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ABSTRACT Objective: In random experiments, most analyses are based on interpretation of the 
difference between the means of experiment and control groups. Therefore, studying the variance of 
the experiment and control groups may also be useful in interpreting the analysis results. This study 
focuses on interval estimation based on minimum mean-squared error biased estimators for 
nonnormal population variance. It is aimed that kurtosis coefficient based on trimmed mean is used 
instead of sample kurtosis coefficient in this study. Material and Methods: With the simulation study 
in MATLAB R2009a, confidence intervals are obtained for the estimator which is obtained using 
both kurtosis coefficients. Coverage probabilities and average length widths of these confidence 
intervals were compared. Results: It was determined that the coverage probabilities of the estimator 
which was obtained by using the kurtosis coefficient based on trimmed mean is very close to the 
nominal confidence level in all sample sizes. It was also observed that the average length widths
which were obtained by using the kurtosis coefficient based on trimmed mean are narrower than the 
average widths obtained with biased sample kurtosis coefficient. It was determined that the results 
are the same when Type I error is different. Using sample kurtosis coefficient for nonnormal 
populations resulted in obtaining low coverage probabilities. Conclusion: It will be appropriate to 
prefer interval estimations based on estimator obtained with kurtosis coefficient based on Trimmed 
Mean since it both provides high coverage probability and narrower confidence interval for 
nonnormal population variance. 
 
Keywords: Coverage probability; interval estimation; kurtosis coefficient; minimum mean-squared error; 
                    trimmed mean 
 
 

ÖZET Amaç: Rasgele deneylerde bir çok analiz deney ve kontrol gruplarının ortalamaları arasındaki 
farkın yorumlanmasına dayalıdır. Varyansların incelenmesi de analiz sonuçlarını yorumlamada faydalı 
olabilir. Bu çalışma normal dağılımlı olmayan yığın varyansı için minumum hata kareler ortalamalı yanlı 
tahmin ediciye dayalı aralık tahmini üzerinedir. Bu çalışmada örnek basıklık katsayısı yerine budanmış 
ortalamaya dayalı olarak elde edilen basıklık katsayısının kullanılması amaçlanmıştır. Gereç ve 
Yöntemler: MATLAB R2009a programında yapılan simülasyon çalışmasında her iki basıklık katsayısının 
kullanılması ile elde edilen tahmin ediciye dayalı güven aralıkları elde edilmiştir. Bu güven aralıklarına 
ait kapsama olasılıkları ve ortalama aralık genişlikleri karşılaştırılmıştır. Bulgular: Budanmış ortalamaya 
dayalı basıklık katsayısının kullanılması ile elde edilen tahmin edicinin güven aralığı kapsama 
olasılıklarının örnek hacimlerinin tamamında nominal güven düzeyine çok yakın olduğu belirlenmiştir. 
Aynı zamanda budanmış ortalamaya dayalı basıklık katsayısının kullanılması sonucunda elde edilen 
güven aralıklarının ortalama genişliklerinin, yanlı örnek basıklık katsayısı ile elde edilen güven 
aralıklarının ortalama genişliklerine göre daha dar olduğu görülmüştür. Ayrıca I. Tip hata farklı iken de 
bu sonuçların aynı olduğu saptanmıştır. Normal dağılımlı olmayan yığınlarda kullanılan örnek basıklık 
katsayısının kullanılması, düşük kapsama olasılıklarının elde edilmesine sebep olmuştur. Sonuç: Normal 
dağılımlı olmayan yığın varyansı için hem yüksek kapsama olasılığı vermesi hem de daha dar bir güven 
aralığı vermesi nedeniyle Budanmış Ortalamaya dayalı basıklık katsayısı ile elde edilen tahmin ediciye 
dayalı aralık tahminlerinin tercih edilmesi uygun olur. 
 
Anahtar Kelimeler: Kapsama olasılığı; aralık tahmini; basıklık katsayısı; minumum hata kareler ortalaması;
                                budanmış ortalama 
 

 



Hayriye Esra AKYÜZ et al.                                                                                                                                              Turkiye Klinikleri J Biostat 2017;9(3):213-21 
 

 214

n randomized trials and clinical experiments with continuous outcomes, the focus of analysis is 

often on the mean outcomes of experimental and control groups. However, the variances of 

outcomes of experimental and control groups may also have a useful interpretation. Let 

1 2, ,..., nX X X  be a random sample of size n  from normal distribution. Sample variance �� is defined as 

�� = �
���∑ �	
 − 	�
��


�� , where 	� is sample mean. It is known that the sample variance �� is an unbiased 

estimator for population variance ��. An improved estimator of the variance that utilizes the kurtosis 

was derived by Searls and Intarapanich (1990).1 This estimator is biased and has the minimum possible 

mean-squared error and it is defined as the "minimum mean-squared error biased estimator" (MBBE). 

