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Interval Estimation for
Nonnormal Population Variance with

Kurtosis Coefficient Based on Trimmed Mean

Budanmis Ortalamaya Dayali1 Basiklik Katsayisi ile
Normal Dagilimli Olmayan Y1gin Varyansi I¢in
Aralhk Tahmini

ABSTRACT Objective: In random experiments, most analyses are based on interpretation of the
difference between the means of experiment and control groups. Therefore, studying the variance of
the experiment and control groups may also be useful in interpreting the analysis results. This study
focuses on interval estimation based on minimum mean-squared error biased estimators for
nonnormal population variance. It is aimed that kurtosis coefficient based on trimmed mean is used
instead of sample kurtosis coefficient in this study. Material and Methods: With the simulation study
in MATLAB R2009a, confidence intervals are obtained for the estimator which is obtained using
both kurtosis coefficients. Coverage probabilities and average length widths of these confidence
intervals were compared. Results: It was determined that the coverage probabilities of the estimator
which was obtained by using the kurtosis coefficient based on trimmed mean is very close to the
nominal confidence level in all sample sizes. It was also observed that the average length widths
which were obtained by using the kurtosis coefficient based on trimmed mean are narrower than the
average widths obtained with biased sample kurtosis coefficient. It was determined that the results
are the same when Type I error is different. Using sample kurtosis coefficient for nonnormal
populations resulted in obtaining low coverage probabilities. Conclusion: It will be appropriate to
prefer interval estimations based on estimator obtained with kurtosis coefficient based on Trimmed
Mean since it both provides high coverage probability and narrower confidence interval for
nonnormal population variance.

Keywords: Coverage probability; interval estimation; kurtosis coefficient; minimum mean-squared error;
trimmed mean

OZET Amag: Rasgele deneylerde bir ¢ok analiz deney ve kontrol gruplarinin ortalamalar1 arasindaki
farkin yorumlanmasima dayalidir. Varyanslarin incelenmesi de analiz sonuglarini yorumlamada faydali
olabilir. Bu ¢alisma normal dagilimh olmayan y1gin varyansi i¢cin minumum hata kareler ortalamal1 yanh
tahmin ediciye dayal aralik tahmini {izerinedir. Bu ¢alismada 6rnek basiklik katsayis: yerine budanmis
ortalamaya dayali olarak elde edilen basiklik katsayisimin kullanilmasi amaglanmistir. Gereg ve
Yontemler: MATLAB R2009a programinda yapilan simiilasyon ¢aligmasinda her iki basiklik katsayisinin
kullanilmas: ile elde edilen tahmin ediciye dayal giiven araliklari elde edilmistir. Bu giiven araliklarina
ait kapsama olasiliklar1 ve ortalama aralik genislikleri karsilagtirilmistir. Bulgular: Budanmis ortalamaya
dayali basiklik katsayisimin kullanilmasi ile elde edilen tahmin edicinin giiven araligi kapsama
olasiliklarinin 6rnek hacimlerinin tamaminda nominal giiven diizeyine ¢ok yakin oldugu belirlenmistir.
Ayn1 zamanda budanmis ortalamaya dayali basiklik katsayisinin kullanilmasi sonucunda elde edilen
giiven araliklarinin ortalama genisliklerinin, yanli Ornek basiklik katsayisi ile elde edilen giiven
araliklarinin ortalama genisliklerine gére daha dar oldugu gériilmiistiir. Ayrica I. Tip hata farkli iken de
bu sonuglarin ayn1 oldugu saptanmustir. Normal dagilimh olmayan yiginlarda kullanilan 6rnek basiklik
katsayisinin kullanilmasi, diisitk kapsama olasiliklarinin elde edilmesine sebep olmustur. Sonug: Normal
dagilimli olmayan yigin varyansi i¢in hem yiiksek kapsama olasilig1 vermesi hem de daha dar bir giiven
aralig1 vermesi nedeniyle Budanmis Ortalamaya dayali basiklik katsayis ile elde edilen tahmin ediciye
dayali aralik tahminlerinin tercih edilmesi uygun olur.

