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Small Drug Molecule Classification  
Using Deep Neural Networks

Küçük İlaç Moleküllerinin Derin Sinir Ağları 
Kullanılarak Sınıflandırılması

ABSTRACT Objective: Early phase of drug discovery studies include a virtual screening phase 
of detecting active molecules among a large number of small drug molecules. The number of 
publicly available datasets for drug molecules are growing exponentially every year thanks to the 
databases, such as PubChem and ChEMBL. Therefore, there is a strong need for analyzing and 
retrieving useful information from these datasets using automated processes. For this purpose, 
machine learning algorithms are often used for activity prediction of small drug compounds, sin-
ce they are faster and comparatively cheaper. Deep neural networks has emerged as a powerful 
machine learning method with great advantages to deal with high-dimensional big datasets. Ma-
terial and Methods: In this study, we applied different settings of deep neural networks models 
to reveal the effects of learning rate, batch size and minority class weight on performance of the 
network. Results: Small learning rate and large batch size are found to be the most important 
factors that improve performance of the deep neural network. The best performed model yielded 
89% accuracy and 0.78 area under the curve value. Conclusion: Findings of this study is promi-
sing for use of deep neural networks in virtual screening of small drug compounds from publicly 
available databases.
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ÖZET Amaç: İlaç keşfi çalışmalarının ilk aşamasında çok sayıdaki ilaç molekülü arasından aktif 
moleküllerin tespit edilmesi için sanal tarama çalışmaları yürütülür. İlaç moleküllerini içeren 
veri setlerinin sayısı, PubChem ve ChEMBL gibi veritabanları sayesinde, her yıl katlanarak art-
maktadır. Bu nedenle, otomatize edilmiş süreçlerle bu verilerin analiz edilerek yararlı bilgilerin 
elde edilmesine ihtiyaç duyulmaktadır. Bu amaçla, makine öğrenmesi algoritmaları hem daha 
hızlı hem de daha ucuz oldukları için ilaç bileşiklerinin aktivitilerinin kestiriminde sıklıkla kul-
lanılırlar. Derin sinir ağları, yüksek boyutlu büyük verierle baş edebilen ve çeşitli avantajlara 
sahip güçlü bir makine öğrenmesi yöntemi olarak ortaya çıkmıştır. Gereç ve Yöntemler: Bu ça-
lışmada, öğrenme hızı, küme büyüklüğü ve azınlık sınıf ağırlığının ağın performansı üzerindeki 
etkilerini ortaya koymak için farklı sinir ağ modelleri uygulandı. Bulgular: Küçük öğrenme hızı 
ve büyük küme büyüklüğü, derin sinir ağının performansını artıran en önemli faktörler olarak 
bulundu. En iyi performans gösteren model %89 doğruluk oranı ve 0,78 eğri altında kalan alan 
değeri vermiştir. Sonuç: Bu çalışmanın bulguları, ücretsiz veri tabanlarından elde edilen küçük 
ilaç bileşiklerinin sanal taramasında derin sinir ağlarının kullanımının umut verici olduğunu 
göstermektedir.
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Drug discovery is often considered as difficult and time consuming process, since it can take almost 
15 years and cost more than one billion dollar. Discovery of a novel drug process can be simply 
characterized in four parts: target identification, lead optimization, pre-clinical studies and clini-

cal studies.1 In the first phase of drug discovery and development process, i.e. target identification, thou-
sands of small drug molecules (e.g. compounds) are screened in order to detect active molecules, which 
can be drug candidates in the future. 