The estimator has the form, 

��� = �∑ �	
�	�
��

�� , w	∈ 	 �0,1
                                                                                                                 (1.1) 

where the weight is given as; 

� = ��� + 1
 + ��� − 3
����� − 1
���                                                                                                      (1.2) 

It's a function of the sample size n and the kurtosis coefficient ��. For all choices of weights � ≠ �
��� the 

improved estimator ���   is a biased estimator of population variance.2 Note that it can express the class of 

estimators of the variance by, 

��� = ��� − 1
��, � ∈ �0, �
��� 	                                                                                                                  (1.3) 

On the other hand expected value and mean squared error of a biased estimator ���  are given as; 

!���� 
 = ��� − 1
��                                                                                                                                   (1.4) 

and 

"�!���� 
 = ���� − 1
�#$%���
 + ��� − 1
� − 1����                                                                           (1.5) 

For large ni , when random sampling from any distribution with a finite fourth moment, and by the 

central limit theorem, the MBBE of variance is approximately standard normal with !���� 
 and 

"�!���� 
. This estimator is always a more efficient estimator compared to unbiased estimator 	�� of the 

variance even in nonnormal distribution assumption.2 

Zou et al. (2009) have suggested an interval estimation for a linear function of binomial ratios.3 

Wencheko and Chipoyera (2009) have compared the MBBE estimator ���  of the population variance and 

unbiased estimator �� when kurtosis coefficient is known.2 They have studied boxplots of different 

sample sizes and estimators for Normal and Exponential distribution. Longford (2010) discussed 

minumum mean squared error and Bayesian estimation of the variance and its common transformations 

in the normality and homoscedasticity with small samples.4 Paksaranuwat and Niwitpong (2010) 

compared confidence intervals for the variance and the ratio of two variances when the population 

distributions are nonnormal and item nonresponse is occurring.5 Burch (2011a) describe scenarios where 

the conventional method leads to confidence intervals that have extremely poor coverage probabilities.6 

The random variables in the model are not normally distributed Burch (2011b) constructed approximate 

confidence intervals based on the large-sample properties of restricted maximum likelihood estimators 

of variance components.7 Donner and Zou (2012) have obtained confidence intervals for the mean and 

functions of standard deviation of normal distribution.8 Niwitpong (2012) investigated the new 

confidence interval for the difference between two normal population variances based on the closed 

form method of variance estimation and derived analytic expressions of coverage probability and 

I
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expected length of our proposed confidence interval compared to the existing confidence interval.9 Rajic 

and Stanojevic (2013) proposed a confidence interval for the ratio of two variances based on the t-

statistic by deriving its Edgeworth expansion and considering Hall's and Johnson's transformations.10 

Thompson (2013) derived a confidence interval for the ratio of the variances of two independent normal 

distributions.11 Suwan and Niwitpong (2013) have studied interval estimation methods for a linear 

function of the variances of nonnormal distributions using kurtosis.12 For the linear function of  

variance, coverage probabilities and average length widths of confidence intervals are studied with 

different sample sizes using Binom, Logit and Chi-squared distributions. They have made a comparison 

between interval methods where ���  and �� are used. Banik et al. (2014) presented a simulation study 

which compared ten methods for constructing a confidence estimator for the population standard 

deviation.13 Burch (2015) assessed the performance of approximate confidence intervals for the variance 

under nonnormality using modified estimators of the kurtosis.14 Burch (2017) proposed an interval 

estimation procedure for the variance of a population that achieves a specified confidence level can be 

problematic. He determined that if the distribution of the population is known, then a distribution-

dependent interval for the variance can be obtained by considering a power transformation of the 

sample variance.15 

It is known that sample variance estimator ��  does not display robust statistics features in the 

estimation of nonnormal population variance and the coverage probabilities of the confidence intervals 

obtained with this estimator have much lower values compared to the nominal confidence interval.16,17 

In such cases, it is necessary to use robust scale estimators for estimation of population variance. For 

nonnormal populations, sample kurtosis coefficient is a quite biased estimator.18  

In this study, it is aimed that the kurtosis coefficient obtained with trimming proportion 0.5 √� − 4⁄   

which was suggested by Bonett (2006a,b) is used instead of sample kurtosis coefficient in obtaining 

MBBE estimator of variance.19,20 With this information, confidence intervals based on this estimator 

were obtained for nonnormal population variance. Coverage probabilities and average length widths of 

these confidence intervals were compared with the confidence interval coverage probabilities and 

average length widths obtained when sample kurtosis coefficient is used. 

