
Turkiye Klinikleri J Biostat 2014;6(1)24

On the Estimation of Expected Survival Time of
AIDS Patients Undergoing Antiretroviral

Therapy Using Censored Generalized Poisson
Regression Model

AABBSSTTRRAACCTT  OObbjjeeccttiivvee::  The progression of HIV infection depends not only on the combination of drugs and
adherence to the Anti Retroviral therapy (ART), but also on various other factors.  The survival of an HIV
patient depends on interaction of these factors with the therapy. MMaatteerriiaall  aanndd  MMeetthhooddss::  The parametric ap-
proach with and without covariates have been used to analyze the survival data of HIV/AIDS patients.  When
covariates are not considered, survival distributions are fitted and best one chosen.  The inclusion of covari-
ates is analyzed using Censored Generalized Poisson Regression Model (CGPR). RReessuullttss::  For a retrospective
right censored data of 1689 HIV/AIDS patients undergoing ART at the Ram Manohar Lohia Hospital, New
Delhi, India, appropriate survival distributions in the absence of covariates are fitted. Using the Akaike In-
formation Criterion, Gamma distribution is found to be the distribution of best fit.  Assuming Gamma sur-
vival distribution with right censored survival time data, the mean survival time of AIDS patients using the
method of maximum likelihood is found to be 11.14 years. Also, CGPR model for estimating the survival time
while accounting for the impact of cofactors is used for the first time on the AIDS dataset. CCoonncclluussiioonn:: The
advantage of using a CGPR model over the gamma right censored distribution is that the mean survival time
of the AIDS patient undergoing ART can be estimated in the presence of significant prognostic factors.  Using
this model, age, gender, smoking status, alcoholism, WHO staging, improvement in CD4 count, opportunistic
infections, number of visits and weight at initiation of ART are identified as significant prognostic factors ef-
fecting the survival time. On averaging the predicted survival times based on CGPR model, the mean sur-
vival time of AIDS patients on ART is found to be 12.12 years.   

KKeeyy  WWoorrddss::  Survival distribution; gamma and weibul distribution; censoring; 
generalized poisson regression model

ÖÖZZEETT  AAmmaaçç::  HIV enfeksiyonunun ilerlemesi sadece ilaçların kombinasyonuna ve Anti Retroviral tedavi-
sine(ART) bağlı değil, bunların dışında diğer faktörlere de bağlıdır. Bir HIV hastasının sağkalımı bu fak-
törlerin tedavi ile etkileşimine bağlıdır. GGeerreeçç  vvee  YYöönntteemmlleerr::  HIV/AIDS hastalarının sağkalım süresi ortak
değişkenlerin varlığı ve yokluğu durumunda parametric yaklaşım kullanılarak analiz edilmiştir. Ortak deği-
şkenlerin sansürlendiği durumda, sağ kalım dağılımları uydurulmuş ve en iyisi seçilmiştir. Ortak deği-
şkenlerin dahil edilmesi Sansürlü Genelleştirilmiş Poisson Regresyon Modeli (Censored Generalized Poisson
Regression Model-CGPR) kullanılarak analiz edilmiştir. BBuullgguullaarr::  Yeni Delhide bulunan Ram Manohar
Lohia hastanesinde ART alan 1689 HIV/AIDS hastasının geriye dönük sağdan sansürlü verisi için ortak
değişkenlerin varlığında uygun sağkalım dağılımları uydurulmuştur. Akaike bilgi kriteri kullanılarak,
Gamma dağılımı en uygun dağılım olarak bulunmuştur. Gamma sağkalım dağılımı sağdan sansürlü sağkalım
verisi ile göz önüne alındığında, en çok olabilirlik yöntemi kullanılarak AIDS hastalarının ortalama sa-
ğkalım süresi 11,14 yıl olarak bulunmuştur. Ek olarak CGPR modeli, kofaktörlerin etkisi dikkate alındığında
sağkalım süresinin tahmini için AIDS veri seti üzerinde ilk kez kullanılmıştır. SSoonnuuçç::  CGPR modelinin sa-
ğdan sansürlü Gamma dağılımı üzerinde kullanılmasının avantajı, ART alan AIDS hastalarının ortalama
sağkalım süresinin prognostik faktörlerin varlığı durumunda tahmin edilebilmesidir.  Bu model kullanıla-
rak yaş, cinsiyet, sigara içme durumu, alkolizm, WHO evrelemesi, CD4 sayısındaki ilerleme, fırsatçı en-
feksiyonlar, muayenelerin sayısı ve ART’ın başlama ağırlığı sağkalım süresini etkileyen anlamlı prognostic
faktörler olarak tanımlanmıştır. CGPR modeli üzerinden hesaplanan tahmini sağkalım sürelerinin ortala-
ması alındığında, ART alan AIDS hastalarının ortalama sağkalım süresi 12,12 yıl olarak bulunmuştur.

