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In statistical analysis, the simulation paradigm is often utilized to evaluate the methods of interest. 

A key starting step in nearly all simulation studies is RNG. Stochastic simulation is an indispensable 

part and major focus of scientific inquiry. Model building, estimation, and testing typically require veri-

fication through simulation to assess the validity, reliability, and plausibility of inferential techniques, 
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ABSTRACT Objective: In probability theory and statistics, some 

distributions can be better presented by the characteristic function 
(CF) than the conventional probability density function (PDF). In 

random number generation (RNG) domains, algorithmic applica-

tions based on a known CF is far less common compared to the 
ones that are driven by a density. An acceptance-rejection algorithm 

that employs CF appeared in the literature in the context of RNG; 

however, validity, plausibility, and utility of this algorithm have 
never been examined by a simulation study, which we attempt to 

address. Material and Methods: We devised a simulation study 

based on three commonly encountered univariate distributions 
(Normal, Laplace, and Gamma), and compared the performance of 

the CF algorithm with the default random number generation tools 

in R software. Results: All three simulation studies yielded similar 
outcomes across the two methods with indiscernible differences. 

Conclusion: The simulation results for the three distributions we 

considered suggest that the performance of the CF algorithm aligns 
well with that of the default algorithm. It is better to harness a direct 

algorithm when the PDF of a random variable is given. However, 

the CF-based method can offer a solid alternative for situations 
where the PDF is hard to sample from. Our findings provide a 

promising basis for conducting further research on generating data 

in difficult PDF and straightforward CF scenarios. In brief, the CF 
method is an excellent alternative to the default for generating data 

when CF is given or can be derived in closed form. 
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ÖZET Amaç: Olasılık teorisi ve istatistikte kullanılan bazı dağılım-

lar bilinen geleneksel olasılık yoğunluk fonksiyonlarından (PDF) 
çok karakteristik fonksiyonları (CF) ile daha kolay incelenebilir. 

Rasgele sayı üretimi (RNG) yöntem ve algoritmalarında çoğunlukla 

dağılımın PDF’si tercih edilmekte, bilinen bir CF’ye dayalı yön-
temler ise daha az kullanılmaktadır. RNG literatüründe CF’yi kul-

lanan kabul-ret algoritmaları kısıtlı sayıda olmasına ragmen bu al-

goritmaların geçerliliği, akla yatkınlığı ve sağladığı yararlar bizim 
bu çalışmada ortaya koyduğumuz gibi bir similasyon çalışmasıyla 

hiç bir zaman incelenmemiştir. Gereç ve Yöntemler: Yaygın ola-

rak karşılaşılan tek değişkenli üç dağılımı (Normal, Laplace ve 
Gamma) temel alan bir simülasyon çalışması tasarladık ve CF algo-

ritmasının performansını R yazılımındaki varsayılan rastgele sayı 

oluşturma araçlarıyla karşılaştırdık. Bulgular: Üç simülasyon ça-
lışmasında da çok küçük farklılıklarla iki yöntem arasında benzer 

sonuçlar gözlendi. Sonuç: Göz önünde bulundurduğumuz üç dağı-

lım için simülasyon sonuçları, CF algoritmasının performansının 
varsayılan algoritmanın performansıyla iyi hizalandığını göster-

mektedir. Rastgele bir değişkenin PDF'si verildiğinde doğrudan bir 

algoritmadan yararlanmak daha iyidir. Bununla birlikte, CF tabanlı 
yöntem, PDF’den örnek almanın zor olduğu durumlar için sağlam 

bir alternatif sunabilir. Bulgularımız, zor PDF ve kolay CF senaryo-

larında veri oluşturma konusunda daha fazla araştırma yapmak için 
umut verici bir temel sağlamaktadır. Kısacası, CF verildiğinde veya 

