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ABSTRACT Objective: Modeling dependence structure of a bivariate 

survival data is one of the main issues in biomedical studies. Survival copula 

deals with such a lifetime data and is used for modeling and understanding 

the distributional structure. In this study, we consider modeling and analysing 

the bivariate survival data in the presence of right censoring using 

Archimedean copula functions. In addition, the Hazard Scenario is modeled 

to assess the maximum threat expected from data sets examined in a 

particular area. So, this study has two main objectives. First one is to estimate 

the distributional structure of bivariate uncensored or right-censored survival 

data using bivariate survival Archimedean copula. Second one is to evaluate 

the joint risk of this bivariate data using Hazard Scenario approach after this 

distributional assumption. Material and Methods: We use Emura et 

al.(2010) goodness-of -fit testing procedure for the model selection. First, we 

examine the heart transplant data and model the dependence structure be-

tween waiting time for transplant and post-transplant survival time to see the 

co-movements of these variables. Second, we examine the diabetic retinopa-

thy data and model the dependence between the survival times of the two 

eyes of the same patient in case of laser photocoagulation treatment. Finally, 

we use the Survival Hazard Scenario approach to evaluate the probability of 

exceeding some critical layers for the data. Some graphs based on λ-functions 

and Kendall functions are also presented for visual comparison. Results: 

Based on the goodness-of-fit procedure applied to both of the datasets for the 

model selection, some parametric models are determined. These models help 

to understand the joint behaviour of the data. For both of the data sets, Frank 

copula which has symmetric dependence structure is selected. The data sets 

have symmetric co-movements at the tails and around the center. For the 

heart transplant data, it can be concluded if the patient is strong enough to 

wait for the heart transplant process, the survival time after transplantation is 

also longer. For the retinopathy data, the survival times of two eyes move 

together after the laser photocoagulation treatment. After the determination of 

the bivariate Archimedean copula of the data sets, a Survival Hazard 

Scenario which is a probabilistic consistent framework is used to obtain some 

joint risk layers. These layers help us to determine the large values of the 

variables which are associated with high risk conditions. Conclusion: The 

symmetric dependence structure is observed for both of the data set. Also, the 

data pairs which exceed the critical layers are also obtained using survival 

Kendall Hazard Scenario which provides valuable resulting for assessing the 

probability of threatening events. 
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ÖZET Amaç: İki değişkenli sağkalım verilerinin bağımlılık yapısının 