An experimental method, called high-throughput screening (HTS) is often used to test large number of 
small compounds for their activity as inhibitors or activators of a specific biological target (e.g, receptor, 
enzyme).2 Alternatively, modern machine learning techniques, which can deal with high dimensional 
data, can be used as a virtual screening (VS) method to classify compounds as active and inactive. VS met-
hods are comparatively cheaper and faster than the traditional HTS methods. Starting from the late 1990s, 
many machine learning methods are used to classify drug molecules in the early phase of drug discovery 
and development studies. One of the early studies conducted by Sadowski and Kubinyi (1998), in which 
they used neural networks (NN) to discriminate between drug-like and non-drug-like compounds.3 By-
vatov et al. (2003) and Zernov et al. (2003) used support vector machines (SVM) and NN for classification 
of drug molecules. Korkmaz et al. (2014) used SVM with different feature selection methods in order 
to improve classification performance.4-6 Korkmaz et al. (2015) compared performances of twenty-three 
different machine learning methods and they have created a web-based tool to classify drug compounds 
as active or inactive using ten best performing algorithms.1 Other machine learning methods, including 
naive Bayes (NB), k-nearest neighbor (kNN), Bayesian neural networks and Random Forest (RF) are also 
used to distinguish between active and inactive compounds.7-12 

Nowadays, we are in the era of the big data. Digitally stored data size is growing exponentially.13 One of 
the serious limitations of the classical machine learning methods is that they cannot handle such big data 
size. Fortunately, in conjunction with the advance in the computer technology, deep neural networks 
(DNN), which are now state-of-the-art methods in machine learning, can handle such big data size. The 
DNN achieve great performances in various fields, such as language translation, speech recognition, text 
classification, natural language processing and among many others.14-17 Recently, new studies have been 
emerged showing that the DNN achieved remarkable performances in drug discovery studies. Ma et al. 
(2015) used a DNN model for prediction of quantitative structure-activity relationships and they found 
that the DNN outperformed RF model.18 Mayr et al. (2016) used a multi-task deep learning architecture 
to predict toxicity of compounds and won the Tox21 challenge.19 Ramsundar et al. (2015) also applied 
a multi-task deep neural networks on various publicly available molecular compound datasets (PCBA, 
MUV, DUD-E, Tox21).20-24 Koutsoukas et al (2017) investigated optimization of hyper-parameters of a 
DNN model and compared the performance of the DNN model with SVM, RF, NB and kNN algorithms.25 

Lenselink et al (2017) compared performance of a DNN model with NB, RF, SVM and logistic regression 
using ChEMBL bioactivity dataset.26,27

There has been a huge increase in the amount of publicly available compound activity and biochemical 
data.22,28 PubChem (https://pubchem.ncbi.nlm.nih.gov/), hosted by National Center for Biotechnology In-
formation (NCBI), is a public repository for small drug compounds and their bioactivities.29 As of Septem-
ber 2015, it contains 60 million unique compounds and 1 million biological assay descriptions.30 The size 
of the repository is growing exponentially every year.  

In this study, we aimed to investigate performance of DNN for classification of active and inactive drug 
compounds that are retrieved from the PubChem database. Moreover, we examined how batch size, lear-
ning rate and minority class weight affect the performance of the DNN model.
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MATERIAL AND METHODS

DATASET

The dataset derived from a quantitative high-throughput screening (QHTS) assay for inhibitors of aldehy-
de dehydrogenase 1 (ALDH1A1) and it is recorded under AID1030 on PubChem database.31 The dataset 
contains 216,890 small drug molecules. There are three labels as activity outcome: active, inactive and 
inconclusive. We considered inconclusive compounds as inactive, since they do not show any activity 
indication. Because of the number of active molecules (15,965) are considerably less than the number of 
inactive molecules (200,925), the dataset is highly imbalanced as expected in a drug compound dataset. 
After obtaining our dataset, we needed to calculate molecular descriptors. For this task, we used PADEL 
software to generate 1D-2D-3D descriptors and PubChem fingerprints. More detailed information regar-
ding molecular descriptors can be found in Yap et al. (2010).32 We generated 1,361 molecular descriptors 
for each compound using PADEL software.