Anahtar Kelimeler: Kapsama olasihigy; arahik tahmini; basiklik katsayis;; minumum hata kareler ortalamass;
budanmis ortalama
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n randomized trials and clinical experiments with continuous outcomes, the focus of analysis is
often on the mean outcomes of experimental and control groups. However, the variances of
outcomes of experimental and control groups may also have a useful interpretation. Let
X, X5, ..., X, be a random sample of size N from normal distribution. Sample variance S is defined as
1 S S . . . .
§% = — X (G- X )2, where X is sample mean. It is known that the sample variance S? is an unbiased
estimator for population variance 2. An improved estimator of the variance that utilizes the kurtosis
was derived by Searls and Intarapanich (1990).! This estimator is biased and has the minimum possible
mean-squared error and it is defined as the "minimum mean-squared error biased estimator" (MBBE).
The estimator has the form,
2 _ 72
SW - WZ?:l(Xi—X) , WE (011) (11)
where the weight is given as;
w=[n+1)+G,—3)ntn-1]1? (1.2)
, . . . .- . . 1
It's a function of the sample size 2 and the kurtosis coefficient y,. For all choices of weights w # — the

improved estimator SZ is a biased estimator of population variance.2 Note that it can express the class of

estimators of the variance by,

S2 =wn—1)S%,we (oﬁ) (1.3)
On the other hand expected value and mean squared error of a biased estimator SZ are given as;

E(S2) =w(n—1)o? (1.4)
and

MSE(S2) = w?(n—1)?Var(S?) + [(n — D)w — 1]%c* (1.5)

For large ni, when random sampling from any distribution with a finite fourth moment, and by the
central limit theorem, the MBBE of variance is approximately standard normal with E(S3) and
MSE(S2). This estimator is always a more efficient estimator compared to unbiased estimator S? of the

variance even in nonnormal distribution assumption.?

Zou et al. (2009) have suggested an interval estimation for a linear function of binomial ratios.?
Wencheko and Chipoyera (2009) have compared the MBBE estimator S2 of the population variance and
unbiased estimator S? when kurtosis coefficient is known.2 They have studied boxplots of different
sample sizes and estimators for Normal and Exponential distribution. Longford (2010) discussed
minumum mean squared error and Bayesian estimation of the variance and its common transformations
in the normality and homoscedasticity with small samples.* Paksaranuwat and Niwitpong (2010)
compared confidence intervals for the variance and the ratio of two variances when the population
distributions are nonnormal and item nonresponse is occurring.’ Burch (2011a) describe scenarios where
the conventional method leads to confidence intervals that have extremely poor coverage probabilities.®
The random variables in the model are not normally distributed Burch (2011b) constructed approximate
confidence intervals based on the large-sample properties of restricted maximum likelihood estimators
of variance components.” Donner and Zou (2012) have obtained confidence intervals for the mean and
functions of standard deviation of normal distribution.® Niwitpong (2012) investigated the new
confidence interval for the difference between two normal population variances based on the closed

form method of variance estimation and derived analytic expressions of coverage probability and
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expected length of our proposed confidence interval compared to the existing confidence interval.® Rajic
and Stanojevic (2013) proposed a confidence interval for the ratio of two variances based on the #
statistic by deriving its Edgeworth expansion and considering Hall's and Johnson's transformations.°
Thompson (2013) derived a confidence interval for the ratio of the variances of two independent normal
distributions.!! Suwan and Niwitpong (2013) have studied interval estimation methods for a linear
function of the variances of nonnormal distributions using kurtosis.”? For the linear function of
variance, coverage probabilities and average length widths of confidence intervals are studied with
different sample sizes using Binom, Logit and Chi-squared distributions. They have made a comparison
between interval methods where S2 and S? are used. Banik et al. (2014) presented a simulation study
which compared ten methods for constructing a confidence estimator for the population standard
deviation.!® Burch (2015) assessed the performance of approximate confidence intervals for the variance
under nonnormality using modified estimators of the kurtosis.'* Burch (2017) proposed an interval
estimation procedure for the variance of a population that achieves a specified confidence level can be
problematic. He determined that if the distribution of the population is known, then a distribution-
dependent interval for the variance can be obtained by considering a power transformation of the

sample variance.!