modellenmesi, biyomedikal çalışmaların ana konularından biridir. Böyle bir 

yaşam zamanı verisiyle ilgilenen sağkalım kopula modelleri bu verilerin 

dağılım yapısını modellemek ve anlamak için kullanılır. Bu çalışmada, 

Archimedean kopulalar kullanılarak sağdan sansürlü veri yapısı modellenmiş 

ve analiz edilmiştir. Ayrıca, belirli bir alanda incelenen veri setlerinden 

beklenen maksimum tehdidi değerlendirmek amacıyla Hazard Senaryosu 

modellenmiştir. Dolayısıyla, bu çalışmanın iki temel amacı vardır. Birincisi, 

iki değişkenli sağkalım Archimedean kopula kullanılarak sansürsüz ve 

sağdan sansürlü sağkalım verilerin dağılım yapısını tahmin etmektir. İkincisi, 

bu dağılımsal varsayımdan sonra Hazard Senaryosu yaklaşımını kullanarak 

bu iki değişkenli verilerin ortak riskini değerlendirmektir. Gereç ve 

Yöntemler: Model seçimi için Emura vd. (2010) uyum iyiliği prosedürü 

kullanılmıştır. ilk olarak, kalp nakli verileri incelenmiş ve bu değişkenlerin 

ortak hareketlerini görmek için nakil için bekleme süresi ile nakil sonrası 

hayatta kalma süresi arasındaki bağımlılık yapısını modellenmiştir. İkinci 

olarak, diyabetik retinopati verilerini incelenmiş ve lazer fotokoagülasyon 

tedavisi durumunda aynı hastanın iki gözünün yaşam süreleri arasındaki 

bağımlılığı modellenmiştir. Son olarak, veriler için bazı kritik seviyeleri aşma 

olasılığını değerlendirmek üzere sağkalım Hazard Senaryosu yaklaşımı 

kullanılmıştır. λ-fonksiyonlarına ve Kendall fonksiyonlarına dayanan bazı 

grafikler de görsel karşılaştırma için sunulmuştur. Bulgular: Model seçimi 

için her iki veri kümesine uygulanan uyum iyiliği sürecine dayanarak, bazı 

parametrik modeller belirlenmiştir. Bu modeller verilerin ortak davranışını 

anlamaya yardımcı olur. Her iki veri seti için de, simetrik bağımlılık yapısına 

sahip olan Frank kopula seçilmiştir.. Veri yapıları merkez etrafında ve 

kuyrukta birlikte hareket etmektedir. Kalp nakli verisi için hastanın kalp nakli 

sürecini bekleyecek kadar güçlü olması durumunda, nakil sonrası hayatta 

kalma süresi de daha uzundur yorumu yapılabilir. Retinopati verileri için 

lazer fotokoagülasyon tedavisinden sonra iki gözün sağkalım süresi de 

birlikte hareket etmektedir. İki değişkenli Archimedean kopula yapısının 

belirlenmesinin ardından, bazı ortak risk katmanları elde etmek için 

olasılıksal bir yapı olan iki değişkenli sağkalım Hazard Senaryosu 

kullanılmıştır. Bu risk seviyeleri, değişkenlerin büyük değerlerinin riskli 

koşullarla ilişkili olduğu değerleri belirlememize yardımcı olmaktadır. 

Sonuç: Simetrik bağımlılık yapısı her iki veri setinde de gözlenmektedir. 

Ayrıca, kritik seviyeleri aşan veri çiftleri, riskli olayların olasılığını 

değerlendirmek için önemli sonuçlar sağlayan Kendall sağkalım Hazard 

Senaryosu kullanılarak da elde edilmiştir. 
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Modeling bivariate and multivariate survival data recently has a growing interest. In the biomedical 

area, the dependence structure of the bivariate survival data has been studied by many researchers. Copulas 

are key tools to analyse the dependence structure. A bivariate survival function can be formed by the 

marginal survival functions and their bivariate copula. Since a copula is a great deal of flexibility in 

modeling bivariate survival data, it provides an effective approach for understanding and modeling the 

dependent random variables and so the dependence structure. 

Copula models examine the joint distribution in two ways: the dependence between the variables and 

the marginal distributions of the individual variables. Hence the dependence structure may also be obtained 

separately from the marginal distributions and the copulas.  One-parameter family of copulas is preferred for 

modeling dependence. The Archimedean family of copulas is an important family of copulas. They can be 

reduced to a single univariate distribution function called as Kendall distribution function, (.)K . In this 

study, we examine the goodness-of-fit (GoF) testing procedure of Archimedean class for bivariate survival 

data under uncensored and censored cases given by Emura et al.
1
 A model selection procedure which is 

based on GoF techniques for censored data in bivariate survival models was first suggested by Wang and 

Wells.
2
 

Let  ,X Y be a random pair of bivariate survival time with bivariate survival function        so the 

copula can be expressed as  

                   

where  S x  and  S y  are marginal survival functions and      
2

, : 0,1 0,1C u v  is the copula function. 

For Archimedean copulas, a generator function   is continuous and strictly decreasing 

   (.) : 0,1 0,    with a dependence parameter  . An Archimedean copula has a form in terms of  

generator function   such  as 

[ 1]( , ) ( ( ) ( ))C u v u v     . 

See, Nelsen
3 

for more details. 

In this study, we deal with three members which are Gumbel, Frank and Clayton of the Archimedean 

copula family. They have different dependence characteristics. Clayton copula has strong left tail 

dependence and relatively weak right tail dependence. When α approaches to zero, Clayton copula becomes 

independence copula, and when α approaches to infinity, Clayton copula reaches the Frѐchet upper bound, 

but it reaches the Frѐchet lower bound for no value.    

Frank copula allows negative dependence between the marginals. It interpolates between perfectly 

negative dependence and perfectly positive dependence. Frank copula has symmetric dependence in both 

tails. If α approaches to zero, Frank copula approaches to the independence copula; if α approaches to 

infinity, Frank copula becomes the Frѐchet upper bound; similarly, if α approaches to negative infinity, 

Frank copula becomes the Frѐchet lower bound, which equal to the perfectly negative dependence. 

Gumbel copula allows perfectly positive dependence, but does not allow negative dependence. The 

Gumbel copula shows strong right tail dependence and relatively weak left tail dependence. It is an 

appropriate choice when outcomes are known to be strongly correlated at high values but less correlated at 

low values. If α is equal to 1, Gumbel copula is an independent copula. If α approaches to infinity, the limit 

of Gumbel copula reaches the Frѐchet upper bound. 