DEEP NEURAL NETWORKS

Deep neural networks (DNN), also known as deep learning, is a subfield of machine learning which uses 
successive layers of increasingly meaningful representation of data.33 A DNN includes multiple non-li-
near hidden layers between an input layer and an output layer.34 Since the DNN includes large number 
of layers and parameters, this makes it so expressive that can learn very complex relationships between 
input and output.35,36 The layers, which stacked one after the other, are what we called neural networks 
and input data are stored in these layers as weights. The DNN model tries to find a set of values for the 
weights of all layers in the network. Finally, the DNN model will correctly map input data to associated 
true classes using these weights.33 

A loss function is used to find the optimal values for the weights. The loss function compares predictions 
of the DNN model and the true classes, and computes a distance score. This score shows how well the 
DNN model performed. In order to optimize the loss score, the score produced by the loss function is 
used as a feedback. This procedure is handled by the optimizer, which implements the backpropagation 
method.37 At first, the value of the weights are assigned randomly, which makes the loss score very high. 
However, the weights are adjusted slightly in the right direction to decrease the loss score. This process 
is repeated iteratively for a number of times (i.e. number of epoch) to obtain the weights that minimize 
the loss function. A DNN with a minimum loss score yields a trained network which produces predictions 
that are as close as they can be to the true classes.33 A general architecture and workflow of a DNN model 
illustrated in Figure 1.

FIGURE 1: A general architecture and workflow of a deep neural networks model.
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MODEL BUILDING

First, we split dataset into two parts as 90% training and 10% test set. Then, we centered and scaled tra-
ining set using z-score transformation. Next, the test set is centered and scaled based on the parameters 
of the training set (i.e. mean and standard deviation). We used a fully connected four-hidden-layer DNN 
architecture. The ReLU (rectified linear unit) function is used as activation function for input and hidden 
layers.38 On the other hand, a sigmoid activation function is used for the output layer. A batch normali-
zation is applied in each layer to improve the performance and the stability of the DNN. We applied 30% 
dropout rate at each layer in order to avoid the overfitting as suggested by Srivastava et al. (2014).36 We 
used binary loss function and Adam method for stochastic optimization. The number of epoch is defined 
as 100. A validation set defined as 20% to test the performance of network at each epoch. To investigate 
the effects of different batch sizes, learning rates and minority class weights, we defined a set of values for 
these parameters. We selected batch size as 16, 32, 64, 128, 256 and 512. For learning rate, we chose values 
as 0.001, 0.0001 and 0.00001. Since compound activity dataset is highly imbalanced (i.e. more inactives 
than actives), we defined a set of weights for the minority class (active compounds). We set the weights 
for the active compounds as 4, 6, 8, 10 and 12. These weights are used for weighting the loss function 
during the training. Finally, we trained 90 different DNN models and compared their performances using 
our test set.

PERFORMANCE ASSESSMENT

In order to measure the performance of our trained DNN models, we calculated various performance 
measures.

Accuracy is the proportion of the correctly predicted classes among the total number of instances and it 
ranges between 0 and 1.
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 +  +  +  

 

Precision, also known as positive predictive value, is the proportion of true positives among instances 
classified as positive and it ranges between 0 and 1.
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where, TP = true positives, TN = true negatives, FP = false positives and FN = false 
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RESULTS 
We investigated the effects of batch size, minority class rate and learning rate on the 

performance of the DNN. Since larger sizes did not improve the performance results, we 

defied the epoch size as 100 for 90 models. 

There was no significant difference in accuracy as the batch size increases (Fig. 2A). 

Although there was a slight increase in precision and recall for smaller batch sizes (i.e. 16 and 

32), this increase has stopped after the batch size 32, which means larger batch sizes did not 

improve these measures (Figs. 2B-C). Moreover, there were slight but significant 

improvements in F1, AUC and MCC measures as the batch sizes increases (Figs. 2D-F). 
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performance of the DNN. Since larger sizes did not improve the performance results, we 

defied the epoch size as 100 for 90 models. 

There was no significant difference in accuracy as the batch size increases (Fig. 2A). 