kapalı formda türetilebildiğinde, CF yöntemi veri üretmek için var-

sayılan yöntemlere mükemmel bir alternatiftir. 
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to evaluate how well the implemented models capture the specified true population values, and how 

reasonably these models respond to departures from underlying assumptions, among other things. D e-

scribing a real notion by creating mirror images and imperfect proxies of the perceived underlying truth 

in a repeated manner allows researchers to study the performance of their methods via simulated data 

replicates that mimic the real data characteristics of interest in any given setting. Accuracy and prec i-

sion measures regarding the parameters under consideration signal if the procedure works properly ; and 

may suggest remedial action to minimize the discrepancies between expectation and reality. Simulations 

have been commonly employed in a wide range of research fields including the physical, medical, so-

cial, and managerial sciences. A central aspect of every simulation study is the quantification of the 

model components and parameters that jointly define a scientific process. When this quantification ca n-

not be performed through deterministic tools, researchers resort to random number generation (RNG) a s 

a starting point in finding simulation-based answers to their questions. One of the most typical methods 

to conduct RNG is called inversion sampling, which is the default implementation tool in many sof t-

ware packages: Given a continuous distribution function   for random variable  , where   is a uniform 

      random variable, then        has the same distribution as  . However, the drawback of this 

method is that the method needs the exact form of the distribution function     , which may be un-

known or hard to derive. An easier way to perform RNG is through PDF      via approaches such as 

rejection sampling and importance sampling. 

The CF      is another way to define the probability distribution. For a univariate random  

variable  , the relationship between the      and      can be expressed by expected value of  

        : 

 

                      
 

                                                                

 

where   is the imaginary unit,      ,    . 
 

The CF has plenty of decent properties: First, the CF is defined for all real-valued random variables. For 

example, for the Cauchy distribution, the first order moment does not exist and can be defined in terms of 

CF, but not using the moment generating function (MGF). In addition, a characteristic function is uniformly 

continuous on the entire space and is bounded:           Occasionally, there is some convenience to use 

the CF rather than the PDF. For example, if we have some values of common statistics such as mean, vari-

ance, skewness, and kurtosis (first to fourth moments), we can use the CF if the exact PDF is difficult to 

sample from. Furthermore, if a random variable   has moments up to  -th order, then      is   times con-

tinuously differentiable on the entire real line. In this case: 

 

                 

 

In many statistical applications, researchers are given the CF but not the PDF or the distribution func-

tion. Devroye
1-3

 provided an RNG method where   is a univariate continuous random variable whose CF 

and its second derivative,      and        exist, and         and           are finite. In this paper, we first 

review the Devroye
1-3

 RNG method, then provide the simulation examples of RNG of normal, gamma, and 

Laplace distributions to see whether this CF-based RNG method can perform same as the built-in RNG 

methods in R
4
. 
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    MATERIAL AND METHODS 

MATHEMATICAL BACKGROUND 

Regarding Devroye’s algorithm
1-3

, denote   is a univariate continuous random variable with probability 

function  , density   and CF     . If      is (a) twice differentiable with   and (b)       ,         and 

         have finite integral values, then the PDF      satisfies: 

 

         
 

  
        

 

    
                                                                              

 

We can prove the inequality in     from Devroye
3
: Since   is absolutely integrable,   can be computed 

by the Fourier inversed transformation of    : 
 

     
 

  
             

 

Furthermore,    and     are also absolutely integrable, then similarly: 
 

     
 

    
               

 

    
               

 

By applying an appropriate theorem in Loeve (1963, p.199)
5
,     can be proved. The inequality in     

implies why   can globally be tucked under a bounded integrable curve
3
. Then, the general acceptance-

rejection algorithm for characteristic functions satisfying the above conditions is as follows:  

 

Algorithm 

1. Set   
 

  
    ,   

 

  
       

2. Generate two independently identically distributed (iid) uniform        random variates    . 

3. If    , then    
 

 
 ,       ; else    

 

 

 

 
,   

    

   

4. If       , then return  . Otherwise, go back to step 2. 

 

The expected number of iterations is 
 

 
           , and this algorithm requires the exact form of PDF 

 . When   is unknown, we can apply the Taylor expansion to the unknown PDF to summation of small parts 

of integral of CF
3
. The details will not be covered in this work; we only discuss the scenarios where   is ac-

cessible to us. 