It is known that sample variance estimator S* does not display robust statistics features in the
estimation of nonnormal population variance and the coverage probabilities of the confidence intervals
obtained with this estimator have much lower values compared to the nominal confidence interval.!6!”
In such cases, it is necessary to use robust scale estimators for estimation of population variance. For

nonnormal populations, sample kurtosis coefficient is a quite biased estimator.!8

In this study, it is aimed that the kurtosis coefficient obtained with trimming proportion 0.5/vn — 4
which was suggested by Bonett (2006a,b) is used instead of sample kurtosis coefficient in obtaining
MBBE estimator of variance.!®?0 With this information, confidence intervals based on this estimator
were obtained for nonnormal population variance. Coverage probabilities and average length widths of
these confidence intervals were compared with the confidence interval coverage probabilities and
average length widths obtained when sample kurtosis coefficient is used.

A interval estimator was conducted in the following section for the variance of nonnormal population.

I INTERVAL ESTIMATION METHOD FOR THE VARIANCE OF NONNORMAL POPULATION

In this section, interval estimator based on the MBBE estimator for the variance of a nonnormal
population are included.

Let X1, X5, ..., X, be a random sample of size n under normal distribution assumption, estimator S2 is

obtained as follows:

szv = (n__1)52 (2.1)

n+1

In obtaining the weight coefficient given in Equation (1.2), the estimation value obtained from the
sample is used instead of unknown parameter. Provided that fourth central moment is 7, kurtosis

coefficient is obtained as y = U—Z .21 This estimator is quite biased for nonnormal populations.'® In that

case, the alternative estimator suggested by Bonett (2006a,b) can be used instead of sample kurtosis

coefficient for the unknown parameter.!*? Maximum value of this estimator is a function of sample size
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and this estimator is expressed as follows:?2

T (Xi-m)*

G=n
(o, xi-2)

2.2)

where m is the trimmed mean which was obtained with trimming proportion 0.5/vn — 4 and the fi is
the sample mean. While trimming is made only from the high end of the consecutive data in positively
skewed distributions, trimming is made from both ends in symmetric distributions?. With this
information, trimmed mean used for estimator G is obtained as follows in the positively skewed
distributions:
1 n-u
my = —Xi1 Xo (2.3)
n

where X(;) is the ith order statistis and u,, is the number of terms to be removed from the high end of
the consecutive data. If u,, = [pn + 0.5], p trimming percentage and [.] expression indicates the largest

integer function. Trimmed mean is as follows in symmetric distributions:

1 —Un
mp; = _Z?zl:+1x(i) (2.4)

n-21l,

In that case, S2 estimator is obtained as follows for estimation of the variance of nonnormal populations:

2 (n-1) 2
SW_(n+1)+(G—3)n_1(n—1) $ (2.5)

It is known that estimator S2 has approximately a normal distribution even when random samples are
taken from any statistical distribution?. With this information, confidence interval for nonnormal

population variance is obtained as follows using the normal distribution:

P[S2 = 24)53/Var(52) < 0% < S% + z4/2/Var(S3)| =1 — a. (2.6)

When the populations are nonnormal distributed, there is not a theoretical formula for Var(S2). For
that reason, for Var(S2), the variance estimation value obtained from the distribution of estimator S2
with Monte Carlo Simulation Method or the variance estimation value obtained with Bootstrap Method

can be used.? For Var(S2), Monte Carlo Simulation Method can be expressed as follows:
Provided that the value of estimator obtained in the ith replication of the 7 repeated simulation study
with sample data of size nis S‘f,i, i =1,2,...,T, the variance of the S2 estimator is expressed as;

La(sh-5%)"

Var (§2) = 2 — (2.7)

The S2 expressed in Equation (2.7) is the arithmetic mean of S&,'s. In addition, variance estimation may
also be made with Bootstrap Method for Var(S2). For the variance of estimator S2, bootstrap samples of
size n and number B are generated by simple random sampling with replacement. For each Bootstrap
sample, Bootstrap estimation is obtained for estimator S2. This operation is repeated for B times. With
the Bootstrap estimations obtained from B replications, the Bootstrap estimator for the variance of
estimator S2 is given as:%
5Ea(s3,-52)"

Var (52) = —

(2.8)

Obtaining the Var(S2) value with both methods yields quite similar results. In the case where the
population has t-distribution, variance estimation values based on 10000 replications which are obtained
with Monte Carlo Simulation Method and Bootstrap Method are as follows.
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TABLE 1: Variance estimation values for Var(S2).

t(5) t(10) t(20) t(30)

n mc Bootstrap mc Bootstrap mc Bootstrap mc Bootstrap
10 0.8465 1.0033 0.3137 0.3336 0.2248 0.2096 0.1993 0.2337
20 0.4812 0.4534 0.1788 0.1693 0.1218 0.1199 0.1075 0.1287
30 0.4179 0.3754 0.1276 0.1250 0.0842 0.0866 0.0777 0.0756
50 0.2424 0.2442 0.0814 0.0960 0.0545 0.0536 0.0478 0.0480

*: Monte Carlo simulation method.