AAnnaahhttaarr  KKeelliimmeelleerr:: Sağkalım dağılımı; gamma ve weibul dağılımı; sannsürleme; 
genelleştirilmiş poisson regresyon modeli
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he advent of highly active antiretroviral
therapy (HAART) has drastically improved
the survivability of patients with HIV infec-

tion by achieving more sustained elevations in CD4
lymphocyte counts and effective suppression of
HIV replication. Although the cure for it doesn’t
exist till date,1 multiple drug formulations have
taken care of compliance problems and therefore
HIV infection is now manageable as a chronic dis-
ease in patients who have access to medication and
who achieve durable virologic suppression.2

Several studies have been conducted to model
the progression of HIV infection and to identify the
prognostic factors affecting them. This progression
is not only dependent on combination of drugs and
adherence to the therapy, but also on various bio-
logical and socio-demographic factors that tend to
have varying influences on the degree of infection.
These factors range from age, co-infections (infec-
tion other than HIV), ethnicity, geographic loca-
tion, genetics, infection route (how the disease was
transmitted), nutrition, pregnancy, stress, and
whether or not the patient smokes or uses recre-
ational drugs can affect the rate at which an HIV
patient develops AIDS.3-5

Bakanda et al.6 used Kaplan-Meier curves and
Weibul analysis to identify the positive correlation
of age with survival time of HIV patients on ART.
Authors7,8 identified body mass index, WHO stages,
and baseline CD4 count as significant predictors of
mortality in the individuals undergoing ART in
Malawi. Various studies8,9 identified Gender as a
significant factor effecting mortality in AIDS pa-
tients. Kitahata et al.10 concluded on the basis of
their studies that deferred ART therapy group was
more susceptible to mortality as compared to the
early therapy group. Researchers11 identified age,
intravenous drug users and stage of AIDS as signif-
icant markers for the survival of patients while
gender was insignificant. Authors12-14 also identi-
fied Tuberculosis, Diarrhea, Liver Cirrhosis, as co-
morbidities associated with HIV infection.

Poisson Regression analysis is a useful tool for
the analysis of count data.15 It derives its name from
the Poisson distribution which is a mathematical
distribution often used to describe the probability

of occurrence of count data. When survival time of
patients is recorded in days, the data becomes dis-
crete thus providing us an opportunity to explore
the use of Poisson distribution. The effect of vari-
ous covariates on survival time of AIDS patients
may be evaluated using this model. Poisson regres-
sion is an important alternative to partial-likeli-
hood based analysis of proportional hazards model
and to parametric analyses of such models.  It cre-
ates proportional hazards models which is very
often used for survival analysis. In fact, Poisson
models usually replace Cox model, which cannot
be easily applied to aggregated data. Terza16 ex-
tended the Poisson regression model to censored
count data with constant censoring threshold.
Caudill and Mixon17 considered the case of variable
threshold.  One of the earliest uses of Poisson re-
gression for analyzing the survival data were seen
when Frome18 found lung cancer death rate to be
closely related to the Age, dose rate (cigarettes per
day) and the duration of smoking. Dickman et al.19

used Poisson regression to estimate and model the
net survival of cancer patients.  