SOME KNOWN DENSITIES 

Suppose   is a univariate random variable with known density function      and CF     , where      sat-

isfies the conditions (a) and (b) mentioned above. Then, 
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Where Equation     is the definition of CF and Equation     provides an optional way to calculate the 

second derivative of the characteristics function. Suppose   and   are two scalar quantities where    , 

then for any scaled random variable   , we have 
 

                                                                                                        

                                                                                                     
 

Equations     and     show the integral of      and        will have closed forms when multiplied by   

and   . For shifted random variable    , we have 
 

                                                                                                    
 

Here, Equation     shows         is also translation-invariant. However,  
 

                         

 

is not invariant here and need further calculation. Therefore, if we try to find a general way to apply the 

algorithm, it seems that a scaled random variable is easier to deal with than a shifted random variable, and a 

symmetric density is easier to deal with than an asymmetric one, which will be discussed later.  

In the following section, we introduce algorithms for specific densities that conform with the conditions 

(a) and (b) above. For simple illustration, we use two symmetric distributions, Normal and Laplace, and one 

asymmetric distribution, Gamma. All three distributions have relatively simple forms of CF.  

Normal Distribution 

For the Normal distribution,      
 

     
  

 

 
      

 and           
 

 
    

, where   is the mean parameter 

and    is the variance parameter. Then, the second derivative of this CF is                        

        
    

 . It is easy to calculate that the absolute integral       
   

 
, but it is hard to find        given 

the properties of variant translation above. However, the Normal distribution has nice properties: if   

       , then 
   

 
       . Denote random variable   

   

 
. Therefore,          ,     

    
 

  
. 

Then, we can apply Devroye’s algorithm
1-3

 to generate  , then do a random variable transformation on  . 

The detailed algorithm is shown below: 

Algorithm for Normal distribution         

1. Set   
 

   
,   

 

   
 

2. Generate two independently identically distributed (iid) uniform        random variates    . 

3. If    , then    
 

 
 ,       ; else    

 

 

 

 
,   

    

  
 

4. If   
 

  
  

 

 
  

, then return       . Otherwise, go back to step 2. 

Laplace Distribution 

The Laplace distribution, also called double-exponential distribution, is another symmetric distribution that 

satisfies the conditions (a) and (b) with  

     
 

  
     

     

 
  and      

         

      
.  
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It is difficult to compute        when the random variable   is scaled and shifted. We can conduct a 

similar operation as in the Normal distribution, using the “standard type” Laplace distribution by setting 

     , then               . Comparing it with the Normal distribution, this transformation does not 

require the standard scale. It is easy to find that      
 

 
,        

   

 
 . Then, the algorithm becomes: 

 

Algorithm for Laplace distribution              

1. Set   
 

  
,   

    

  
; 

2. Generate two independently identically distributed (iid) uniform        random variates    . 

3. If    , then    
 

 
 ,       ; else    

 

 

 

 
,   

    

  
 

4. If   
 

  
     

   

 
 , then return      . Otherwise, go back to step 2. 

 

Gamma Distribution 

Unlike the Normal and Laplace distributions, the Gamma distribution is an asymmetric distribution that does 

not support the properties of “Standardized distribution”. Furthermore, it should be noted that not all Gamma 

distributions meet the conditions (a) and (b). For example, when the shape parameter    . The absolute 

integrals of   and     are divergent. However, when we fix the shape parameter at beginning, then the rate 

parameter can be vary. For example, we set     for Gamma distribution, and the rate parameter   can be 

any value where    . Then we can have         and        
  

 
. Then, the RNG algorithm is as fol-

lows: 

 

Algorithm for Gamma distribution              

1. Set   
 

 
,   

 

  
 

2. Generate two independently identically distributed (iid) uniform        random variates    . 

3. If    , then    
 

 
 ,       ; else    

 

 

 

 
,   

    

   

4. If       , then return  . Otherwise, go back to step 2. 

Note this algorithm is valid for shape parameter    . We can also implement this algorithm with any 

shape parameter     by changing the values of     in step 1. 