According to the results obtained in this table, variance estimation values based on Monte Carlo
Simulation Method and Bootstrap variance estimation values have yielded quite close results in all of the
sample sizes (Table 1).

SIMULATION STUDY

A simulation study was conducted with the purpose of comparing the confidence interval coverage
probabilities and average length widths when sample kurtosis coefficient and the kurtosis coefficient
suggested by Bonett (2006a,b)!*? are used. In this simulation study, the data produced from Chi-squared,
Gamma, Lognormal and t-distributions with different distribution parameters was used with the program
written in Matlab R2009a. In obtaining confidence intervals based on robust estimator S2, trimming was
made only on the high end of the consecutive data for the sample data produced from Chi-squared, Gamma
and Lognormal distributions and on both ends of the consecutive data for the sample data produced from t-
distribution. Using these distributions, simulation studies were conducted based on 10000 replications for
a = 0.05 and @ = 0.10 with trimming proportion 0.5/m and n = 10,20, 30,50. With the simulation
study, coverage probabilities and average length widths of confidence intervals based on robust estimator S

for the variance of nonnormal population is summarized in Tables 2-9.

In this study, Monte Carlo Simulation Method was used in obtaining the coverage probabilities and
average length widths of confidence intervals due to ease of implementation for obtaining estimation
values Var(S2). Average length widths are obtained by dividing the total of difference of the lower
limit and upper limits of intervals found for each replication to the number of replications. Coverage
probabilities are determined by dividing the number of cases where population variance is between the

lower limit and upper limit values by the number of replications.

Two different methods were implemented for obtaining the estimator S2. The first is the estimator S2
which was obtained by using kurtosis coefficient G based on trimmed mean and the second is the
estimator S2 which was obtained by using the sample kurtosis coefficient. Coverage probabilities and
average interval widths of the confidence intervals based on this estimator are summarized in the tables
below.

TABLE 2: Coverage probabilities and average length widths under Student- t distribution for &« = 0.05.

1(5) 1(10) 1(20) 130)
n G 7 G 7 G 7 G 7
10 | 0.9535 (3.4282) | 0.8487 (7.9876) | 0.9577 (2.2221) | 0.9109 (4.3986) | 0.9538 (1.8351) | 0.8671 (3.9974) | 0.9518 (1.7244) | 0.8589 (3.7896)
20 | 0.9528 (2.6488) | 0.8493 (4.4587) | 0.9594 (1.6546) | 0.9209 (2.3681) | 0.9557 (1.3610) | 0.8993 (1.9749) | 0.9555 (1.3097) | 0.8952 (1.8926)
( ) ( ( ( ) (
( ( ( ) (

30 | 0.9518 (2.2515) | 0.8515 (3.3285) | 0.9554 (1.3733) | 0.9339 (1.7669) | 0.9541 (1.1417) | 0.9152 (1.4643) | 0.9523 (1.0850) | 0.9107 (1.3871)
50 | 0.9520 (1.8030) | 0.8519 (2.4289) | 0.9529 (1.1031) | 0.9393 (1.2982) | 0.9594 (0.8999) | 0.9286 (1.0473) | 0.9537 (0.8618) | 0.9258 (0.9973)
*Values in the parenthesis are the average of the lengths of confidence interval.
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Population has Student-t distribution with parameters 5, 10, 20 and 30 when a = 0.05. It was seen
that the coverage probabilities based on kurtosis coefficient G was quite approximate to the nominal
confidence level in all sample sizes. However, the coverage probabilities based on biased sample
kurtosis coefficient ¥ was quite lower than the nominal confidence level in all cases. It was
determined that the average length widths are reduced as the sample size increases and average
length widths based on estimator SZ which is obtained by using the kurtosis coefficient G are

narrower (Table 2).

TABLE 3: Coverage probabilities and average length widths under Student-t distribution for & = 0.10.

