# Effect of Cigarette Smoking on P Wawe Dispersion

SİGARA İÇİLMESİNİN P DALGA DİSPERSİYONUNA ETKİSİ

Dr.Hüseyin GÜNDÜZ,<sup>a</sup> Dr.Hüseyin ARINÇ,<sup>a</sup> Dr.Ali TAMER,<sup>b</sup> Dr.Hakan ÖZHAN,<sup>c</sup> Dr.Ramazan AKDEMİR,<sup>c</sup> Dr.Oğuz KARABAY,<sup>d</sup> Dr.Cihangir UYAN<sup>a</sup>

<sup>a</sup>Department of Cardiology, Abant İzzet Baysal University, İzzet Baysal Faculty of Medicine,

<sup>b</sup>Department of Internal Medicine, Abant İzzet Baysal University, İzzet Baysal Faculty of Medicine, BOLU

<sup>°</sup>Department of Cardiology, Abant İzzet Baysal University, Düzce Faculty of Medicine, DÜZCE

<sup>d</sup>Department of Clinic Microbiology and Infection Disease, Abant İzzet Baysal University, İzzet Baysal Faculty of Medicine, BOLU

## — Özet ——

- Amaç: Sigara içilmesinin atriyoventriküler nodal iletiyi hızlandırdığı, atriyal fibrilasyonla birlikte çeşitli supraventriküler aritmilere neden olduğu gösterilmiştir. Çalışmamızın amacı 12 derivasyonlu yüzey elektrokardiyogramından kolayca elde edilen ve atriyal fibrilasyon gelişme riskini belirlemede kullanılan P dalga dispersiyonunun sigara içimi ile olan ilişkisini araştırmaktır.
- Gereç ve Yöntemler: Çalışmaya sigara içen 48 olgu (30 erkek, 18 kadın, yaş ortalaması 47±13), hiç sigara içmemiş 29 olgu (17 erkek, 12 kadın yaş ortalaması 49±11) alındı Sigara içen ve içmeyen grubun P dalga süreleri, klinik ve ekokardiyografik bulguları karşılaştırıldı. Ayrıca sigara içenler, sigara içim sürelerine göre 3 gruba ayrılarak P dalga süreleri karşılaştırıldı.
- **Bulgular:** P maksimum süresi ve P dispersiyonu; sigara içen grupta 106±11 ms ve 40±9 ms, sigara içmeyen grupta ise 93±9 ms ve 28±6 ms olup iki grup arasında anlamlı derecede farklıydı (p<0.01). Ayrıca sigara içenler içim süresine göre üç gruba ayrıldığında P maksimum süresi ve P dispersiyonu anlamlı derecede farklı olup sigara içim süreleri arttıkça P maksimum süresi ve P dispersiyonu artmaktaydı (p<0.05).
- Sonuç: Sigara içenlerde nikotinin sempatik aktiviteyi artttırıcı etkisiyle P maksimum süresi ve P dispersiyonunun belirgin olarak arttığı, özellikle atriyal fibrilasyon riski yüksek hastalarda bu bulgunun pratik kullanımının daha geniş çalışmalarla araştırılması, bu konu ile ilgili ileride yapılacak çalışmalarda bu sonucun gözönüne alınması gerektiği söylenebilir.

Anahtar Kelimeler: P dalga dispersiyonu, sigara

Turkiye Klinikleri J Cardiology 2004, 17:356-359

#### Abstract -

- **Objective:** Cigarette smoking has been shown to accelerate atrioventricular node conduction and it could contribute to supraventricular arrhythmias, including atrial fibrillation (AF). The purpose of the present study is to investigate the effects of smoking on P wave dispersion which is reported to predict AF risk calculated on a 12 lead surface ECG.
- **Material and Methods:** Fourty eight smokers (30 male and 18 female with a mean age of  $47\pm13$ ), and 29 subjects who had never smoked (17 male, 12 female with a mean age of  $49\pm11$ ) were included in to the study. The P wave durations, clinical and echocardiographic variables were compared between smokers and non-smokers. Smokers were also grouped into three subgroups according to the duration of smoking history and P wave durations were compared.
- **Results:** Maximum P wave duration and P wave dispersion times were found significantly different (p<0.01,  $106\pm11$  ms versus 93±9 ms for P maximum and 40±9 ms versus 28±6 for P dispersion in smokers and non-smokers, respectively). The subgroups of smokers were compared. P maximum and P dispersion values were significantly different (p<0.05). The duration of P maximum and P dispersion increased as the duration of smoking history increases.
- **Conclusion:** As a result, it can be said that p maximum and p dispersion is increased in smokers and this is an effect of nicotine which increases sympathetic activity and practical usage of this finding should research with larger studies, in patients, especially have high atrial fibrillation risk, this result should be taken into account in studies which are related this subject will be done future

