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ABSTRACT Jones and Nagin developed PROC TRA]J to study developmental trajectories for the
areas of psychology, sociology, and criminology. We tested the utility of the TRAJ procedure in
identifying cyclic (i.e., periodic) genes based on their time-course expression measurements. We
have shown through extensive simulations that PROC TRA] offers practical solutions in identify-
ing gene-sets with different profiles including cyclic patterns over cell division cycles. We then ap-
plied the procedure to an S. Pombe gene-expression data and showed that through the use of TRAJ
procedure, different sets of periodic genes can be obtained, where truly periodic genes are ranked
much higher overall compared to not-periodic genes, thus making their identification easier. As a
conclusion, we present convincing preliminary evidence for the utility of PROC TRAJ in cell-cycle
gene expression data analysis although its utility must be tested more stringently in future simula-
tion studies as well as by its application to other real-experimental data where identifying cyclic pat-
terns is the primary goal.
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OZET Jones ve Nagin psikoloji, sosyoloji ve kriminoloji alanlarinda gelisimsel yoriingeleri calismak
icin PROC TRA]J yontemini gelistirmislerdir. Siireg ifade 6l¢timlerine dayal dongiisel (6rnegin; pe-
riyodik) genleri belirlemede TRAJ yonteminin faydalarin: test ettik. Hiicre boliinme dongiileri tize-
rinde déngiisel modelleri iceren farkh profillerle gen setlerini belirlemede pratik ¢6ziimler 6neren
PROC TRAJ yontemini kapsamli simiilasyonlarla araciligiyla gosterdik. Daha sonra bu y6ntemi S.
Pombe gen-ifade verisine uyguladik ve TRAJ yonteminin kullanimiyla tamamen periyodik genle-
rin periyodik olmayan genler ile kiyaslandiginda daha yiiksekte siralandiginda periyodik genlerin
farkli setlerinin elde edilebildigini dolayisiyla belirlenmelerinin daha kolay oldugunu gosterdik.
Sonug olarak, yéntemin faydasinin gelecekteki simiilasyon ¢alismalariyla birlikte ilk amacin déngit
yapilarinin belirlenmesi olan diger gercek deneysel ¢aligmalara uygulanmas: ve daha kesin bir
sekilde test edilmesi gerekli olmasina ragmen hiicre dongiisii gen ifade veri analizinde PROC TRAJ
yonteminin faydas i¢in ilk ikna edici kaniti: sunduk.

Anahtar Kelimeler: PROC TRAJ; dénemsellik; yoriinge; siireg deneyi
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nvestigating the cyclic behavior of genes during cell cycle led to a sub-
stantial body of works in the biology and statistical methodology liter-
ature, among which we can include the independent cell cycle
experiments conducted by Oliva et al., Peng et al., and Rustici et al.!® The
main aim of these research is not only to identify cyclic genes but also de-
scribe that cyclic behavior. In an era of the rise of targeted therapies, it is
critical to identify genes that have cyclic behavior during the cell division
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cycle as such findings may help researchers develop
and fine-tune therapies that target cells with genes
having certain cyclic behaviors of interest.

To search for genes with cyclic patterns,
which may be in any shape and form from sinu-
soidal to spiky expression at a certain phase of cell
division, say during the G2 phase or M phase, the
researcher needs time-course measurements of ex-
pression for every gene of interest. This is made
possible with the microarray technology where the
expression of thousands of genes can be measured
simultaneously. Once expression of genes are ob-
tained through such technology at selected pre-de-
termined time points to cover multiple cell cycles,
the desired time-course data would be obtained.