The local odds ratio function is proposed by Oakes 
4  

given as, 

                  
2

* ( , ) ( , )
( , )

( , ) ( , )


      

       

P X x Y y x yP X x Y Y
x y

P X x Y y x P X x Y y y
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( 1| , )

( 0 | , )

   


   

% %

% %
ij ij ij

ij ij ij

P X x Y y

P X x Y y
     

where ij i jX X X %
  and ij i jY Y Y % , and min( , )a b a b  . The procedures work well with survival 

censored data.  Emura et al.
5  

indicated that a cross-ratio function can characterize the results of inferential 

procedures for censored and uncensored data. 
*( , )x y  is a bivariate function which measures the  local 

dependence when the pair  ,X Y  is independent at  ,x y .  Also, 
*( , ) { ( , )}x y F x y   for the Archimedean 

copula class. { ( , )}F x y  is obtained as 

            
 

'' ( )
( ) ,

( )







 
  

 

    
   

  

    

Genest and Rivest
6 
 indicated that ( )K   is related to     through the differential equation 

          

( )
( ) ( )

( )





 
  

 
  


v K       

where ( ) ( )v v v        and ( , )S X Y  .  See also, Wang and Wells
2
.
 
The function ( )v  can be 

obtained by ( )K v  where  ( ) ( , )K v P F X Y v  . ( )v  is related with the generator function ( )v  and 

determines the dependence structure of the Archimedean copula class.   Table 1 gives the generator and the 

lambda functions of some Archimedean copulas. 

 

TABLE 1: Some Archimedean Copulas. 

                                                                                                                                                                                                                 

Clayton                             , 1





% %
ij ijS X Y                                           , 1 ,



 % % % %
ij ij ij ijS X Y S X Y                                 2    

Frank                        
 

  
1 exp

log
1 exp ,





 
  

  
 

% %
ij ijS X Y

              
  
  

 

  
,1 exp 1 exp

log
exp , 1 exp ,

 

  

     
   
 

% %

% % % %

ij ij

ij ij ij ij

S X Y

S X Y S X Y
             11 4 1  D  

Gumbel                                  
1

log ( ,


 % %
ij ijS X Y                                    , log , 1 % % % %

ij ij ij ijS X Y S X Y                                   1    

NOTE:   is the dependence parameter. 

* 1D  is the Debye function of order 1,      1

0

1tD t e dt



   .6 

 

There are two main contributions of this study to the existing literature. First, we use goodness-of-fit 

procedure in the case of uncensored and right-censored data for some Archimedean copula models and 

obtain their test statistics. These Archimedean copula models are Frank, Gumbel and Clayton which have 

different types of dependence characteristics such as, symmetric dependence, right-tail dependence and left 

tail dependence, respectively. The goodness-of-fit test procedure is applied to check which copula fits best to 

the given data. Some graphical tools and numerical techniques are used in this process to select a suitable 

and adequate model. The goodness-of-fit tests constructed as 
0 : H C C  versus 

1 : H C C  where   is an 

unknown copula and    is the parametric copula. Graphical methods, error statistics, and goodness-of-fit 

statistics are used to measure the adequacy of the hypotheses.  Second, we employ Survival Hazard scenario 
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approach based on copula models to determine the critical layers for the bivariate survival data. The critical 

layers show the high risk thresholds for the pair of the data. In Materials and Methods section, the testing 

procedure is given for both the censored and the uncensored data. The survival hazard scenario in terms of 

survival Kendall distribution is also given in this section. In Results section, all the given procedures are 

applied to the heart transplant data and diabetic retinopathy data sets. Conclusion section is also given.  

    MATERIAL AND METHODS 

In this section, we deal with the uncensored data firstly, then we modify the model for the right censored 

data. The main hypothesis is given by   

 1

0 : ( , ) ( ) ( )H C u v u v        for some   , 

where the alternative hypothesis is any other copula. 

The GOF procedure for the uncensored data 

Let                   be the uncensored data, and ij  be the concordance indicator, then 

                                                   ( ) ( , ) ,


       
   % % % %

k k ij ij ij ij ij ij

i j

U W X Y E X x Y y

                         

                                                  

ˆ{ ( , )}
( ) ( , )

ˆ{ ( , )} 1










 
   

  


% %
% %

% %

ij ij

k k ij ij ij

i j ij ij

S X Y
U W X Y

S X Y
                                 

 

where ( , )k ij ijW x y% %  is weight function and ˆ( , )S x y  is an estimator of ( , )S x y . ˆ( , )S x y  is called ‘empirical 

survival function’ obtained  as 
1ˆ( , ) ( , )i i

i

S x y I X x Y y
n

   . In goodness-of-fit  procedure, two weight 

functions are used to obtain ˆ
k  by solving   0kU    for 1,2k  . If 

0H  is true, then  the statistic 

 1/2

1 2n  
) )

 converges to a normal distribution with zero mean. As Emura et al.
1 

indicated, the power of 

the test depends on the weight functions. 