Although there was a slight increase in precision and recall for smaller batch sizes (i.e. 16 and 

32), this increase has stopped after the batch size 32, which means larger batch sizes did not 
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There was no significant difference in accuracy as the batch size increases (Figure 2A). Although there 
was a slight increase in precision and recall for smaller batch sizes (i.e. 16 and 32), this increase has 
stopped after the batch size 32, which means larger batch sizes did not improve these measures (Figures 
2B-C). Moreover, there were slight but significant improvements in F1, AUC and MCC measures as the 
batch sizes increases (Figures 2D-F). Learning rate was the most influential factor on the performance 
of the DNN. Smaller learning rates yielded better performances and there were significant increases in 
all measures (accuracy, precision, recall, F1, AUC, MCC) as the learning rate decreases (Figures 2G-L). 
Although there were significant alterations in accuracy, precision and recall (Figures 2M-O), however 
these improvements were not valid since smaller or larger weights did not significantly increase the F1, 
AUC and MCC (Figures 2P-S). On the other hand, despite there was no significant changes on the mean 
performances of the F1 and MCC, larger minority class weights yielded narrower confidence intervals, 
which indicates more precise estimates.

Consistent with the above results, hierarchical clustering results showed that the most important factor 
that affects the performance of the DNN is learning rate. Moreover, the second most important factor is 
found to be as the batch size. Finally, as stated earlier, the minority class weight was not a significant factor 
that improve the performance of the DNN. The hierarchical clustering plot is given in the Figure 3. In the 
light of these findings, smaller learning rate and larger batch size combination yield the best performance 
for the DNN. On the other hand, the minority class weight improves the performance measures, including 
accuracy, precision and recall, however, these measures are not good indicator of the performance under 
imbalanced dataset. Moreover, larger minority class weight did not significantly improve the mean per-
formance of the F1, AUC and MCC. Therefore, as can be seen from the hierarchical clustering plot in the 
Figure 3, minority class weight is not an influential factor on the performance of the DNN.
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FIGURE 2: Performance comparison for batch size, learning rate and minority class weight (error bars represent mean and standard deviation).
AUC: Area under curve, MCC: Matthews correlation coefficient.

FIGURE 3: Hierarchical clustering results for performance measures and batch size, learning rate and minority class weight.
AUC: Area under curve, MCC: Matthews correlation coefficient.

The best 5 performed DNN model settings and corresponding performance measures are given in Table 1. 
For these best performed models, the batch sizes were 256 and 512 and the minority class weights were 4, 
6 and 8. Finally, the learning rate was 0.00001 in all best 5 performed models. 

The accuracy results were between 0.86 and 0.89, the precision results were between 0.26 and 0.31, the 
recall results were between 0.40 and 0.49, the F1 results were between 0.34 and 0.35, the AUC results 
were between 0.77 and 0.78 and the MCC was 0.29 for all 5 best performed models. 
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TABLE 1: The five best performed DNN model results.

Batch Size
Minority 

Class
Learning 

Rate Accuracy Precision Recall F1 MCC AUC

256 4 0.00001 0.88 0.29 0.43 0.35 0.29 0.77

256 6 0.00001 0.86 0.27 0.47 0.34 0.29 0.77

512 4 0.00001 0.89 0.31 0.40 0.35 0.29 0.78

512 6 0.00001 0.87 0.28 0.47 0.35 0.29 0.78

512 8 0.00001 0.86 0.26 0.49 0.34 0.29 0.78

DNN: Deep neural networks, AUC: Area under curve, MCC: Matthews correlation coefficient.