Several methods were proposed to identify
genes with cyclic behavior, among which we can
count Fisher’s G-test by Fisher, the permutation
test described by Lichtenberg et al., and an empir-
ical Bayesian approach by Kocak et al.*® Kocak et
al. showed through extensive simulation that their
Bayesian approach was superior to Fisher’s G-test
and the Permutation method as a test for periodic-
ity against not only noise but also some other ‘non-
periodic’ patterns.® However, all these tests operate
on each gene independently and do not aim at de-
scribing what type of cyclic behavior a given gene
has. To address this issue, in this study, we put to
trial a new SAS procedure by Jones and Nagin
named PROC TRA]J, whose base was established
by, to identify and describe genes with cyclic be-
havior through extensive simulations.””

In Section 2, we briefly describe SAS TRA]J
procedure, followed by the simulation design in
Section 3. We provide the simulation results in Sec-
tion-4 and provide a real-data application in Sec-
tion-5. We then end with some discussions.

I METHOD

PROC TRA]J is a SAS procedure developed by Jones
and Nagin to study developmental trajectories, uti-
lizing a semiparametric, group-based modelling ap-
proach where the underlying model is a mixture
probability distributions with a multinomial mod-
eling strategy.”® The researcher decides how many

TABLE 1: Call Syntax of PROC TRAJ.

PROC TRAJ DATA=SAMPLEDATA

OUT=<Output data with all variables in the model including final GROUP assignments>
OUTPLOT=<Output data with final trajectories by time variable>

OUTSTAT=<Output data with parameter estimates for all trajectories>
OUTEST=<Output data with all covariance estimates as well as log-likelihood values>;
VAR D1-Dn; /* Dependent Variable laid horizontally over n-time points */

INDEP T1-Tn; /* Time variable laid out horizontally over n-time points */

MODEL CNORM; /* Censored Normal Model */

MIN 0; /* User defined Lower Censoring Point */

MAX 10; /* User defined Upper Censoring Point */

NGROUPS K; /* To specify K trajectories for the data */

ORDER d1 d2 d3 ... dK; /* Polynomial degree for each of the K-trajectories */

RUN;

trajectories may describe the data at hand, and the
authors also provided a strategy to choose the ‘best’
number trajectories based on the log-likelihood
values of the resulting models.

The procedure is available as a free download
and its installation is also straightforward and an a
step-by-step approach is provided by the authors
(https://www.andrew.cmu.edu/user/bjones/index.h
tm ). The call syntax of the procedure is as follows
(Table 1):

The authors also developed a SAS macro pro-
gram (%TRAJPLOT) to plot the resulted trajecto-
ries to visually inspect what types of patterns the
data at hand displays based on the K trajectories se-
lected, which may guide the user to increase or de-
crease the number of trajectories to be studied.

We present a simple run for illustration pur-
poses below (Table 2):

We have captured the results as they appear
on the SAS output window and the figure from the
%TRAJPLOT macro (Figure 1A, Figure 1B).

In this sample run with two trajectories, we
see that one of two trajectories is periodic, and the
other seems to be just noise. We then ran the same
example with three trajectories (FigurelC) and see
that the noise part can actually be split into two tra-
jectories of noise, one with higher, one with lower
noise level.
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TABLE 2: A sample run of PROC TRAJ.

PROC TRAJ DATA=alltraj_sinusoidal

OUT=period.OF OUTPLOT=period.OP OUTSTAT=period.OS;
VAR e1-e20; *Expression Variables;

INDEP T1-T20; *Time Variables;

MODEL CNORM; *Censored Normal Model;

MIN -10; **Lower Censoring Point;

MAX 10; *Upper Censoring Point;

NGROUPS 2; *No. of Groups fitted;

ORDER 4 4;*4-degree Polynomial for each trajectory;

RUN;

%TRAJPLOT (period.OP, period.0S,"Expression Trajectories",, "Expression","Time");

I SIMULATION STUDY

To test for the efficiency and feasibility of PROC
TRA]J in identifying cyclic profiles (e.g., periodic
genes), we have used the combination of cyclic and
non-cyclic patterns that Kocak et al. used, which is
listed below:®

B Cyclic Patterns (n=5): Sinusoidal, Spike,
Double Spike, Beta, Bi-Model.