THE WEIGHT FUNCTIONS 

The unweighted and weighted estimators of the association parameter were compared by Shih
7
 and the 

conclusion was that if the proposed model has a good fit, the difference of these two estimates converges to 

zero. Using the idea of the likelihood approach of Clayton
8
,  the estimating function can be written in terms 

of  kU  . Let    be the set of grid points, then 

                                          
1 1

( , ) ( , ) 1, ( , ) 1
 

 
       
 

 
n n

i i i

i i

x y I X x Y y I X x Yi y

                      

 

Also, let        be the number of observed failures defined as  

( , ) ( , )i i

i

D x y I X x Y y    

and let        measure the number of risk defined as 

1

( , ) ( , )i i

i

R x y r I X x Y y


    , 
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then,  ,D x y is distributed Bernoulli with the success probability such as 

                                           
 

 

( , )
( , ) 1 ( , ) , ( , )

1 ( , )









   

 

S x y
P D x y R x y r x y

r S x y
                          

 

By using conditional probability, the likelihood function is 

                               

 

   

( , ) 1 ( , )

( , )

( , ) ( , ) 1
( )

( , ) 1 ( , ) ( , ) 1 ( , )



 




 





   
    

         


D x y D x y

x y

S x y R x y
L

R x y S x y R x y S x y
                             

          

 

with all points in   under the independence assumption among the grids. 

Then, the estimating function is 

                         
   

   

 
 

1

( , ) ( , ) 1 ( , )
( )

( , ) 1( , ) 1 ( , )

  

 

  


 

   
     

       



) ) )& % % % % % %

)) )
% %% % % %

ij ij ij ij ij ij

ij

i j ij ijij ij ij ij ij

S X Y S X Y S X Y
U

S X YS X Y R S X Y
             

 

                                   
 

 
1

( , )
( , ) ,

( , ) 1









 
   
 
 



)
% %

% % )
% %

ij ij

ij ij ij

i j ij ij

S X Y
W X Y

S X Y
                                                      

 

where ( , ) ( , )ij ij ij ij ijR R X Y nS X Y 
)

% % % %  and     ( , ) ( , )ij ij ij ijS X Y S X Y     
) )

& % % % % . The second estimating 

function is 

                                                      

 
 

2

( , )
( )

( , ) 1










 
   
 
 



)
% %

)
% %

ij ij

ij

i j ij ij

S X Y
U

S X Y
.                                          

By solving 
1( ) 0U    

and 
2 ( ) 0U   , we find k

)
 for 1,2k  .  

 

We obtain the   statistics for the given Archimedean copula functions. 

For Frank copula, 

2 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) / (1 exp( ( , ) )) ( , ) / (1 exp( ( , ) )) exp( ( , ) ) ( ( , ) ) / (1 exp( ( , ))) 1
( )

ˆ ˆ( ( , ) ) / (1 exp( ( , )))

ij ij ij ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij i

S X Y S X Y S X Y S X Y S X Y a S X Y S X Y
U

S X Y S X Y R

    


 

         
 

  
 

% % % % % % % % % % % % % %

% % % % ˆ ˆ1 ( ( , ) ) / (1 exp( ( , )))i j
j ij ij ij ijS X Y S X Y       
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For Gumbel copula, 
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For Clayton copula, 
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For, the asymptotic distribution of 
1 2

1 2( )n  
) )

 and 
1 2

1 2(log log )n  
) )

 approximates to        , 

where    2

1 1 2 2 1 1 3 34 ( , ),( , ) ( , ),( , )E h X Y X Y h X Y X Y     .  And also 1 2(log log ) 
) )

 converges zero in 

probability, so that  1U   and  2U   involve the estimator.  

 

Lemma: Under the correct model and regularity conditions 
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where  1pO  is uniform in  . 
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where h  is a symmetric function and 
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THE TESTING PROCEDURE 

When    1 2  
) ) )

 > Z1-α/2 under  -significance level where Z1-α/2 is the pth percentile of the standard 

normal distribution, we reject     In Archimedean copula models, the derivation of the variance estimator is 

difficult and also it becomes more complex for right-censored data. Therefore, for the variance estimation, 

Emura et al.
1 

proposed the jackknife method. The jackknife is a method which is one of the earliest 

resampling methods used to estimate the variance and bias of a large population. The method is defined as 
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RIGHT-CENSORED CASE 

Let  ,i iA B  be the independently identically distributed bivariate censoring variables.  ,i iA B  and 

 ,i iX Y  are independent of each other. Through the right censoring process, it is applied that,

min( , ),i i iY Y B
(

 
( )x

i i iI X A    and ( )y

i i iI Y B   . The order of 
iX  and jX  is known if and only if

ij ijX A %% , where ij i jX X X %  and ij i jA A A % . Similarly, the order of 
iY  and jY  is known if and only if 

ij ijY B% %. Let ijZ  indicate whether the ordering relationship is certain or not. Then, then U- statistic is 
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To solve k
)

, the following equation is used; 
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where ( )lS%  shows the estimated value in the l-step and also defined as ( , )S x y
% .  