1(5) 1(10) 1(20) 1(30)
n G % G % G ¥ G 4

10 | 0.9074 (2.9991) | 0.8186 (6.9074) | 0.9042 (1.8414) | 0.8043 (4.0375) | 0.8993 (1.5361) | 0.7145 (3.3538) | 0.9054 (1.5077) | 0.8012 (3.3028
20 | 0.9068 (2.3809) | 0.8361 (4.2076) | 0.9058 (1.3851) | 0.8149 (2.0988) | 0.8974 (1.1664) | 0.7501 (1.6888) | 0.8967 (1.1018) | 0.8026 (1.5955
30 | 0.9068 (1.9667) | 0.8358 (3.0289) | 0.9060 (1.1889) | 0.8199 (1.5706) | 0.8987 (0.9475) | 0.7589 (1.2169) | 0.8961 (0.9063) | 0.8032 (1.1561
50 | 0.9084 (1.4925) | 0.8386 (1.9994) | 0.9082 (0.9194) | 0.8152 (1.0970) | 0.8964 (0.7712) | 0.7776 (0.8979) | 0.9009 (0.7236) | 0.8032 (0.8372
* Values in the parenthesis are the average of the lengths of confidence interval.

Table 3 analyses the case where @ = 0.10. In this Table, it was determined that coverage probabilities of
the confidence interval based on estimator S2 which was obtained by using the kurtosis coefficient G
was quite approximate to the nominal confidence level in all cases. Besides, it was also seen that the
coverage probabilities increase and average length widths are reduced as the sample size increases.
However, coverage probabilities based on biased sample kurtosis coefficient ¥ was quite lower than the

nominal confidence level in all sample sizes (Table 3).

TABLE 4: Coverage probabilities and average length widths under Chi-squared distribution for @ = 0.05.

4 7 o Yo

n G 4 G 4 G % G %

10 | 0.9573 (5.3158) | 0.8638 (6.0696) | 0.9512 (12.5404) [ 0.8681 (13.6592) | 0.9585 (35.1934) [ 0.8677 (36.7955) | 0.9552 (98.9335) (0.8662 (101.2436)
20 | 0.9576 (4.5269) | 0.8645 (4.7898) | 0.9537 (9.8464) | 0.8686 (10.1950) [ 0.9504 (26.6610) | 0.8621 (27.1428) | 0.9553 (73.1163) | 0.8569 (73.7919)
30 | 0.9588(3.8769) | 0.8674 (4.0053) | 0.9532 (8.2740) | 0.8658 (8.4505) (0.9552 (22.7509) | 0.8566 (23.0067) | 0.9525 (60.5409) | 0.8533 (60.8125)
50 | 0.9554 (3.2804) | 0.8662 (3.3715) | 0.9540 (6.8761) | 0.8599 (6.9987) | 0.9565 (18.4694) | 0.8576 (18.6324) | 0.9551 (48.7118) | 0.8539 (48.8895)
* Values in the parenthesis are the average of the lengths of confidence interval.

)
)
)
)

py py

In this part of the simulation study, trimming is made from only the high end of the consecutive data in
obtaining the kurtosis coefficient in calculating the estimator SZ since the Chi-square distribution is
positively skewed distribution. It was determined in Table 4 that coverage probabilities based on
kurtosis coefficient G are quite approximate to the nominal confidence level in all sample sizes for a =
0.05. When this situation is compared with the results obtained by using the sample kurtosis coefficient
P, it was seen that the coverage probabilities of the confidence interval based on estimator SZ which
was obtained by using the kurtosis coefficient G were quite approximate to the nominal confidence level

and average length widths are narrower (Table 4).
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TABLE 5: Coverage probabilities and average length widths under Chi-squared distribution for @ = 0.10.

7

%

o

Zso

n

G

)4

G

)4

G

)4

G

)4

10

0.9001 (4.5985)

0.8545 (5.2420

0.9002 (10.8781)

0.8526 (11.9196)

0.9044 (29.7267

0.8266

31.1522)

0.9078 (82.2300

0.8146 (84.1217

20

0.9068 (3.9293)

0.9058 (8.2205)

0.8258 (8.5143)

0.9037 (22.4265

0.8005

22.8434)

0.8973 (61.2001

0.8004 (61.7616

30

0.9069 (3.1443)

)
0.8537 (4.1597)
0.8377 (3.2489)

0.9052 (7.2307)

0.8163 (7.3862)

0.8017

19.0067)

0.9007 (51.7171

50

0.9072 (2.7033)

0.8309 (2.7803)

0.9063 (5.7745)

0.8597 (5.8793)

)
)
0.9083 (18.8077)
0.9087 (15.0437)

0.8022

—— ==

15.1734)

0.9065 (40.8599

)
)
)
)

)
)
0.8016 (51.9562)
0.8173 (41.0062)

* Values in the parenthesis are the average of the lengths of confidence interval.