 

SIMULATION 

Random Number Generation Design 

In the following part, we introduce our simulation setting for three specific distributions: Normal, Laplace, 

and Gamma. We set three levels of sample sizes: 30, 100, 1000, and 5000. We specified the default parame-

ters as            ,                  and                . We employed the method 

of moments to calculate the parameter estimates. We repeated the algorithm 1000 times. In summary, we had 

       scenarios (three types of distributions and four different sample sizes) each of which had 1000 

replications.  
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Evaluation Criteria 

The evaluation of the Devroye’s algorithm
1-3

 was based on the following quantities that are frequently re-

garded as benchmark accuracy and precision measures: 

Standardized bias (SB). The relative magnitude of the raw bias to the overall uncertainty in the system. 

If the parameter of interest is  , the standardized bias is     
         

      
, where    stands for standard error. 

If the standardized bias exceeds        in positive or negative direction, then the bias begins to have a 

noticeable adverse impact on efficiency, coverage, and error rates.
6 

Percentage bias (PB). The relative magnitude of the raw bias to the true value of the parameter, 

                 . In our subject opinion, the reasonable upper limit for the PB is   .
7 

Root-mean-square error (RMSE). An integrated measure of bias and variance. It is arguably the best cri-

terion for evaluating    in terms of combined accuracy and precision. RMSE(  ) is defined as 

          
 
 . 

 

In a nutshell, SB and PB are two accuracy measures. RMSE are two integrated measures of some com-

bination of accuracy and precision. We used R (version 4.0.2)
4
 to perform the simulation, and we compared 

the results with the internal RNG functions         and         . For Laplace distribution, we com-

pared our method with            from R package rmutil
8
. We used these functions as a control mecha-

nism to find out whether the CF-based algorithm deliver a comparable performance to the default ones. Fur-

thermore, to make speed comparisons, we stored the run times. 

FINANCIAL DATA MODELED BY VARIANCE-GAMMA DISTRIBUTION 

In the following example, we performed Devroye’s algorithm based on a real-world financial data case to 

show the scenario when PDF is very difficult to sample from, but CF is relatively straightforward. The data 

of Standard & Poor’s 500 Index, January 1977-December 1981 with sample size        include an uni-

variate variable    denotes the log returns at unit time interval
9
, which follows variance-gamma distribution 

with PDF: 

      
     

      
  

 

     
 
   

 
   

 
     

   
 

     

 

 
 
 
 
 

  
 
 
 
 

 

 
      

   

    

  

 

                                     

Where there are four parameters in this model:   (location parameter),   (asymmetry parameter),   

(variance parameter) and    .   

 
 
 

 
 
 denotes a modified Bessel function of the third kind

10
.  

The characteristic function of    is 

                      
     

 
 

 
 
 

                                                                   

In the following example, we generate variance-gamma distribution data of size 1262 based on 1000 

replications. The true parameter specification of this variance-gamma distribution is based on the Method of 

Moments results that are as follows: 

              

          

               

              



 

Xiaohan MEI et al. Turkiye Klinikleri J Biostat. 2020;12(3):242-51 

 

 248 

Similarly, our performance is based on the comparisons of the first four moments specified with the 

empirical results from Devroye’s algorithm. The density of variance-gamma distribution is calculated by 

      function from the R package VarianceGamma.
10

 

 

    RESULTS 

SIMULATION RESULTS 

The results are shown in Table 1. In the method column, CF stands for Devroye’s characteristics function 

algorithm, and DE stands for the default internal RNG method for respective distributions in R software. In 

Table 1, PI means parameters of interest, TV stands for true value of parameters, and AE is the average es-

timate among 1000 replications. AE in the small sample scenario seems more biased than the larger sample 

for both CF and DE, which is expected; as the sample size increases, both methods yield more accurate re-

sults. Both CF and DE result in similar outputs when the specified sample size is same.  