A interval estimator was conducted in the following section for the variance of nonnormal population. 

    INTERVAL ESTIMATION METHOD FOR THE VARIANCE OF NONNORMAL POPULATION 

In this section, interval estimator based on the MBBE estimator for the variance of a nonnormal 

population are included.  

Let 	�, 	�, … , 	� be a random sample of size n under normal distribution assumption, estimator ���  is 

obtained as follows: 

��� = �����,� �
�                                                                                                                                               (2.1) 

In obtaining the weight coefficient given in Equation (1.2), the estimation value obtained from the 

sample is used instead of unknown parameter. Provided that fourth central moment is , kurtosis 

coefficient is obtained as � = η

-.	.21 This estimator is quite biased for nonnormal populations.18 In that 

case, the alternative estimator suggested by Bonett (2006a,b) can be used instead of sample kurtosis 

coefficient for the unknown parameter.19,20 Maximum value of this estimator is a function of sample size 
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and this estimator is expressed as follows:22 

/ = � ∑ �01�2
.3
145

6∑ �01�78
93
145 :9

                                                                                                                                       (2.2) 

where m is the trimmed mean which was obtained with trimming proportion 0.5 √� − 4⁄ 	and the ;̂ is 

the sample mean. While trimming is made only from the high end of the consecutive data in positively 

skewed distributions, trimming is made from both ends in symmetric distributions23. With this 

information, trimmed mean used for estimator G is obtained as follows in the positively skewed 

distributions: 

=� =	 �
��>3

∑ 	�


��>3

��                                                                                                                                   (2.3)  

where 	�

 is the ith order statistis and ?� is the number of terms to be removed from the high end of 

the consecutive data. If  ?� = �@� + 0.5�, @ trimming percentage and �. � expression indicates the largest 

integer function. Trimmed mean is as follows in symmetric distributions: 

=� =	 �
���A3

∑ 	�


��>3

�A3,�                                                                                                                                (2.4) 

In that case, ��� 	estimator is obtained as follows for estimation of the variance of nonnormal populations: 

���=
����


��,�
,�B�C
�D5����
�
�	                                                                                                                           (2.5) 

It is known that estimator ���  has approximately a normal distribution even when random samples are 

taken from any statistical distribution2. With this information, confidence interval for nonnormal 

population variance is obtained as follows using the normal distribution: 

EF��� − GH/�J#$%���� 
 ≤ �� ≤ ��� + GH/�J#$%���� 
L = 1 − M.                                                               (2.6) 

When the populations are nonnormal distributed, there is not a theoretical formula for #$%���� 
. For 

that reason, for	#$%���� 
, the variance estimation value obtained from the distribution of estimator ���  

with Monte Carlo Simulation Method or the variance estimation value obtained with Bootstrap Method 

can be used.24 For		#$%���� 
, Monte Carlo Simulation Method can be expressed as follows: 

Provided that the value of estimator obtained in the ith replication of the T repeated simulation study 

with sample data of size n is ��1
� , N = 1,2,… , P, the variance of the ���  estimator is expressed as; 

#$%	Q���� 
 =
∑ �RS1

9 �RS̅9  
9U

145
V��                                                                                                                               (2.7) 

The ��̅�  expressed in Equation (2.7) is the arithmetic mean of ��1
� 's. In addition, variance estimation may 

also be made with Bootstrap Method for #$%���� 
. For the variance of estimator ��� , bootstrap samples of 

size n and number B are generated by simple random sampling with replacement. For each Bootstrap 

sample, Bootstrap estimation is obtained for estimator ��� . This operation is repeated for B times. With 

the Bootstrap estimations obtained from B replications, the Bootstrap estimator for the variance of 

estimator ���  is given as:25 

#$%	Q���� 
 =
∑ �RSW

9 �R̅S9  
9X

W45
Y��                                                                                                                              (2.8)  