It is seen that coverage probabilities of the confidence interval based on estimator SZ which was

obtained by using the kurtosis coefficient G are quite approximate to the nominal confidence level even

in small sample sizes. It was determined that confidence interval average length widths are reduced as

the sample size increases. However, coverage probabilities based on biased sample kurtosis coefficient ¥

was quite lower than the nominal confidence level in all sample sizes when populations had Chi-

squared distribution (Table 5).

TABLE 6: Coverage probabilities and average length widths under Gamma distribution for @ = 0.05.

Gamma (1/3,1)

Gamma (1.5,2)

Gamma (2,0.5)

Gamma (3,1)

n

G

)4

G

)4

G

)4

G

)4

10

0.9422 (0.7615

0.8586 (3.9074)

0.9397 (11.9956)

0.8416 (19.8351)

0.9405 (1.3081

0.8400 (7.4313

0.9407 (5.9067

0.8437 (10.5599)

20

0.9402 (10.5973)

0.9436 (1.0804

0.8453 (6.0517

0.9444 (4.7942

0.8449 (6.5705)

30

)
0.9426 (0.7335)
0.9423 (0.3228)

(
0.8561 (2.2076)
0.8598 (1.0289)

0.9480 (5.5885)

(
0.8440 (17.6365)
0.8455 (10.4059)

0.9463 (0.6309

0.8483 (3.5155

0.9448 (2.6780

0.8491 (3.7189)

50

0.9480 (0.1011)

0.8596 (1.0094)

0.9495 (2.2697)

0.8596 (5.8963)

0.9499 (0.1036

0.8516 (2.3678

0.9499 (1.5632

)
)
)
)

0.8599 (2.2489)

* Values in the parenthesis are the average of the lengths of confidence interval.

Population has Gamma distribution with different parameters when a = 0.05. It was seen that the

coverage probabilities based on kurtosis coefficient G was quite approximate to the nominal confidence

level in all sample sizes. However, coverage probabilities based on biased sample kurtosis coefficient ¥

was quite lower than the nominal confidence level in all sample sizes (Table 6).

TABLE 7: Coverage probabilities and average length widths under Gamma distribution for @ = 0.10.

Gamma (1/3,1)

Gamma (1.5,2)

Gamma (2,0.5)

Gamma (3,1)

G

Y

G

=

G

V4

G

Y

10

0.8957 (0.6501)

0.8090 (3.0099

0.9020 (6.4122)

0.8073

—

12.8894)

0.9009 (0.8370)

0.8073 (3.0583)

0.9000 (4.8815

0.8017 (6.2981

20

0.9049 (0.6255)

0.9030 (3.9481)

0.8061 (11.5100)

0.9038 (0.6989)

0.8078 (2.8832)

0.9008 (3.9796

30

0.8290 (1.4432

0.8094 (6.4942)

0.9008 (2.2092

0.8037 (3.9991

50

(

(
0.9053 (0.2722)
0.9055 (0.1596)

)
0.8060 (2.8825)
)
)

0.8299 (1.1023

(

(
0.9041 (2.2174)
0.9049 (1.8635)

(
0.8099 (3.2569)

(

(
0.9031 (0.3836)
0.9045 (0.1236)

(

(
0.8095 (1.5200)
0.8099 (1.1026)

0.9010 (1.9687

)
)
)
)

)
0.8035 (5.9648)
)
)

0.8056 (2.1796

In Table 7, the case where & =0.10 is discussed. In this table, it is determined that coverage
probabilities of the confidence interval based on kurtosis coefficient G are quite close to the nominal

confidence level in all sample sizes. In addition, it was seen that coverage probabilities increase and

average length widths are reduced as the sample size increases (Table 7).