The basic underlying assumption for Poisson
model is that sample mean equals sample variance.
However, count data often exhibit substantial vari-
ations where the sample variance is either smaller
or larger than the sample mean and it is classified as
under- or over-dispersion, respectively.  Several
models have been proposed to overcome these lim-
itations.15,17,20,21 However, such models may not be
generalized for handling both kinds of dispersion.
In such an event, the generalized Poisson regres-
sion (GPR) model22-24 is one of the few that can ac-
commodate both under- and over-dispersion.    

In a non-censored count data, the relationship
between the sample mean and sample variance is a
good measure of the amount of underlying disper-
sion. However, for a censored count data, it is very
unlikely that the relationship between the mean
and the variance is known. For such data the ob-
served mean will be less than the true mean and
same thing holds for variance. If the observed mean
is less than the observed variance, the true mean
could be less than or more than the true variance.
Thus, in a censored count data, one may not know
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the type of dispersion. In such situations, an exten-
sion of the GPR model for censored data is given
by Famoye and Wang.25

Cox regression, a semi-parametric model,  has
been widely used for analyzing the survival time of
AIDS patients by including covariates in the
model.26-29 This is a preferred model because fewer
assumptions are needed to predict the prognostic
factors associated with survival. Parametric mod-
els, however, are known to be more accurate than
non-parametric methods when using survival mod-
els to make projections about the risk of death and
future trends in mortality.30,31 In this article, we
propose to fit appropriate probability distributions
to model the survival time of AIDS patients under-
going ART and obtain the maximum likelihood es-
timate of the mean survival time. On the other
hand, we assume that the mean survival time is de-
pendent on covariates like improvement in CD4
count, age, gender, opportunistic infection etc. Sur-
vival time being in days is discrete in nature and
hence it’s relation with covariates would be veri-
fied using Censored generalized Poisson regression
(CGPR) model. The individual impact of these
prognostic factors on the survival time would be
calculated and mean survival time and dispersion
parameter of every individual would be predicted
using this model.  Using the mean and variance of
fitted values of the survival time, an estimate of the
overall mean and variance of the survival time will
be calculated.  Even though, many authors have
used different procedures and models.11,32-37 to esti-
mate the survival time of AIDS patients undergoing
ART, generalized Poisson regression has never
been used in this context. To the best of our knowl-
edge, this is the first study where CGPR is being
used to model the survival data of AIDS patients
and that too, on Indian population.

MATERIAL AND METHODS

The data from cohort survival studies typically con-
sist of information whether or not the event of in-
terest occurred, the event or censoring time t, and
a vector of possibly time dependent covariates X
for each cohort member. Since interest centers on
hazard rates, it is natural and useful for the purpose

of analysis or summarization to reorganize such
data into an event-time table defined by a cross
classification over a set of time intervals and co-
variate categories.

Let Ti denote the survival time (in days) for
the ith AIDS patient (i = 1, 2 … n) undergoing ART.
The following three approaches are used to esti-
mate the mean survival time:

2.1. PARAMETRIC APPROACH (WITHOUT COVARIATES) 

Here, we assume that the survival times of AIDS
patients follow some specific statistical distribution.
Even though the list of such distributions is large,
we consider 4 important survival distributions
namely Exponential, Gamma, Weibul and Lognor-
mal distribution respectively.  Exponential distri-
bution depicts a constant hazard rate and has been
widely used to model lifetime distribution. Gamma
and Weibul distributions are the generalizations of
exponential distribution. The positively skewed
distributions where the average values are low,
variances are high and the values are not negative,
generally accord with lognormal distribution. A
general feature of these distributions is that they
all belong to the exponential family and have been
most often found to fit all kinds of survival data.
For choosing the most appropriate distribution, the
criteria of log-likelihood and Akaike information
criterion (AIC)38 is used.