Key Words: P wave dispersion, smoking

Geliş Tarihi/Received: 22.10.2003

Kabul Tarihi/Accepted: 11.05.2004

Yazışma Adresi/Correspondence: Dr.Hüseyin GÜNDÜZ Eski İstanbul Caddesi, Bahçelievler Mahallesi Karsu Apartmanı, 11/1 14070, BOLU drhuseyingunduz@yahoo.com

Copyright © 2004 by Türkiye Klinikleri

Smoking is known to be a major risk factor for ischemic heart disease. Adverce effects on the cardiovascular system are related to the toxic substances, especially nicotine. Nicotine has been shown to increase the plasma catecholamine levels, heart rate, blood pressure and can cause sudden death by triggering atrial and ventricular arrythmias.<sup>1-3</sup> EFFECT OF CIGARETTE SMOKING ON P WAWE DISPERSION

Atrial fibrillation (AF) is the most common chronic arrhythmia encountered in the population and a predictor of death due to cardiovascular reasons. Several non-invasive electrocardiographic parameters were used to predict AF in high-risk patients. P wave dispersion was found to be related with the intraatrial and interatrial nonhomogeneous depolarization and blocked conduction of the sinus node stimulus, providing the possibility to predict AF risk with the help of 12 lead ECG.<sup>4,5</sup>

The purpose of the present study is to investigate the effects of smoking on P wave dispersion which is an easy way to predict AF risk calculated from a 12 lead surface ECG.

# **Material and Methods**

**Study patients:** Fourty eight smokers (30 male and 18 female with a mean age of  $47\pm13$ ), and 29 caseswho had never smoked (17 male, 12 female with a mean age of  $49\pm11$ ) included to the study. The P wave durations, clinical and echocar-diographic variables were compared between smokers and non-smokers. Smokers were also grouped into three subgroups according to the duration of smoking history as group I (0-15 pack/year), group II (16-30 pack/year) and group III (>30 pack/year) and P wave durations were compared

The exclusion criteria were ischemic heart disease, hypertension, diabetes, chronic obstructive pulmonary disease, chronic renal disease, cardiomyopathies, thyroid function disturbances, electrolyte imbalance, branch blocks and arrhythmias on the ECG, alcohol consumption and any drug use that is known to interfere with atrial conduction.

Diabetes was defined as hyperglycemia requiring previous or ongoing pharmacological therapy. Hypertension was defined as either a systolic or diastolic elevation of blood pressure (>140/90 mm Hg) or ongoing antihypertensive pharmacological therapy. In addition, if segmenter wall motion defect was detected on echocardiography and/or if symptoms of ischemic heart disease were present, other noninvasive tests were undertaken and patients with one or more coronaries with more than %50 stenosis were defined as ischemic heart disease in coronary angiography.

Transthoracic echocardiography and electrocardiography: One experienced echocardiographer assessed echocardiography studies. All the subjects were screened by transtoracic echocardiography (Vivid 3, General Electric Vingmed Ultrasound, Israel) and their left ventricular ejection fraction, left atrial diameter and left atrial volume were recorded. 12 lead surface ECG's were recorded in each subject with sinus rhythm and normal ECG; in 50 mm/s rate and 1mV/cm amplitude. P wave dispersion measurements were performed with a high resolution monitor after the ECG's were scanned and stored to digital format as jpeg files in 1200 dot per inch (dpi) scale.<sup>6</sup> Adobephotoshop software (Adobe systems inc.,USA) was used in reading and calculating the P wave morphology. The images were enlarged to 100% of the print size. The starting point of P wave was referred as the positive deflection crossing the isoelectric line and the end-point was referred as the end of the deflection crossing the isoelectric line. The patients were excluded if these points were not clear. The measurements were done in at least eight leads. The P wave dispersion is calculated by subtracting the minimum P wave duration time from the maximum duration.

Statistical analysis: Statistical analyses were performed by statistical program for social sciences (SPSS) software. Qualitative data were expressed as % and analysed by chi square test. Quantitative data were analysed with student's t test and expressed as mean  $\pm$  SD. The data compared with ANOVA test in more than two groups. P value <0,05 was considered significant.