® Non-Cyclic Patterns (n=5): White Noise,
Linear, Low-Plato, High-Plato, Random Spikes.

= Each pattern was represented by 500 ran-
domly generated profiles that cover two complete
cycles of data, where each cycle had 10 equidistant
measurements.

® Number of trajectories (n=6): 3, 4,5, 6,7, 8
= Degree of Polynomials (n=5): 1, 2, 3, 4,5

The total number of combinations of the ex-
perimental parameters can go up exponentially to
more than 750 scenarios, in fact, even higher, if we
start combining subsets of cyclic and non-cyclic
patterns together, which also has relevance as one
may want to assess whether or not the proposed ap-
proach can different a given cyclic pattern, say Si-
nusoidal, not only against Noise Pattern but Noise
and Linear pattern combined. Also, one may what
to use different combination of polynomial degrees
for a given list of trajectories rather than using the
same degree across the board. After each simula-
tion run, the relevant output datasets were saved
for further data processing.

The SAS System 1
06:08 Hednesday, July 15, 2015
Maximum Likelihood Estimates
Model: Censored Normal (CNORM)
Standard T for HO:
Group Parameter Estimate Error Parameter=0 Prob > T}
1 Intercept 0.47028 0.01365 34.460 0.0000
Linear 0.04323 0.09627 0.449 0.6534
Quadratic 0.16359 0.21711 0.753 0.4512
Cubic =-0.27470 0.17820 -1.542 0.1232
Quartic 0.10103 0.04764 2.121 0.0340
2 Intercept 0.63689 0.00948 67.197 0.0000
Linear 0.08052 0.06894 1.168 0.2428
Quadratic -1.46216 0.15524 -9.419 0.0000
Cubic 1.81599 0.12682 14.319 0.0000
Quartic -0.59950 0.03380 -17.735 0.0000
Sigma 0.24670 0.00126 196.458 0.0000
Group membership
1 (z) 36.14550 2.43641 14.836 0.0000
2 (%) 63.85450 2.43641 26.208 0.0000
BIC= =-838.05 (N=20000) BIC= -820.07 (N=1000) AIC= =-790.63 L=
-778.63

FIGURE 1A: Model results of the simple PROC TRAJ run
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Expression Trajectories
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FIGURE 1B: A sample run of PROC TRAJ and %TRAJPLOT macro.
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FIGURE 1C: A sample run of PROC TRAJ and %TRAJPLOT macro with three trajectories.
Overall, we conclude that using polynomial
I RESULTS

We summarized the simulation results as sensitiv-
ity, specificity, and total accuracy. The entire sim-
ulation results were provided in Table 3.

We present the total accuracy summaries in a
graphical form in Figure 2.

degree of 1 as well as polynomial degree of 2 for
each trajectory does not provide a compatible ac-
curacy measure for any given pattern against all
non-cyclic patterns including noise. Considering
the above comparisons include each periodic pat-
tern against all five non-periodic patterns includ-
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TABLE 3: Sensitivity and specificity results.

No. of 1st Degree 2nd Degree
Trajectories Sens. Spec. Sens. Spec.
Sinusoidal 3 0.98 0.80 1.00 043
4 0.98 0.80 0.99 0.80
5 0.54 0.89 0.99 0.80
6 0.51 0.89 0.98 0.81
7 0.74 0.94 0.60 0.90
8 0.74 0.94 0.60 0.90
Spike 3 1.00 0.61 1.00 0.62
4 1.00 0.64 1.00 0.65
5 1.00 0.66 1.00 0.85
6 1.00 0.66 1.00 0.85
7 1.00 0.69 1.00 0.87
8 0.99 0.70 1.00 0.85
Double Spike 3 1.00 0.60 1.00 0.61
4 1.00 0.63 1.00 0.64
5 0.97 0.66 1.00 0.83
6 0.62 0.89 1.00 0.83
7 0.63 0.90 1.00 0.83
8 0.63 0.89 0.98 0.86
Beta 3 1.00 0.60 0.99 0.61
4 1.00 0.64 0.99 0.67
5 0.97 0.92 1.00 0.86
6 0.97 0.92 1.00 0.86
7 0.97 0.94 1.00 0.92
8 0.97 0.94 1.00 0.94
Bi-Modal 3 0.94 0.59 1.00 0.44
4 0.92 0.62 1.00 0.73
5 0.99 0.86 0.99 0.80
6 0.99 0.86 0.99 0.80
7 0.99 0.86 0.99 0.80
8 0.97 0.88 1.00 0.86