AIC = -2log L + k (1)

where L denotes the likelihood function of the
model evaluated at maximum likelihood estimates
and k is the total number of parameters in the
model. The models which have a higher log-likeli-
hood or a lower AIC value are considered to be the
best. Also, the estimates of parameters of survival
distribution are obtained by the method of maxi-
mum likelihood and hence mean survival time is
calculated.39

2.2. PARAMETRIC APPROACH (WITH COVARIATES)

The survival time of HIV/AIDS patient depends on
various prognostic factors and therefore it is imper-
ative to estimate the survival with reference to these
covariates. Section 2.1 identifies the distribution
that best fits the survival data of AIDS patients. In
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order to estimate the mean survival time of AIDS
patients in the presence of covariates, we have con-
sidered the Generalized Poisson regression model.

Let Ti (i = 1, 2 ... n) denote the survival time
(in days) for the ith patient which is affected by k
explanatory variables X = {Xi1, Xi2, .. Xik}. We as-
sume that Ti follows generalized Poisson distribu-
tion with probability function

(2)

with 

(3)

where ββ is the k-dimensional vector of regression
parameters and the a measures the type of disper-
sion in the data.  It is easily seen that the parame-
ter a = 0 indicates the presence of equi-dispersion
in count data and that the probability function in
equation (1) reduces to the Poisson regression
model, while a > 0 is over-dispersion and a < 0 is
under-dispersion in the GPR model.

Since the data on the survival time of AIDS pa-
tients (Ti) is censored therefore,

For obtaining the distribution of sample data
under censored observations, we define an indica-
tor variable di as

The likelihood function of CGPR model25 is
given by,

(4)

(5)

(6)

Differentiating equation (6) with respect to a
and β, we get

(7)

(8)

Equation (7) and (8) being non-linear in a and
β may be solved by any iterative algorithm. The
variances of the estimators of a and β can be ob-
tained by solving the inverse of Fisher’s informa-
tion matrix given by 

(9)

The analysis of the CGPR model was done on
Statistical Analysis Software (SAS 9.1). The requi-
site macro program for the analysis is given in by
Chow& Steenhard.40 Also, R software, Statistical
Package for Social Sciences (SPSS 15.0) were used
to fit Exponential, Weibul and Lognormal distri-
butions while Statgraphics Centurion 15.1.0.2 was
used to fit Gamma distribution for censored data.

DATA DESCRIPTION

The retrospective data of 1689 patients is obtained
from the ART centre of Ram Manohar Lohia Hos-
pital, New Delhi, India.  This is the largest ART
centre in Northern India and caters to a large num-
ber of patients coming from across various states in
India.  The patients coming for the ART treatment
are followed up till 16th November, 2010 which is
the threshold for right censoring. A record for
every patient is maintained in terms of date of sub-
sequent visits, CD4 counts, WHO stage etc.  The
improvement in CD4 count is obtained as the dif-
ference between last known CD4 count and the
initial value.  Patients who were lost to follow-up
after just one visit were excluded from the study as
their improvement in CD4 count could not be de-
termined.

RESULTS

Four distributions, namely Exponential, Gamma,
Weibul and Lognormal are fitted to the survival
data of HIV/AIDS patients undergoing ART.  The
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results are given in Table 1 and the probability plots
are made in Figure 1. Using the criterion of log-like-
lihood and AIC, Gamma distribution is found to be
the best fitted distribution.  The maximum likeli-

hood estimates of the shape and scale parameters
of the gamma distribution are obtained as = 8.132
and     = 0.002. Hence the mean survival time of
AIDS patients undergoing ART is       = 4066 days =
11.14 years.