Obtaining the #$%���� 
 value with both methods yields quite similar results. In the case where the 

population has t-distribution, variance estimation values based on 10000 replications which are obtained 

with Monte Carlo Simulation Method and Bootstrap Method are as follows. 
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TABLE 1: Variance estimation values for #$%���� 
. 
 t(5) t(10) t(20) t(30) 

n MC* Bootstrap MC* Bootstrap MC* Bootstrap MC* Bootstrap 

10 0.8465 1.0033 0.3137 0.3336 0.2248 0.2096 0.1993 0.2337 
20 0.4812 0.4534 0.1788 0.1693 0.1218 0.1199 0.1075 0.1287 
30 0.4179 0.3754 0.1276 0.1250 0.0842 0.0866 0.0777 0.0756 
50 0.2424 0.2442 0.0814 0.0960 0.0545 0.0536 0.0478 0.0480 

*: Monte Carlo simulation method. 
 

According to the results obtained in this table, variance estimation values based on Monte Carlo 

Simulation Method and Bootstrap variance estimation values have yielded quite close results in all of the 

sample sizes (Table 1). 

SIMULATION STUDY 

A simulation study was conducted with the purpose of comparing the confidence interval coverage 

probabilities and average length widths when sample kurtosis coefficient and the kurtosis coefficient 

suggested by Bonett (2006a,b)19,20 are used. In this simulation study, the data produced from Chi-squared, 

Gamma, Lognormal and t-distributions with different distribution parameters was used with the program 

written in Matlab R2009a. In obtaining confidence intervals based on robust estimator ��� , trimming was 

made only on the high end of the consecutive data for the sample data produced from Chi-squared, Gamma 

and Lognormal distributions and on both ends of the consecutive data for the sample data produced from t-

distribution. Using these distributions, simulation studies were conducted based on 10000 replications for 

M = 0.05 and M = 0.10 with trimming proportion 0.5 √� − 4⁄  and � = 10, 20, 30, 50. With the simulation 

study, coverage probabilities and average length widths of confidence intervals based on robust estimator ���  

for the variance of nonnormal population is summarized in Tables 2-9.  

In this study, Monte Carlo Simulation Method was used in obtaining the coverage probabilities and 

average length widths of confidence intervals due to ease of implementation for obtaining estimation 

values #$%���� 
. Average length widths are obtained by dividing the total of difference of the lower 

limit and upper limits of intervals found for each replication to the number of replications. Coverage 

probabilities are determined by dividing the number of cases where population variance is between the 

lower limit and upper limit values by the number of replications. 

Two different methods were implemented for obtaining the estimator ��� . The first is the estimator  ��� 	 
which was obtained by using kurtosis coefficient G based on trimmed mean and the second is the  

estimator ���  which was obtained by using the sample kurtosis coefficient. Coverage probabilities and 

average interval widths of the confidence intervals based on this estimator are summarized in the tables 

below.  

 

TABLE 2: Coverage probabilities and average length widths under Student- t distribution for M = 0.05. 
 t(5) t(10) t(20) t(30) 

n G Z8 G Z8 G Z8 G Z8 

10 0.9535 (3.4282) 0.8487 (7.9876) 0.9577 (2.2221) 0.9109 (4.3986) 0.9538 (1.8351) 0.8671 (3.9974) 0.9518 (1.7244) 0.8589 (3.7896) 
20 0.9528 (2.6488) 0.8493 (4.4587) 0.9594 (1.6546) 0.9209 (2.3681) 0.9557 (1.3610) 0.8993 (1.9749) 0.9555 (1.3097) 0.8952 (1.8926) 
30 0.9518 (2.2515) 0.8515 (3.3285) 0.9554 (1.3733) 0.9339 (1.7669) 0.9541 (1.1417) 0.9152 (1.4643) 0.9523 (1.0850) 0.9107 (1.3871) 
50 0.9520 (1.8030) 0.8519 (2.4289) 0.9529 (1.1031) 0.9393 (1.2982) 0.9594 (0.8999) 0.9286 (1.0473) 0.9537 (0.8618) 0.9258 (0.9973) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 
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Population has Student-t distribution with parameters 5, 10, 20 and 30 when M = 0.05. It was seen 

that the coverage probabilities based on kurtosis coefficient G was quite approximate to the nominal 

confidence level in all sample sizes. However, the coverage probabilities based on biased sample 

kurtosis coefficient Z8 was quite lower than the nominal confidence level in all cases. It was 

determined that the average length widths are reduced as the sample size increases and average 

length widths based on estimator ��� 	which is obtained by using the kurtosis coefficient G are 

narrower (Table 2). 