As in the uncensored case, the results of asymptotic normality are valid and 
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U -statistic approximate to  kU    as in the above  2U   function: 

    

 
 

2

( , )
( )

( , ) 1

ij ij

ij ij

i j ij ij

S X Y
U Z

S X Y










 
   
 
 


% %

%
% %

.

                                              

 

HAZARD SCENARIO 

“Hazard” is a situation or property with the potential to construct harm and also is known as the potential for 

an accident with undesired results in process safety. Modeling the hazard scenario aims to evaluate the 

maximum threat expected from a studied event in a certain area. Hazard Scenarios should be multivariate 

and dependent. In Hazard Scenarios, several scenarios are tendered and comparisons are applied. Firstly we 

deal with some notation in order to explain the Hazard Scenario. Salvadori et al.
9
 and Salvadori et al.

10 
gave 

and discussed the general concept of the Hazard Scenario. Susam and Ucer
11

 applied the Kendall scenario to 

the energy consumption data. 
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dS R  is defined as an upper set if, and only if, x S and y x , y S . The upper set handles the a 

practical reason of an event which can be classified as risky with  “larger” realizations. 

 

In this approach, X is a random vector defining the event of interest. For a level        , a Hazard 

Scenario  is constructed on any Upper Set 
dS S R   relation 

      P X S  
   

holds. The dependence upon α will be eliminated when no complexity may occur to hold formula simple. 

Under an appropriate criterion, a Hazard Scenario can be constructed as a set which contains all the events x 

which are classified as “dangerous” events. When x S  and y x , y could be classified as dangerous. 
 

In a Hazard Scenario which can be defined as an Upper Set, generally the cases where the large values 

of the variables of interest are related to the ‘dangerous’ cases. Sometimes, small values of the variables may 

be dangerous also. In this case, the sign of the variables of interest is changed.  

 

We use Kendall and Survival Kendall scenario to define the critical layers. 

1. “Kendall” scenario S
K

:  Let 
dx R  be a given event where  t F x  and let tL  be the level 

set crossing x. A bivariate Kendall Hazard Scenario is considered as the pair   2U,V I . Also,  
K

tS  is 

defined as  the region “exceeding” the critical layer, and tL  and tL  represent a critical multivariate 

threshold. 

2. “Survival Kendall” scenario K
S

(

: Let 
dx R  be a given event where  t F x and let  tL  be 

the survival level set crossing x. A bivariate Survival Kendall Hazard Scenario is considered as the pair 

  2U,V I .  Also, 
K

tS
(

 is defined as the region “exceeding” the survival critical layer , and tL and tL  

represent a critical multivariate threshold. 

 

TABLE 2: Some Hazard Scenarios. 

Scenarios  Shapes Probabilities 

Kendall         K d d

t 1 1 d dS y R :F y t y R :C F y ,...,F y t          K K K K

u x t tP X S 1 K t         

Survival 

Kendall 
        K d d

t 1 1 d d
ˆS y R :F y t y R :C F y ,...,F y t     

(

      K K K K

u x t t
ˆP X S 1 K t K t        

( ( ( ( (
 

 

1. The Kendall case:  Suppose that            is fixed and tL  be  the critical layer crossing u 

which  t C u . 

    
^ K v

u t uS S S 
                    

 

and  

    
^ K v

u t u   
                

 
 

v

u  is defined as constant as u crosses over tL , as well as 
K

t ,  but 
^

u  usually changes. We define 

K

tS  as unique for all events having tL , the Hazard Scenario 
v

uS ’s restate. 
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2. The Survival Kendall case: Suppose that                 is fixed and let tL  be the survival 

critical layer crossing u which  ˆt C 1 u  . 

    
^ K v

u t uS S S 
(

 

and  

    
^ K v

u t u   
(

  

^

u  is defined as constant where u crosses over tL , as well as 
K

t
(

, but 
v

u  usually changes.  We 

define 
K

tS
(

 as unique for all events having tL ,  the Hazard Scenario 
^

uS ’s  restate. 