The descriptive summary of all the predictors
expected to be of interest is presented in Table 2.
The mean age of patients is 32.95 ± 10.48 years.
Majority of the patients are males (70.1%) followed
by females (29.2%) and Eunuchs (0.7%) respec-
tively.  Smoking, alcoholic and Drug habits are
recorded in 31.7%, 35.7% and 1.2% of the patients
respectively. The mean number of visits for pa-
tients is 20.02 ± 11.33 while the mean weight at the

Distribution Estimates of parameters Log likelihood AIC

Exponential (θ) 0.0002 -1996.8 3995.673

Gamma (α, β) (8.132, 0.002) -1789.3 3497.285

Weibul (k, λ) (11.913, 2.29) -1883.8 3771.507

Lognormal (µ, σ2) (7.79, 1.09) -1894.7 3793.453

TABLE 1: Distributions fitted to survival time of 
AIDS patients.

FIGURE 1: Probability plots to evaluate the fit of various Survival distributions.
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Censored Generalized Poisson Model

Variables Frequency(%)/ mean ± sd Estimate Std. error p-value

Intercept - 2.5185 0.0605 0.000

Age 32.95 ± 10.48 -0.0007 0.0003 0.002

Gender

Male 1184 (70.1%) Ref. - -

Female 493 (29.2%) 0.0133 0.0055 0.007

Eunuch 12 (0.7%) -0.2447 0.1345 0.034

Smoker 535 (31.7%) -0.0472 0.0228 0.019

Alcohol 603 (35.7%) -0.0593 0.0330 0.036

Drug 21 (1.2%) -0.0064 0.1048 0.476

WHO Stage

Stage 1 152 (9%) Ref. - -

Stage 2 434 (25.7%) -0.0263 0.0415 0.263

Stage 3 857 (50.7%) -0.0447 0.0205 0.015

Stage 4 246 (14.6%) -0.0654 0.0191 0.000

Change in CD4 count 149 (-15, 293)* 0.0006 0.00004 0.000

Opportunistic Infection

None 929 (55%) Ref. - -

Diarrhea 85 (5%) -0.1598 0.0516 0.001

Tuberculosis 312 (18.5%) -0.1843 0.0320 0.000

Others 363 (21.5%) -0.1113 0.0287 0.000

No. of visits 20.02 ± 11.34 0.0559 0.0011 0.000

Weight (in Kg) at initiation of ART 47.09 ± 12.86 0.0083 0.0010 0.000

Dispersion Parameter - 0.0579 0.0131 < 0.001

Log likelihood -6805.14

AIC 12644.28

TABLE 2: Effect of various covariates on survival time (in days) of AIDS patients using 
Censored Generalized Poisson distribution.

* Median (Quartile1, Quartile3)

initiation of ART is 47.09 ± 12.86 kg.  The average
improvement in the CD4 count of patients is
recorded as 182.59 ± 262.51 cells/mm3. Majority
(50.7%) of patients are diagnosed as WHO stage 3.
Tuberculosis or other infections are found to be the
most predominant opportunistic infections. In
order to evaluate the effect of each of these covari-
ates on the  survival time of AIDS patient under-
going ART, CGPR model is fitted and the results
are shown in Table 2.

Firstly, we note that the estimate of dispersion
parameter, = 0.058 is highly significant (p-value<
0.001) which justifies the use of CGPR over other
count data models.  We note that all the covariates
included in the analysis have come out to be sig-
nificant in explaining the survival time of AIDS pa-

tients undergoing ART.  Age (in years) is negatively
correlated with survival time. In fact, a unit in-
crease in the age will cause the expected logarithm
of survival time to decrease by 0.00078 days (p-
value = 0.002).  With respect to gender, the survival
time (in days) of Eunuchs is the lowest. In com-
parison to males, females have 1.33% significant
higher survival and eunuchs have 24.46% lower
survival (p-values < 0.05).  Smokers have 4.72% (p-
value = 0.019) lower survival over non-smokers
and Alcoholics have 5.93% (p-value = 0.036) lower
survival as compared to non-alcoholics. However,
drug users have no significant impact on the sur-
vival time of AIDS patient. The expected logarithm
of survival time for WHO stage 1 and 2 patients is
not significantly different. However, patients of
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stage 3 and 4 have 4.46% and 6.54% lower survival
in comparison to stage 1.  Also, as the improvement
in CD4 count increases by 1 unit, the logarithm of
survival time increases by 0.00057 days. With ref-
erence to no opportunistic infection, Diarrhea pa-
tients have 15.98% lower survival. Similarly,
Tuberculosis and other infection patients have
18.43% and 11.12% lower survival as compared to
those without any infection.  As the number of vis-
its increase by unity, the expected logarithm of sur-
vival time increases by 0.056 days.  A 1 kg increase
in the weight of patient at the initiation of ART,
increases the survival time in days by 0.82%.