 

TABLE 3: Coverage probabilities and average length widths under Student-t distribution for M = 0.10. 
 t(5) t(10) t(20) t(30) 

n G Z8 G Z8 G Z8 G Z8 

10 0.9074 (2.9991) 0.8186 (6.9074) 0.9042 (1.8414) 0.8043 (4.0375) 0.8993 (1.5361) 0.7145 (3.3538) 0.9054 (1.5077) 0.8012 (3.3028) 
20 0.9068 (2.3809) 0.8361 (4.2076) 0.9058 (1.3851) 0.8149 (2.0988) 0.8974 (1.1664) 0.7501 (1.6888) 0.8967 (1.1018) 0.8026 (1.5955) 
30 0.9068 (1.9667) 0.8358 (3.0289) 0.9060 (1.1889) 0.8199 (1.5706) 0.8987 (0.9475) 0.7589 (1.2169) 0.8961 (0.9063) 0.8032 (1.1561) 
50 0.9084 (1.4925) 0.8386 (1.9994) 0.9082 (0.9194) 0.8152 (1.0970) 0.8964 (0.7712) 0.7776 (0.8979) 0.9009 (0.7236) 0.8032 (0.8372) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 

Table 3 analyses the case where	M = 0.10. In this Table, it was determined that coverage probabilities of 

the confidence interval based on estimator ���  which was obtained by using the kurtosis coefficient G 

was quite approximate to the nominal confidence level in all cases. Besides, it was also seen that the 

coverage probabilities increase and average length widths are reduced as the sample size increases. 

However, coverage probabilities based on biased sample kurtosis coefficient Z8 was quite lower than the 

nominal confidence level in all sample sizes (Table 3). 

 

TABLE 4: Coverage probabilities and average length widths under Chi-squared distribution for M = 0.05. 
 χ[

\ χ]
\ χ[^

\  χ]^
\  

n G Z8 G Z8 G Z8 G Z8 

10 0.9573 (5.3158) 0.8638 (6.0696) 0.9512 (12.5404) 0.8681 (13.6592) 0.9585 (35.1934) 0.8677 (36.7955) 0.9552 (98.9335) 0.8662 (101.2436) 
20 0.9576 (4.5269) 0.8645 (4.7898) 0.9537 (9.8464) 0.8686 (10.1950) 0.9504 (26.6610) 0.8621 (27.1428) 0.9553 (73.1163) 0.8569 (73.7919) 
30 0.9588 (3.8769) 0.8674 (4.0053) 0.9532 (8.2740) 0.8658 (8.4505) 0.9552 (22.7509) 0.8566 (23.0067) 0.9525 (60.5409) 0.8533 (60.8125) 
50 0.9554 (3.2804) 0.8662 (3.3715) 0.9540 (6.8761) 0.8599 (6.9987) 0.9565 (18.4694) 0.8576 (18.6324) 0.9551 (48.7118) 0.8539 (48.8895) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 

In this part of the simulation study, trimming is made from only the high end of the consecutive data in 

obtaining the kurtosis coefficient in calculating the estimator ���  since the Chi-square distribution is 

positively skewed distribution. It was determined in Table 4 that coverage probabilities based on 

kurtosis coefficient G are quite approximate to the nominal confidence level in all sample sizes for	M =
0.05. When this situation is compared with the results obtained by using the sample kurtosis coefficient 

Z8,  it was seen that the coverage probabilities of the confidence interval based on estimator ���  which 

was obtained by using the kurtosis coefficient G were quite approximate to the nominal confidence level 

and average length widths are narrower (Table 4). 
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TABLE 5: Coverage probabilities and average length widths under Chi-squared distribution for M = 0.10. 