219




Hayriye Esra AKYUZ et al. Turkiye Klinikleri J Biostat 2017;9(3):213-21

TABLE 8: Coverage probabilities and average length widths under Lognormal distribution for @ = 0.05.
Lognormal(0,1) Lognormal(0,2) Lognormal(2,5) Lognormal(5,4)
n G 4 G 4 G 4 G 4
10 | 0.9420 (2.2253) | 0.8447 (4.3551) | 0.9437 (8.0066) | 0.8455 (10.5949) | 0.9408 (5.2110) | 0.8460 (10.1285) | 0.9423 (12.3620) | 0.8431 (22.5986)
20 | 0.9493 (1.5989) | 0.8482 (2.7237) | 0.9453 (5.4378) | 0.8481 (7.9479) | 0.9462 (4.1370) | 0.8485 (7.8035) |0.9440 (10.5357)|0.8481 (19.5117)
30 | 0.9489 (0.9548) | 0.8514 (1.0355) | 0.9458 (3.2649) | 0.8487 (5.2432) | 0.9480 (2.4260) | 0.8499 (5.2786) | 0.9499 (8.2147) | 0.8493 (15.8540)
50 | 0.9500 (0.4036) | 0.8515 (0.8964) | 0.9510 (1.3678) | 0.8516 (2.8964) | 0.9510 (1.9657) | 0.8510 (2.3648) | 0.9520 (5.1245) | 0.8510 (10.6985)
* Values in the parenthesis are the average of the lengths of confidence interval.

In terms of coverage probabilities for & =0.05 and Lognormal distribution, it is determined that
confidence interval based on kurtosis coefficient G are quite close to the nominal confidence level in all

of the sample sizes (Table 8).

TABLE 9: Coverage probabilities and average length widths under Lognormal distribution for &« = 0.10.

Lognormal(0,1) Lognormal(0,2) Lognormal(2,5) Lognormal(5,4)
n G 14 G ¥y G )4 G 14

10

0.9005 (1.6720

0.8090 (3.9680

0.9015 (6.8604

0.8004 (12.8435)

0.9055 (42.167

0.8010 (49.3707

0.9057 (27.1505)

0.8092 (31.3998

20

0.8013 (8.7524)

0.9022 (28.480

0.8030 (35.3797

0.9016 (18.2750)

0.8099 (22.5560

30

( )
0.8989 (1.1402)
0.9014 (0.7019)

( )
0.8087 (2.4174)
0.8191 (1.8769)

)
0.9011 (4.6125)
0.9023 (2.7691)

0.8115 (4.5001)

0.9022 (17.398

0.8030 (22.2619

0.9018 (11.0300)

0.8128 (14.1234

)
)
)
)

50 | 0.9020 (0.4563) | 0.8110 (0.7068) | 0.9040 (1.5968) | 0.8130 (2.9678)
*Values in the parenthesis are the average of the lengths of confidence interval.

0.9030 (9.3786) |0.8030 (17.3149) | 0.9020 (7.6579) |0.8130 (12.0196

In Table 9, coverage probabilities and average length widths based on kurtosis coefficients G and
¥y with the random samples produced from Lognormal distribution for different sample sizes when
a =0.10 are given. It is concluded that coverage probabilities of confidence intervals based on
estimator G are quite close to the nominal confidence level in all cases. It is observed that average length

widths are reduced as the sample size increases.

I CONCLUSION

When confidence intervals based on robust estimator SZ2 which was obtained using both the kurtosis
coefficient based on trimmed mean and the sample kurtosis coefficient for nonnormal population
variance are compared in terms of coverage probabilities, it was determined that coverage probabilities
of confidence interval obtained with the estimator S2 which is obtained by using the kurtosis coefficient
based on trimmed mean when type I error is both & = 0.05 and a = 0.10 are quite approximate to the
nominal confidence level even in small sample sizes where confidence interval coverage probabilities
are higher. When these confidence intervals are compared in terms of average length widths, it was
determined that the average length widths of the estimator SZ which was obtained by using the
kurtosis coefficient based on trimmed mean are narrower. According to results obtained with data
produced from Chi-squared, Gamma, Lognormal and t-distributions with different distribution
parameters, if it is desired to create a narrower confidence interval for nonnormal population variance,
kurtosis coefficient which is obtained by using the trimmed mean should be preferred in obtaining the
estimator SZ which has high coverage probability. Finally it will be useful for the future studies to
investigate of the coverage probabilities and average length widths of confidence intervals obtained with
other distributions.
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