 

For both methods, we can detect decreasing RMSE when the sample size gets larger. The SB and PB 

vary without a trend as the sample size changes, but they are always stable in a sensible range. Furthermore, 

the two symmetric distribution did not show any large value of PB and SB, but for the Gamma distribution, 

which is asymmetric, the SB is larger than the one in two symmetric distributions when sample size is small 

(         , which might be due to the specific properties of Gamma distribution itself.  

 
FIGURE 1: Density graphs of Normal, Laplace and Gamma distributions that comes out of two RNG methods where the true density 
is superimposed using three different sample sizes 

 

In Figure 1, we present the densities for one set of randomly drawn samples by two methods under con-

sideration in addition to the true theoretical density. The black, red, and blue lines line represent the true den-

sity and densities that ensue after the implementation of the CF and DE methods, respectively. As can be 

seen from Figure 1, the CF and DE methods lead to very similar densities, differences are negligibly small 

across all three sample sizes. The departures from the truth become indiscernible with increasing sample 

sizes for both methods, as one would expect. It is important to note that had we reported the average trajecto-

ries across all replications, three curves would have been almost identical.  

 



 

Xiaohan MEI et al. Turkiye Klinikleri J Biostat. 2020;12(3):242-51 

 249 

TABLE 1: Simulation results for Normal, Laplace and Gamma distributions. 
 