### **Results**

The demographic, echocardiographic and electrocardiographic data were compared between the smokers and non-smokers. The results were expressed in Table 1. Maximum P wave duration and P wave dispersion were found significantly different between groups ( $106\pm11$  ms versus  $93\pm9$  ms for P maximum and  $40\pm9$  ms versus  $28\pm6$  for P dispersion in smokers and non-smokers, respectively).

| Variables            |     | SMOKERS       | CONTROL GROUP<br>(NON-SMOKERS) | P value |  |
|----------------------|-----|---------------|--------------------------------|---------|--|
| Age                  |     | 47±13         | 49±11                          | >0.05   |  |
| Gender male/female   |     | 30/18         | 17/12                          | >0.05   |  |
| Left atrial diameter | mm  | 36±7          | 35±6                           | >0.05   |  |
| Left atrial volume   | ml  | 46±21         | 45±12                          | >0.05   |  |
| LV EF *              | (%) | 63±7          | 63±7                           | >0.05   |  |
| P maximum            | ms  | 106±11        | 93±9                           | <0.01   |  |
| P minimum            | ms  | 64 <u>±</u> 9 | 65±8                           | >0.05   |  |
| P dispersion         | ms  | 40 <u>±</u> 9 | 28±6                           | <0.01   |  |

**Table 1.** The comparison of clinical, echocardiographic and electrocardiographic data between smokers and non-smokers

\*LV EF : Left ventricular ejection fraction

**Table 2.** The comparison of clinical, echocardiographic and electrocardiographic data of smokers who were grouped according to the duration of smoking history

| Variables               | Group I<br>(0-15 pack/years) | Group II<br>(16-30 pack/years) | Group III<br>(>30 pack/years) | P value |
|-------------------------|------------------------------|--------------------------------|-------------------------------|---------|
| Age                     | 44±14                        | 45±12                          | 51±10                         | >0.05   |
| Gender male/female      | 10/8                         | 11/6                           | 9/4                           | >0.05   |
| Left atrial diameter mr | n 33±7                       | 37±9                           | 38±6                          | >0.05   |
| Left atrial volume ml   | 43±18                        | 48±14                          | 49 <u>±</u> 22                | < 0.05  |
| LV EF * (%)             | 66±8                         | 63±7                           | 61±9                          | >0.05   |
| P maximum ms            | 96±12                        | 103±10                         | 111±7                         | <0.05   |
| P minimum ms            | 63±9                         | 65±10                          | 65±7                          | >0.05   |
| P dispersion ms         | 34±8                         | 39±7                           | 45±12                         | <0.05   |

\*LV EF : Left ventricular ejection fraction

The subgroups of smokers were compared. P maximum and P dispersion values were significantly different (p:<0,05 Table 2). The duration of P maximum and P dispersion increased as the time of smoking history increases.

# Discussion

Smoking is associated with an increased risk of acute cardiovascular events, including acute myocardial infarction, sudden death and stroke.<sup>7</sup> Mechanisms by which cigarette smoking is likely to contribute to acute vascular events include 1) induction of a hypercoagulable state; 2) increased myocardial work; 3) carbon monoxide–mediated reduced oxygen-carrying capacity of the blood; 4) coronary vasoconstriction 5) catecholamine release.<sup>8</sup>

Nicotine; the active agent in tobacco, is the main constituent of tobacco smoke responsible for the elevated risk of the cardiovascular disease and sudden coronary death associated with smoking, presumably by provoking cardiac arrhythmias.<sup>9</sup>

Cigarette smoking has been shown to accelerate atrioventricular node conduction, which could contribute to supraventricular arrhythmias, including atrial fibrillation.<sup>10,11</sup> The clinical consequences of AF are diverse. The loss of atrial contraction may significantly depress cardiac output, especially in patients with a noncompliant ventricle, and this may lead to congestive heart failure. Other sequelae include an increased risk of embolic events and stroke, angina pectoris, increased total and cardiac, impaired left ventricular systolic function, and tachycardia-induced cardiomyopathy.<sup>12</sup>

#### EFFECT OF CIGARETTE SMOKING ON P WAWE DISPERSION

As it is clear that AF is a cause of cardiac morbidity and mortality, it is a primary target to identify patients with high AF occurrence risk and to prevent this arrhythmia. Several non-invasive electrocardiographic parameters are used extensively in order to identify the high-risk group for AF. It is expressed that P wave dispersion is related to the inter and intraatrial nonhomogenious conduction of the sinus node impulse, providing the possibility to predict AF risk via 12 derivation surface ECG.<sup>4,5</sup>

It is clear that a substantial number of patients with high AF risk are also smokers and that smoking contributes to the occurrence of AF. P wave dispersion was shown to increase in patients with ischemic heart disease and hypertension.<sup>13,14</sup> The issue of whether increase in P dispersion was due to the disease effect or smoking was not studied before. In our study, we investigated the independent effect of smoking on P wave dispersion by excluding patients with any condition which is known to increase the risk of AF and comparing healthy smokers and healthy nonsmokers as the control group.

In a recent paper, in which the clinical factors that increase the P wave duration were studied, only age was found to be correlated.<sup>15</sup> In our study, however, clinical factors (age, gender) were not significantly different between groups (p>0,05).