The predicted values of expected logarithm
survival time (in days) were calculated for all the
patients.  The mean of these values is found to be
8.395 which gives the estimated survival time of
AIDS patients undergoing ART as  = 4425 days i.e.,
12.12 years.

DISCUSSION AND CONCLUSION

Gamma distribution is perhaps the most widely
used distribution in the analysis of survival data.
This distribution has been extensively used for
studying various aspects of HIV/AIDS disease like
prevalence,41 incubation period distribution of
AIDS,42,43 life expectancy of patients who are newly
diagnosed of HIV infection37 and survival times of
AIDS patients.  In this paper, we have attempted to
fit four distributions namely, Exponential, Gamma,
Weibul and Lognormal to estimate the survival
time of an AIDS patient after the initiation of ART.
Of these four distributions, Gamma distribution
provided the best fit and using this the mean sur-
vival time of AIDS patients after initiation of ART
is estimated as 11.14 years.  Authors33,37,44 in past
have estimated this survival time as anywhere be-
tween 1.18 years to 15 years.  The variation in these
estimates of survival times is not only due to the
use of divergent statistical procedures but also be-
cause of advent of newer therapies. With the in-
troduction of more potent new-generation
first-line HAART regimens and advances in med-
ical care for opportunistic infections and malig-
nancies,45,46 survival in HIV-positive patients is
likely to see improvements.

On the other hand, the success of the ART also
depends on the interaction of these antiretroviral
drugs with the various physical and biological char-
acteristics associated with the AIDS patient.  Many
authors have tried to assess the impact of these fac-
tors on the survivability of AIDS patients using dif-
ferent statistical techniques. However, to the best
of our knowledge, no author has used CGPR model
for analyzing these associations.  When the survival
time is measured in days, it’s discrete nature allows
the use as dependent variable in the CGPR model.
Also for censored data, there is no means of verify-
ing the over/under dispersion assumption and
hence CGPR model gives us a platform for analyz-
ing data without worrying too much about the as-
sumptions.  Consistent with literature,11,44,47 age has
a negative correlation with survival time of AIDS
patient.  A younger person undergoing ART is
more likely to survive longer as compared to an
older person i.e., old age is associated with high risk
of disease progression.  Also the survival time of fe-
males is significantly higher than that of males,
while eunuchs record the lowest survival and this
agrees with other findings.48,49 Smokers and alco-
holics have significantly lower survival time while
drug users have no significant decrease in the sur-
vival time. WHO stages have a negative correlation
with the survival time.  While there is no signifi-
cant difference in the survival time for patients in
stages 1 and 2, it decreases for patients in stages 3
and 4. Also, the improvement in CD4 count is pos-
itively correlated with the survival time of patients
which corroborate with results of other re-
searchers.44,48,50 CD4 count is an important marker
of the progression of HIV infection and hence an
improvement in it will certainly have positive ef-
fect on the survival time.

There is increasing evidence that opportunistic
infection may affect subsequent HIV disease, per-
haps by increasing HIV replication during the pe-
riod of acute disease or by increasing cytokines that
in turn impact on disease progression. HIV-medi-
ated immunosuppression changes host control of the
infectious agent resulting in disease and the disease
process in turn activates HIV, hastening the rate of
immunosuppression.43 In our study, the patients
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