 

The Survival Kendall case indicates the regions of bounded safe events, thus ensuring that non-

hazardous events take bounded values of the variables. 

 

For the Kendall Scenario probabilities 
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1 2

K

u ,u 1 K t    
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                 
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1 2 u ,u1 K u u 1       

 

For the Survival Kendall Scenario probabilities, 

 

       
1 2

K̂

u ,u 1 K t  
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                   1 2
ˆ1 K C 1 u ,1 u   
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                  
1 2

^

u ,u1 K  
(

 

where  K t
(

 is the Survival Kendall distribution function and    ˆK t 1 K t 
(

.  For summary, Table 2 which 

presents the Hazard Scenarios and probabilities is given.  

 

In the Failure Probability approach,  let T 0  be an arbitrary design lifetime and let 1 TX ,...,X  be the 

random vectors which defines the event in an investigation at times 1,...,T . Let  1 TS ,...,S  be Hazard 

Scenario vector and suppose that 
c

iS ’s are Hazard Scenario’s complements namely their complements 

c

iS ’s could be labeled as “safe”. For The Failure Probability Approach, it can be denoted as general 

formula; 

 

     c c

T 1 1 T T1 P X S ,...,X S     . 

 

For the Hazard Scenario, the variables are iid, then  

       
T

Tc

T

j 1

1 P X S 1 1 


      . 
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Finally, for the Survival Kendall Scenario, the Failure Probability is 

     
TK

T 1 K t  
( (

 

for  t F x % . 

 

    RESULTS 

Firstly, our data is obtained from heart transplant recipients from the Stanford heart transplant program.
12 

We 

tackled 69 transplant data from 103 transplants and also our data is used for the uncensored case. Descriptive 

statistics of this data set is given in Table3. 

 

TABLE 3: Descriptive Statistics of Heart Transplant Data. 

Heart transplant Mean std Var Min max Median 

Survival time 415.4 458.6698 210378 5 1799 207 

Waiting time 38 50.10384 2510.394 1 310 26 

 

 

We model the dependence structure between waiting time for transplant and post-transplant survival 

time to see the co-movements of these variables and how they affect each other. 

We apply the goodness-of-fit procedure given in the previous section. Table 4 shows the goodness-of-fit 

results. The weighted and unweighted dependence parameters, test statistics and their p-values are shown in 

Table 4. For the Frank copula model, we obtain 
1
ˆ 2.1930472   and

2
ˆ 2.134277  . Also, we calculate τ-

values based on ̂ values as
1̂ 0.2328296   and 

2 0.2271088̂  . As seen in Table 4, Frank copula has the 

best fit (p-value=0.3594) for heart transplant data, because its p-value is higher than the other models. 

Gumbel copula model also cannot be rejected at the 5% significance level, however its p-value is lower than 

the Frank copula model. Clayton model is rejected at 5% significant level. So, we can conclude that the 

model has symmetric dependence structure for transplant and post-transplant survival times. Figures 1A-1C 

are constructed using λ-functions of Clayton, Gumbel and Frank copula model, respectively. These figures 

show which copula models have the better fit for the given data, visually. These figures are constructed from 

theoretical and empirical data to see how their fits are. In Figures, the left part is for the empirical λ-function 

of the data, the middle one is for the theoretical λ-function and the right one is for both empirical and 

theoretical λ-functions. When Figures 1A-1C are examined, it can be concluded that the Frank copula model 

has again the better fit to the data. 

 

TABLE 4: The GoF results for Archimedean Copula models for the Stanford heart transplant program. 

                                                     1̂                                             2̂                                        1 2
ˆ ˆ ˆ

jack                                   p value 

Clayton                                     0.1692321                                   0.6449004                                          -6.437196                                               0 

Frank                                        2 .1930472                                   2.134277                                           0.3676287                                          0.3594 

Gumbel                                     1.2789026                                  1.2598375                                           0.9582767                                          0.1711 
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FIGURE 1: λ-functions based on the Stanford heart transplant program for some copula models. 

 

Secondly, our other data is obtained from diabetic retinopathy study.
13

 We tackled 197 patients for our 

censored study. One of the eyes of the patients was randomly selected for photocoagulation treatment and an 

experimental treatment was applied to one eye, a standard treatment to the other eye, of each patient 

enrolled. Manatunga and Oakes
13

 concentrated the effect of laser- photocoagulation therapy. The data 

consists of 197 patients. 38 patients have failure in both eyes, 79 patients have failure in one eye and 80 of 

them has no failure. Considering censored status, we use the variables as treated and untreated eyes and also 

we deal with time to loss of vision or last follow-up of the patients as survival time. Descriptive statistics of 

diabetic retinopathy data is given in Table 5. 
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TABLE 5: Descriptive Statistics of Diabetic Retinopathy Data. 