Although there are studies concluding that increase in left atrial diameter and decrease in left ventricular ejection fraction can increase p wave duration <sup>16,17</sup> there are also conflicting investigations.<sup>4,18</sup> In our study, although there was not a statistical difference in left atrial diamater, left atrial volume and left ventricular ejection fraction between two groups, P dispersion was increased in one group. This points out that these are not the only factors with an effect on P wave dispersion. Tükek et al.<sup>19</sup> demonstrated that the increase in sympathomimetic activity can increase in p wave durations. Nicotine in the tobacco, increases sympathomimetic activity, action potentials and depolarization membrane potentials possibly causing the increase in P wave dispersion.

Another interesting finding in the present study, is the increase in P wave dispersion with the increase in the duration of smoking history (p<0,05).

As a result, it can be said that P maximum. and p dispersion is increased in smokers and this is an effect of nicotine which increases sympathetic activity which possible results in an increase in action potantial and depolarization membrane potential and, in addition, coronary vasoconstriction and increased myocardial work. Smoking can independently increase the risk of AF, <sup>10,11</sup> especially in the high risk group; and this should be taken into account in future studies.

Abbrevations: AF: Atrial Fibrillation.

#### REFERENCES

- Narkiewicz K, van de Borne PJ, Hausberg M, et al. Cigarette smoking increases sympathetic outflow in humans. Circulation 1998; 98:528-34.
- Mehta MC, Jain AC, Mehta A, et al. Cardiac arrhytmias following intravenous nicotine: Experimental study in Dogs. Cardiovasc Pharmacol Ther 1997; 2:291-8.
- Bassenge E, Holtz J, Strohschein H. Sympathoadrenal activity and sympathoinhibitory hormones during acute and chronic application in dogs. Klin Wochenschr 1988; 66:12-20.
- Dilaveris PE, Gialafos EJ, Andrikopoulos GK, et al. Clinical and electrocardiographic predictors of recurrent atrial fibrillation. Pacing Clin Electrophysiol 2000; 23:352-8.
- Dilaveris PE, Gialafos EJ, Sideris SK, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J 1998; 135:733-8.
- Dilaveris PE, Gialafos JE. P-wave duration and dispersion analysis: methodological considerations. Circulation 2001 29; 103:111.
- Lepantalo M, Lassila R. Smoking and occlusive peripheral arterial disease. Eur J Surg 1991; 157:83-7.
- Benowitz NL, Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol 1997; 29:1422-31.
- Wang H, Shi H, Wang Z. Nicotine depresses the functions of multiple cardiac potassium channels. Life Sci 1999; 65:143-9.
- Peters RW, Benowitz NL, Valenti S, et al. Electrophysiologic effects of cigarette smoking in patients with and without chronic beta-blocker therapy. Am J Cardiol 1987; 60:1078-82.
- Choragudi NL, Aronow WS, DeLuca AJ. Nicotine gum-induced atrial fibrillation. Heart Dis 2003; 5:100-1.
- Chandramouli BV, Kotler MN. Atrial fibrillation: drug therapies for ventricular rate control and restoration of sinus rhythm. Geriatrics 1998; 53:46-60.
- Dilaveris PE, Gialafos EJ, Chrissos D, et al. Detection of hypertensive patients at risk for paroxysmal atrial fibrillation during sinus rhythm by computer-assisted P wave analysis. J Hypertens 1999; 17:1463-70.
- Dilaveris PE, Andrikopoulos GK, Metaxas G, et al. Effects of ischemia on P wave dispersion and maximum P wave duration during spontaneous anginal episodes. Pacing Clin Electrophysiol 1999; 22:1640-47.
- Aytemir K, Hnatkova K, Malik M. Duration of the P wave dispersion in normal healthy population. Turkish J Interven Cardiol 1999; 3:142-7.
- Flaker GC, Fletcher KA, Rothbart RM, et al. Clinical and echocardiographic features of intermittent atrial fibrillation that predict recurrent atrial fibrillation. Stroke Prevention in Atrial Fibrillation (SPAF) Investigators. Am J Cardiol 1995; 76:355-8.
- Ozer N, Aytemir K, Atalar E, et al. P wave dispersion in hypertensive patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 2000; 23:1859-62.
- Ishimoto N, Ito M, Kinoshita M. Signal-averaged P-wave abnormalities and atrial size in patients with and without idiopathic paroxysmal atrial fibrillation. Am Heart J 2000; 139:684-9.
- Tukek T, Akkaya V, Atilgan D, et al. Effect of left atrial size and function on P-wave dispersion: a study in patients with paroxysmal atrial fibrillation. Clin Cardiol 2001; 24:676-80.