3rd Degree 4th Degree 5th Degree
Sens. Spec. Sens. Spec. Sens.  Spec.
0.99 0.79 0.99 0.78 0.99 0.80
0.99 0.81 0.99 0.81 0.99 0.84
0.99 0.81 0.99 0.81 0.99 0.84
0.98 0.82 0.97 0.95 0.99 0.99
0.97 0.94 0.97 0.95 0.99 0.99
0.97 0.94 0.88 0.97 0.99 0.99
1.00 0.63 1.00 0.64 1.00 0.64
1.00 0.67 1.00 0.68 1.00 0.68
1.00 0.85 1.00 0.68 1.00 0.87
1.00 0.85 1.00 0.85 1.00 0.68
1.00 0.87 1.00 0.88 1.00 0.90
1.00 0.87 1.00 0.90 1.00 0.93
1.00 0.62 1.00 0.62 1.00 0.62
1.00 0.66 1.00 0.66 1.00 0.66
1.00 0.82 1.00 0.83 1.00 0.83
1.00 0.82 1.00 0.84 0.99 0.86
0.99 0.85 0.99 0.85 0.99 0.86
0.99 0.86 0.98 0.87 0.99 0.89
1.00 0.57 1.00 0.72 1.00 0.74
1.00 0.74 1.00 0.75 1.00 0.75
1.00 0.96 1.00 0.97 1.00 0.99
1.00 0.77 1.00 0.98 1.00 0.78
1.00 0.98 1.00 0.98 1.00 0.99
1.00 0.98 1.00 0.98 1.00 0.99
1.00 0.65 1.00 0.65 1.00 0.65
1.00 0.72 1.00 0.72 1.00 0.75
0.99 0.80 1.00 0.81 1.00 0.86
0.99 0.80 1.00 0.81 1.00 0.94
1.00 0.89 1.00 0.89 1.00 0.95
1.00 0.89 1.00 0.89 1.00 0.95

ing noise, ideally we expect that the number of
trajectories must be at least 6. The above results
confirm this expectation in the sense that all the
simulation scenarios where we had less than six
trajectories specified resulted in lower total accu-
racy overall than the scenarios with =6 trajecto-
ries. These findings are also highly encouraging in
that as we increase the number of trajectories to
higher number than six as we would not usually
know the number of true trajectories in reality, the
total accuracy still increases in differentiating the
periodic trajectory from those for non-periodic
patterns.

In this particular simulation study, we achieved
the highest total accuracy for Sinusoidal Pattern and
Beta Patterns. It was a bit more difficult to achieve
high total accuracy (say, >90%) for Spike and Dou-
ble Spike patterns, which is expected as the indica-
tion of periodicity is evident only by a single or two
spikes in every cycle, rest of which is just noise.