DISCUSSION

In the era of big data, there is a great need for databases which contain labelled datasets for deep learning 
applications. PubChem is the largest chemical biology database and includes huge amount of publicly avai-
lable bioassay datasets for compound activity prediction and classification. Ramsundar et al (2015) used this 
database to create a dataset, which includes 128 bioassay experiments, to perform multi-task deep learning.20 
ChEMBL is another open-access database, which contains binding, functional and ADMET (absorption, 
distribution, metabolism, excretion and toxicity) information for huge number of bioactive compounds.27 
Moreover, MoleculeNet, which is another publicly available database, contains more than 700,000 curated 
compounds from publicly available databases, including PubChem and ChEMBL, and it intends to create 
standard benchmark datasets in order to compare performances of different machine learning methods.39 

Our performance measures in the Table 1 showed that the top 5 DNN models overall performed well with 
respect to accuracy and AUC. However, performances of the models were not adequate in terms of preci-
sion, recall, F1 and MCC. This indicates that different DNN architectures and different parameterization 
should be tried in the future studies to increase the classification performance of the DNN.  

The performance of a DNN can be affected by many different parameters, including architecture of the 
network, type of loss function and optimizer, batch size, learning rate, etc. Among those parameters, we 
investigated effects of batch size, learning rate and minority class weight on the performance of the DNN. Le-
arning rate is found to be the most influential factor on performance of the DNN. Learning rate is a hyper-pa-
rameter, which controls the weight adjustment of the DNN with respect the loss gradient. The optimal value 
of learning rate is dependent on the topology of the loss function. It is clear that there is a trade-off between 
learning rate and  time to train the network. The small learning rate provides more reliable training but op-
timization will be time consuming because of the small steps towards the minimum of the loss function. On 
the other hand, the large learning rate will take less time to train the network, however the weight changes 
will become so big and the optimizer will overshoot the minimum of the loss function where training is not 
converged. In our study, smaller learning rates yielded better performances compared larger ones. Howe-
ver, further investigations are needed to reveal the optimal learning rate for the DNN. Smith (2015) offers a 
method, named cyclical learning rates, to detect optimal learning rate.40 This method allows the learning rate 
cyclically vary between pre-specified boundaries instead of monotonically decreasing learning rates.

Batch size is found to be another important factor that affect the performance of the DNN models. Because 
of their lack of generalization ability, it is suggested that the larger batch sizes yielded worse performance 
than the small batch sizes for the DNN model.41 Interestingly, in our study we found that larger batch sizes 
yielded better performances. This may presumably occur because of the imbalanced nature of our dataset. 
As reported by Keskar et al. (2017), the performance of the DNN increases until a certain number of batch 
size and it dramatically drops after this threshold. Therefore, this phonemone may exist in our case and 
bigger batch sizes should be tested in future studies in order to clarify such threshold for the batch size. 
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Although we stated that the minority class weight did not improve the performance measures, when we 
set the weights less than 4, the performance dramatically decreased. This means that minority class weight 
has a significant impact until a specific point. Moreover, as can be seen from the Figure 2P and Figure 2S, 
the standard deviation decreases as the minority class weights increase for F1 and MCC. Subsequently, we 
can conclude that minority class weight can be considered as a significant factor that can alter the perfor-
mance of the DNN model, especially in the case of imbalanced dataset. Therefore, deeper investigations 
are needed to clearly understand the effects of the minority class weights on the performance of the DNN 
in the case of imbalanced dataset in the future studies. 

CONCLUSION

PubChem is a great resource for analyzing and implementing deep learning to retrieve useful information 
regarding activity of chemical compounds. In this study, we compared performances of different settings 
of the DNN models using publicly available bioassay dataset from the PubChem database. We found that 
smaller learning rates and larger batch sizes are the most important factors that affect the performance of 
the DNN model. Our best performed model yielded 89% accuracy, 0.35 F1 score, 0.29 MCC and 0.78 AUC. 
These results are promising for use of deep learning in VS of small drug molecules from publicly available 
databases, such as PubChem.

Deep learning is a great tool to analyze such large databanks for chemical libraries. The automated proces-
ses, including retrieving data, pre-processing, labelling, training models and developing tools are strongly 
needed in the early phase of drug discovery studies. Future studies may include developing cloud-based 
systems that can automatically detect active compounds directly from publicly available databases (i.e. 
PubChem, ChEMBL) using deep learning methods.
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