 χ[
\ χ]

\ χ[^
\  χ]^

\  

n G Z8 G Z8 G Z8 G Z8 

10 0.9001 (4.5985) 0.8545 (5.2420) 0.9002 (10.8781) 0.8526 (11.9196) 0.9044 (29.7267) 0.8266 (31.1522) 0.9078 (82.2300) 0.8146 (84.1217) 
20 0.9068 (3.9293) 0.8537 (4.1597) 0.9058 (8.2205) 0.8258 (8.5143) 0.9037 (22.4265) 0.8005 (22.8434) 0.8973 (61.2001) 0.8004 (61.7616) 
30 0.9069 (3.1443) 0.8377 (3.2489) 0.9052 (7.2307) 0.8163 (7.3862) 0.9083 (18.8077) 0.8017 (19.0067) 0.9007 (51.7171) 0.8016 (51.9562) 
50 0.9072 (2.7033) 0.8309 (2.7803) 0.9063 (5.7745) 0.8597 (5.8793) 0.9087 (15.0437) 0.8022 (15.1734) 0.9065 (40.8599) 0.8173 (41.0062) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 

It is seen that coverage probabilities of the confidence interval based on estimator ���  which was 

obtained by using the kurtosis coefficient G are quite approximate to the nominal confidence level even 

in small sample sizes. It was determined that confidence interval average length widths are reduced as 

the sample size increases. However, coverage probabilities based on biased sample kurtosis coefficient Z8 

was quite lower than the nominal confidence level in all sample sizes when populations had Chi-

squared distribution (Table 5). 

 

TABLE 6: Coverage probabilities and average length widths under Gamma distribution for M = 0.05. 
 Gamma (1/3,1) Gamma (1.5,2) Gamma (2,0.5) Gamma (3,1) 

n G Z8 G Z8 G Z8 G Z8 

10 0.9422 (0.7615) 0.8586 (3.9074) 0.9397 (11.9956) 0.8416 (19.8351) 0.9405 (1.3081) 0.8400 (7.4313) 0.9407 (5.9067) 0.8437 (10.5599) 
20 0.9426 (0.7335) 0.8561 (2.2076) 0.9402 (10.5973) 0.8440 (17.6365) 0.9436 (1.0804) 0.8453 (6.0517) 0.9444 (4.7942) 0.8449 (6.5705) 
30 0.9423 (0.3228) 0.8598 (1.0289) 0.9480 (5.5885) 0.8455 (10.4059) 0.9463 (0.6309) 0.8483 (3.5155) 0.9448 (2.6780) 0.8491 (3.7189) 
50 0.9480 (0.1011) 0.8596 (1.0094) 0.9495 (2.2697) 0.8596 (5.8963) 0.9499 (0.1036) 0.8516 (2.3678) 0.9499 (1.5632) 0.8599 (2.2489) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 

Population has Gamma distribution with different parameters when M = 0.05. It was seen that the 

coverage probabilities based on kurtosis coefficient G was quite approximate to the nominal confidence 

level in all sample sizes. However, coverage probabilities based on biased sample kurtosis coefficient  Z8  

was quite lower than the nominal confidence level in all sample sizes (Table 6). 

 

TABLE 7: Coverage probabilities and average length widths under Gamma distribution for M = 0.10. 
 Gamma (1/3,1) Gamma (1.5,2) Gamma (2,0.5) Gamma (3,1) 

n G Z8 G Z8 G Z8 G Z8 

10 0.8957 (0.6501) 0.8090 (3.0099) 0.9020 (6.4122) 0.8073  (12.8894) 0.9009 (0.8370) 0.8073 (3.0583) 0.9000 (4.8815) 0.8017 (6.2981) 
20 0.9049 (0.6255) 0.8060 (2.8825) 0.9030 (3.9481) 0.8061 (11.5100) 0.9038 (0.6989) 0.8078 (2.8832) 0.9008 (3.9796) 0.8035 (5.9648) 
30 0.9053 (0.2722) 0.8290 (1.4432) 0.9041 (2.2174) 0.8094 (6.4942) 0.9031 (0.3836) 0.8095 (1.5200) 0.9008 (2.2092) 0.8037 (3.9991) 
50 0.9055 (0.1596) 0.8299 (1.1023) 0.9049 (1.8635) 0.8099 (3.2569) 0.9045 (0.1236) 0.8099 (1.1026) 0.9010 (1.9687) 0.8056 (2.1796) 

 

