(a+0yl.2)—n0)7

=3nln(e(’ —1)— nH—nln(a(e(’ -1 +6(’ +1))+ iln(a +0y] )—nBJ_/.
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The maximum likelihood estimates (MLE) of (é, a ) of parameters (6, a ) of DQAD are the solution of the
following two non-linear equations

olnL 3né’ n(2aee (e‘9 —1)+ (eg +1)+ Qee) n yi2

_n(F+1
00 ' -1 a e”—l)z+8(ee+1) e )+Za+0y,-2

sz (-

+2 12=0
o (! -1) +0(e"+1) Fa+0y]

These two log-likelihood equations do not seem to be solved directly, because they cannot be expressed in
closed forms. However, the MLE’s (é, a ) of (9, a) can be computed directly by solving the log-likelihood
equation using Newton-Raphson iteration method available in R-software till sufficiently close estimates
of 9 and 4 are obtained.

I GOODNESS OF FIT

In this section, the goodness of fit of the DQAD has been discussed with two count datasets from thunderstorm
events available in Falls et al (1971) and Carter (2001) and the fit has been compared with discrete Akash dist-
ribution (DAD), Poisson-Akash distribution (PAD), Poisson-Lindley distribution (PLD) introduced by Sanka-
ran (1970) and Quasi Poisson -Akash distribution (QPAD).'® 718 Tt is obvious from the goodness of fit given
in tables 7 and 8 that in table 7 DQAD is the best distribution whereas in table 8 DAD is the best distribution.

TABLE 7: Observed and expected number of days that experienced X thunderstorms event at Cape Kennedy,
Florida for 11 year period of record for the month of June, January 1957 to December 1967.
Observed Expected Frequency
Frequency DAD PLD QPAD DQAD
0 187 186.2 185.3 184.6 187.0
1 77 777 835 83.4 76.9
2 40 405 35.9 36.8 40.1
3 17 16.9 15.0 15.4 17.0
4 6 6.0 6.1 6.1 6.1
5 2 2.0 25 23 20
6 1 0.7 17 14 0.9
Total 330 330.0 330.0 330.0 330.0
ML estimate () 0.9462 0.9462
ML estimate (6) 1.5673 1.8042 25402 1.5451
x 0.0269 1.42 1.0321 0.0004
df. 3 3 2 2
P-value 0.9999 0.8400 0.9049 1.0000
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TABLE 8: Observed and expected number of days that experienced X thunderstorms event at Cape Kennedy,
Florida for 11 year period of record for the month of July, January 1957 to December 1967.
Observed Expected Frequency
Frequency DAD PLD QPAD DQAD
0 177 177.9 177.7 172.0 174.2
1 80 81.8 88.0 914 84.0
2 47 47.0 415 44.1 48.7
3 26 216 18.9 195 21.8
4 9 8.4 8.4 8.0 8.2
5 2 43 6.5 5.0 4.1
Total 341 341.0 341.0 341.0 341.0
ML estimate (&) 0.5585 12739
ML estimate (6) 1.47054 1.583536 2.4935 1.5217
x 1.1680 5.1470 4.2323 1.2414
df. 3 3 2 2
P-value 0.8833 0.3538 0.3755 0.8712

I CONCLUDING REMARKS

In this paper, a discrete quasi Akash distribution (DQAD), a discrete counterpart of the continuous quasi
Akash Distribution has been proposed. Some statistical properties as well as the estimation of its parame-
ters using maximum likelihood method have been studied. Applications of DQAD have been discussed
with two examples of observed real datasets from thunderstorms events and the goodness of fit of DQAD
has been found quite satisfactory over other discrete distributions including PLD and QPAD and compe-
ting well with DAD.
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