Diabetic retinopathy Mean Std Var Min max Median 

Standard survival time 32.29 21.46031 460.545 0.3 74.93 32.63 

Photocoagulation survival time 38.87 20.78826 432.1517 1.47 74.97 42.23 

 

 

In this data, we model the dependence structure between the survival times of the two eyes of the same 

patient after laser- photocoagulation therapy to see how they affect each other. We again deal with Frank 

copula, Gumbel copula and Clayton copula models. We apply the goodness-of-fit procedure for these copula 

models. Table 6 shows the goodness-of-fit results. The weighted and unweighted dependence parameters, 

test statistics and their p-values are shown in Table 6. When we examine Table 6, Frank copula model has 

the better fit to our data (p-value=0.435 (Frank)), because its p-value is higher than the other models. Also, 

for the Frank copula model, we obtain 
1
ˆ 1.5647446   and

2
ˆ 1.6743183  . Clayton copula model also 

cannot be rejected at the 5% significance level, however its p-value is lower than Frank copula model. 

Gumbel model is rejected at 5% significance level. So, we can conclude that the model has symmetric 

dependence structure between the survival times of the two eyes of the same patient after laser- 

photocoagulation therapy. The visual comparisons are also given in Figures 2A-2C via λ-functions. These 

figures are constructed for theoretical and empirical data to see how their fits are. In Figures, the left part is 

for the empirical λ-function of the data, the middle one is for the theoretical λ-function and the right one is 

for both empirical and theoretical λ-functions. So, it can be concluded that the Frank copula model has again 

the better fit to the data.  

Frank copula is important because it allows negative dependence between the marginals and also the 

dependence is symmetric in tails. In theory, Frank copula can be applied to the model outcomes with strong 

positive or negative dependence.
14

   

 

 

TABLE 6: The GoF results for Archimedean Copula models for the diabetic retinopathy study. 

                                                            1̂                                          2̂                                      1 2
ˆ ˆ ˆ

jack                                   p value 

Clayton                                          1.164139                                    1.246918                                          -1.00857                                            0.1587 

Frank                                             3.897294                                    3.944172                                         -0.1755508                                         0.435 

Gumbel                                        1.5647446                                   1.6743183                                        -2.603582                                         0.0047 
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FIGURE 2: λ-functions based on the diabetic retinopathy study for some copula models. 
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Kendall distributions of the selected copula models for both of the data sets are visualized in Figure 3 

and Figure 4. Kendall distribution plots show the distribution of the pairs of the data using Kendall function. 

These figures are plotted to see the goodness-of-fit results of the selected copula models to the data sets. It 

can also be concluded that Frank copula model has the better fit to both Stanford heart transplant data and 

diabetic retinopathy data. 

 

FIGURE 3: Kendall plot based on the Stanford heart transplant program 

NOTE: Green (Frank copula), red (Clayton copula), blue (Gumbel copula) 

 

 

FIGURE 4: Kendall plot based on the diabetic retinopathy study 

NOTE: Green (Frank copula), red (Clayton copula), blue (Gumbel copula) 

 

Also, we calculate the Mean Squared Errors (MSEs) of the models for the data presented in Table 7. We 

can also conclude that Frank copula model also has minimum MSE values. 
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TABLE 7. MSE values for Heart transplant and Diabetic Retinopathy data. 

MSE Heart Transplant data Diabetic Retinopathy data 

Frank 0.0001510953 0.0005226535 

Gumbel 0.0005936182 0.0005410127 

Clayton 0.00097334402 0.00102377 

 

The data pairs which exceed the critical layers are also obtained using Survival Hazard scenario which 

provides valuable resulting for assessing the probability of threatening events.  After the model selection, 

survival Hazard Scenario is applied for heart transplant study and diabetic retinopathy study to determine the 

critical layers using the copula models. In Table 8, survival time after transplant and waiting time to 

transplant and its survival Hazard scenario levels K

t
(

 are given. Similarly, In Table 9, for non-treated 

(experimental) survival time and treated (photocoagulation) survival time of the pair of the eyes and their 

Survival Hazard Scenario levels K

t
(

 are given. The bivariate critical threshold for the Frank copula for given 

(x, y) is presented in the third column of Table 8 and Table 9. Also, K

t
(

 which shows the exceeding the 

critical layer  probabilities are given in the fourth column. We can conclude that the exceeding probability of  

the critical layer 0.1527 is 0.3913 for the value of  x, y (5,5) .  