Distribution Method PI n TV AE PB SB RMSE 

Normal 

CF   30 2 2.021 1.08 3.90 0.5550 

DE   30 2 2.001 0.05 0.17 0.5306 

CF   100 2 2.004 0.24 1.61 0.2960 

DE   100 2 1.990 0.52 3.42 0.3044 

CF   1000 2 1.998 0.08 1.62 0.0959 

DE   1000 2 2.000 0.01 0.28 0.0915 

CF   5000 2 1.998 0.09 4.90 0.0407 

DE   5000 2 1.999 0.06 2.71 0.0424 

CF   30 3 2.994 0.19 1.43 0.4054 

DE   30 3 2.972 0.95 7.15 0.3975 

CF   100 3 2.996 0.12 1.66 0.2210 

DE   100 3 2.994 0.21 2.95 0.2121 

CF   1000 3 2.998 0.06 2.69 0.0645 

DE   1000 3 3.001 0.02 0.75 0.0689 

CF   5000 3 3.000 0.01 0.65 0.0310 

DE   5000 3 2.998 0.05 5.02 0.0311 

Distribution Method PI n TV AE PB SB RMSE 

Laplace 

CF   30 5 4.983 0.35 2.82 0.6154 

DE   30 5 4.993 0.14 1.11 0.6140 

CF   100 5 4.988 0.24 3.92 0.3034 

DE   100 5 5.004 0.07 1.09 0.3224 

CF   1000 5 5.000 0.00 0.04 0.0965 

DE   1000 5 5.000 0.00 0.18 0.0938 

CF   5000 5 5.001 0.03 3.16 0.0431 

DE   5000 5 5.002 0.03 3.53 0.0432 

CF   30 3 2.989 0.36 2.01 0.5437 

DE   30 3 2.958 1.40 7.84 0.5357 

CF   100 3 2.989 0.38 3.87 0.2943 

DE   100 3 2.982 0.60 5.98 0.2993 

CF   1000 3 2.996 0.12 3.78 0.0960 

DE   1000 3 2.998 0.08 2.47 0.0930 

CF   5000 3 3.000 0.01 0.53 0.0419 

DE   5000 3 3.000 0.02 1.16 0.0426 

Distribution Method PI n TV AE PB SB RMSE 

Gamma 

CF   30 2 2.226 11.32 34.35 0.6969 

DE   30 2 2.224 11.19 32.55 0.7227 

CF   100 2 2.073 3.63 19.91 0.3715 

DE   100 2 2.065 3.26 18.43 0.3599 

CF   1000 2 2.004 0.21 3.75 0.1131 

DE   1000 2 2.003 0.13 2.35 0.1071 

CF   5000 2 2.001 0.06 2.55 0.0499 

DE   5000 2 2.002 0.11 4.64 0.0490 

CF   30 2 2.243 12.17 34.18 0.7522 

DE   30 2 2.260 13.02 33.85 0.8121 

CF   100 2 2.075 3.77 18.88 0.4064 

DE   100 2 2.077 3.86 19.88 0.3954 

CF   1000 2 2.006 0.32 5.14 0.1231 

DE   1000 2 2.006 0.31 5.42 0.1136 

CF   5000 2 2.002 0.09 3.39 0.0540 

DE   5000 2 2.003 0.15 5.65 0.0531 
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We also compare the calculation time of those two algorithms. When we generated only one sample, the 

CF method had nearly the same speed as the default method. However, with 1000 replications where 

      , the CF method needed nearly one minute, but the DE method used two seconds. The difference 

of the algorithmic speeds makes sense since the CF algorithm includes rejection steps; it takes longer com-

pared to the direct calculation in the default algorithm. In summary, the price to pay for extra generality of 

being able to employ the CF algorithm is some reduction in speed. On a more positive note, similar accuracy 

signals the efficacy of the CF algorithm. The reported results are reproducible, and the R code
4
 used in this 

manuscript is publicly accessible at http://demirtas.people.uic.edu/cf_paper_code.R  

FINANCIAL DATA RESULTS 

The results are shown in Table 2. The skewness and kurtosis are calculated by R function            and 

           from the package moments
11

. The formulas for the PB, SB, and RMSE are described in Section 

2.3.2. In this table, all four moments of the generated data are close to the theoretical ones, generally indicat-

ing the Devroye’s algorithm can properly capture the properties of the original sample. Although the PB/SB 

for the estimates of skewness and kurtosis are not ideal, the mean and variance estimates seem to be very 

close to the specified quantities.  

 

TABLE 2. Financial data example: Specified, empirical moments and the percent difference between specified and empirical moments. 
 

Moments Specified Empirical PB SB RMSE 

Mean                          0.91 0.41             

Variance                             0.02 0.45             

Skewness                        6.79 1.21        

Kurtosis                  0.53 5.14        

 
 

    4. DISCUSSION 

The simulation results for the three distributions we considered suggest that the performance of the CF algo-

rithm aligns well with that of the default algorithm. It is better to harness a direct algorithm when the PDF of 

a random variable is given. However, the CF-based method can offer a solid alternative for situations where 

the PDF is hard to derive. Our findings provide a promising basis for conducting further research on generat-

ing data in complex PDF (which is hard to sample from) and relatively simple CF scenarios, as in the Stan-

dard & Poor’s data example shown before. 

It should also be mentioned that the CF algorithm hinges upon existence of the second derivative     

and two convergent absolute integrals      and       . Therefore, this method may not be applied to some 

distributions. For example, we found that the Gamma distribution when the shape parameter     did not 

have convergent integral of second derivative       , just like some types of Beta distributions. Another 

problem of this CF algorithm is that the absolute integral may be hard to solve.  

    5. CONCLUSION 

In summary, we demonstrated that the CF-based algorithm can perform as well as the internal (built-in) 

methods in R. Although the algorithm has some problems such as slower speed or difficulties in integration, 

it is still an excellent alternative to the default methods.  
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