In Table 7, the case where 0.10α =  is discussed. In this table, it is determined that coverage 

probabilities of the confidence interval based on kurtosis coefficient G are quite close to the nominal 

confidence level in all sample sizes. In addition, it was seen that coverage probabilities increase and 

average length widths are reduced as the sample size increases (Table 7). 
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TABLE 8: Coverage probabilities and average length widths under Lognormal distribution for M = 0.05. 
 Lognormal(0,1) Lognormal(0,2) Lognormal(2,5) Lognormal(5,4) 

n G Z8 G Z8 G Z8 G Z8 

10 0.9420 (2.2253) 0.8447 (4.3551) 0.9437 (8.0066) 0.8455 (10.5949) 0.9408 (5.2110) 0.8460 (10.1285) 0.9423 (12.3620) 0.8431 (22.5986) 
20 0.9493 (1.5989) 0.8482 (2.7237) 0.9453 (5.4378) 0.8481 (7.9479) 0.9462 (4.1370) 0.8485 (7.8035) 0.9440 (10.5357) 0.8481 (19.5117) 
30 0.9489 (0.9548) 0.8514 (1.0355) 0.9458 (3.2649) 0.8487 (5.2432) 0.9480 (2.4260) 0.8499 (5.2786) 0.9499 (8.2147) 0.8493 (15.8540) 
50 0.9500 (0.4036) 0.8515 (0.8964) 0.9510 (1.3678) 0.8516 (2.8964) 0.9510 (1.9657) 0.8510 (2.3648) 0.9520 (5.1245) 0.8510 (10.6985) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 

In terms of coverage probabilities for 0.05α =  and Lognormal distribution, it is determined that 

confidence interval based on kurtosis coefficient G are quite close to the nominal confidence level in all 

of the sample sizes (Table 8). 

 

TABLE 9: Coverage probabilities and average length widths under Lognormal distribution for M = 0.10. 
 Lognormal(0,1) Lognormal(0,2) Lognormal(2,5) Lognormal(5,4) 

n G Z8 G Z8 G Z8 G Z8 

10 0.9005 (1.6720) 0.8090 (3.9680) 0.9015 (6.8604) 0.8004 (12.8435) 0.9055 (42.167) 0.8010 (49.3707) 0.9057 (27.1505) 0.8092 (31.3998) 
20 0.8989 (1.1402) 0.8087 (2.4174) 0.9011 (4.6125) 0.8013 (8.7524) 0.9022 (28.480) 0.8030 (35.3797) 0.9016 (18.2750) 0.8099 (22.5560) 
30 0.9014 (0.7019) 0.8191 (1.8769) 0.9023 (2.7691) 0.8115 (4.5001) 0.9022 (17.398) 0.8030 (22.2619) 0.9018 (11.0300) 0.8128 (14.1234) 
50 0.9020 (0.4563) 0.8110 (0.7068) 0.9040 (1.5968) 0.8130 (2.9678) 0.9030 (9.3786) 0.8030 (17.3149) 0.9020 (7.6579) 0.8130 (12.0196) 
⃰  Values in the parenthesis are the average of the lengths of confidence interval. 

 
 

In Table 9, coverage probabilities and average length widths based on kurtosis coefficients G and  

Z8  with the random samples produced from Lognormal distribution for different sample sizes when 

0.10α =  are given. It is concluded that coverage probabilities of confidence intervals based on 

estimator G are quite close to the nominal confidence level in all cases. It is observed that average length 

widths are reduced as the sample size increases. 

    CONCLUSION 

When confidence intervals based on robust estimator ���  which was obtained using both the kurtosis 

coefficient based on trimmed mean and the sample kurtosis coefficient for nonnormal population 

variance are compared in terms of coverage probabilities, it was determined that coverage probabilities 

of confidence interval obtained with the estimator ���  which is obtained by using the kurtosis coefficient 

based on trimmed mean when type I error is both M = 0.05 and M = 0.10 are quite approximate to the 

nominal confidence level even in small sample sizes where confidence interval coverage probabilities 

are higher. When these confidence intervals are compared in terms of average length widths, it was 

determined that the average length widths of the estimator ���   which was obtained by using the 

kurtosis coefficient based on trimmed mean are narrower. According to results obtained with data 

produced from Chi-squared, Gamma, Lognormal and t-distributions with different distribution 

parameters, if it is desired to create a narrower confidence interval for nonnormal population variance, 

kurtosis coefficient which is obtained by using the trimmed mean should be preferred in obtaining the 

estimator ���  which has high coverage probability. Finally it will be useful for the future studies to 

investigate of the coverage probabilities and average length widths of confidence intervals obtained with 

other distributions. 
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