 

TABLE 8: The probabilities that exceed the critical layer for the selected heart transplant data. 
 

Survival time Waiting time  t H x, y  
K

t
(

 

5 

16 

16 

17 

30 

39 

39 

43 

45 

51 

5 

2 

1 

5 

5 

38 

36 

20 

1 

12 

0.1527 

0.5326 

0.7826 

0.3804 

0.4750 

0.1156 

0.1386 

0.3190 

0.8382 

0.4527 

0.3913 

0.9130 

0.9710 

0.7246 

0.8405 

0.3043 

0.3478 

0.6521 

0.9855 

0.7971 

 

 

 

TABLE 9: The probabilities that exceed the critical layer for selected diabetic retinopathy data. 
 

Non-treated Eye Survival Time Treated Eye Survival Time  t H x, y  
K

t
(

 

46.23 

31.3 

42.27 

20.6 

0.3 

54.27 

10.8 

23.17 

13.83 

48.53 

46.23 

42.5 

42.27 

20.6 

38.77 

65.23 

63.5 

23.17 

58.07 

46.43 

0.2330 

0.2769 

0.2849 

0.4995 

0.3001 

0.0294 

0.0487 

0.4792 

0.0993 

0.2123 

0.4771 

0.5431 

0.5532 

0.8172 

0.5736 

0.0152 

0.0913 

0.7868 

0.2385 

0.4365 
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FIGURE 5: Observed pairs of heart transplant data, selected critical layer K

tL
(

 and level K

t
(

. 

 

 

FIGURE 6: Observed pairs of diabetic retinopathy data, selected critical layer K

tL
(

and K

t
(

. 

 

In Figure 5 and Figure 6 we can see the observed pairs of the data, the selected critical layer K

tL
(

and the 

level  K

t
(

. From the figures, we can determine the critical layers, also we can determine which observations 

exceed the critical layers. For example, when survival time is 340 days and waiting time is 310 days, the risk 

level is 27.5% for heart transplant study. Similarly, in diabetic retinopathy study, when non-treatment time is 

66.2 months and treatment time is 66.2 months, the risk level is 1%.  
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    CONCLUSION 

In this study, we deal with modeling and analyzing bivariate survival uncensored and right-censored data for 

three Archimedean copula models. We apply the goodness-of-fit method proposed by Emura et al.
1 

to select 

the best appropriate Archimedean copula model to our data sets. Different from the conventional methods in 

survival analysis, this method provided a formal GoF test using weight function based on conditional 

likelihood. This strategy was also used by Oakes
2
 . 

We use Kendall distribution function and λ-functions to choose the best fit visually. Since the variance 

estimator is complicated for the right-censored data, the jack-knife estimates are obtained. For both of the 

heart transplant data and diabetic retinopathy data, Frank copula model is selected. This means that the data 

sets have symmetric dependence structure. For the heart-transplant data, we investigate the relation between 

the waiting time for transplant and post-transplant survival time. As discussion in the paper Aitkin et al.
15

, 

they concluded that the transplant appears to prolong survival. However, a selection bias in the procedure 

has been appeared. The non-transplant patients are those who die while waiting for a heart, while 

transplanted patients are those who survive until a suitable heart is found. So, from the dependence structure, 

we can conclude that when the waiting time for transplant gets longer and the patient is still alive, this means 

that the patient has relatively longer survival time after transplant, because the patient has low risk 

(stronger). So, very high risk patients generally do not survive the waiting period and so this confirms our 

results. 

Also, in the diabetic retinopathy study given by Manatunga and Oakes
13

, one of the eye of the patients 

was selected for laser photocoagulation treatment and the other eye was observed without treatment. As 

censored status, we use the variables as treated and untreated eyes. We model the dependence structure 

between the survival times of the two eyes of the same patient after laser-photocoagulation therapy, so we 

obtain the copula of related survival times. After modelling the dependence of variables we can conclude 

that both of the eyes have similar survival times after the laser- photocoagulation therapy. One of the eyes 

survive as the other one survives after the treatment. 

Finally, a Hazard Scenario approach is also applied in evaluation the joint risk of the variables. We 

calculate the probability that patients of the survival time and waiting time jointly exceed the critical layer in 

heart transplant program and also that patients of the treatment survival time and non-treatment survival time 

jointly exceed the critical layer in diabetic retinopathy program. We deal with the Survival Hazard scenario 

to determine appropriate probability levels of some extreme events for both of the data. Determining the 

critical layers help the researcher to see which pairs are in extreme area or which pairs are in safe area.  
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