APPLICATION TO S.POMBE CELL CYCLE
GENE EXPRESSION EXPERIMENTS

As an illustration, we have applied PROC TRA] to
one of the time-course gene expression experi-
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FIGURE 2: Total accuracy measure by Pattern and Polynomial Degree.

ments by Peng et al’. In this experiment, expres- Of these 10 gene expression trajectories, it is
sion data was available for 4,929 genes. We fit 10 clear that Trajectories 4, 6, 8 and 10 show a strong
trajectories to the data and obtained the following  periodic pattern. These four trajectories success-
trajectories (Figure 3). fully captured 34 out of the benchmark set of 38

Expression Trajectories
1 ) 2 i 3 1 4 | 5

L B B | LN B B L R S LN B | LI B B |
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T

FIGURE 3: Gene expression trajectories with 10 trajectories fit.
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periodic genes reported by Marguerat et al.’> When
we ranked the genes based on their group mem-
bership probabilities overall and within each tra-
jectory, then the median rank for these 34 truly
periodic genes was 34 within their respected tra-
jectories and 304 overall, while the median rank
for the remaining genes called as ‘periodic’ by the
above procedure was 276 within their respected
trajectories and 2392 overall.

I DISCUSSION

Jones and Nagin developed PROC TRA]J to study
developmental trajectories for the areas of psy-
chology, sociology, and criminology, where the
number of measurements over time is not expected
to be very high.”® We tested their procedure in
terms of feasibility (i.e., computing time) as well as
efficiency in successfully identifying cyclic genes
and it proved to provide a rich and efficient plat-
form for such aims.

We have shown by extensive simulations the
utility of PROC TRA]J in identifying different
cyclic patterns in time-course data, specifically tar-
geting its use in time-course gene-expression data.
We then applied the procedure to an S. Pombe
gene-expression data and showed that TRA] pro-
cedure offers practical solutions for the identifica-
tion of cyclic patterns by clustering genes that
behave similarly following a specific average pat-
tern, which can be easily visually inspected. The
procedure is vulnerable to this visual inspection in
that it may bring in subjectivity as to what can be
considered as ‘cyclic’. For example, in the example
we used for illustration (Figure 3), another pair of
eyes may consider Trajectory-3 or even Trajectory-
7 as potentially periodic based on the location of
the peaks.

The choice of the degree of polynomials for
each trajectory can be considered as another area
of subjectivity. Although our simulations showed
that Polynomial Degree-5 was the best among all
scenarios considered in our simulations, lower de-
gree polynomials may work equally as well. The
procedure only supports up to 5-degree polynomi-
als and we suspect that higher degree polynomials

could perform better by definition in identifying
other potential trajectories, which, however, may
increase the subjectivity issue discussed above
much stronger as the resulting trajectories get finer
and finer with higher degree polynomials.

As a general clustering issue, choosing the
right number of trajectories may pose another
practical challenge for the researchers as the true
number of underlying trajectories may not be nec-
essarily known in a given experiment. For small
number of trajectories, the true underlying trajec-
tories start blending with each other and the true
signal start getting blurry; on the other hand, for
large number of trajectories, another type of blend-
ing potentially occurs with finer trajectories mak-
ing the final decision process more difficult as well
as their potentially becoming ‘similar’ to other fine
trajectories as an off-shoot of a different underlying
trajectory. Jones and Nagin describe a procedure
based on the change in BIC values obtained as the
number of trajectories increase; however, their ap-
proach may not complete address the issue when
the sample size and the number of measurements
increase for each subject (e.g, genes).”® This issue
must be studied perhaps through simulations in the
setting of periodicity testing with 2 or more cycles
of data.

Finally, especially in the gene expression set-
ting, the position of the peak of the cycle for each
gene does not necessarily need to be synchronized,
which can only be resolved by increasing the num-
ber of trajectories to capture cyclic patterns whose
peaks occur at different times during a complete
cycles. The researcher should keep this in mind and
potentially synchronize the expression data, if pos-
sible, before applying PROC TRA] for the best per-
formance.

As a conclusion, we have shown both based on
simulation as well as on a true cell-cycle gene ex-
pression data that PROC TRA]J offers practical so-
lutions to identify gene-sets that have similar
expression profiles within their sets, yet behave to-
tally differently when the gene-sets are compared
with each other. PROC TRA]J can be downloaded
freely (https://www.andrew.cmu.edu/user/bjones/
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index.htm), and its installation and use are straight- time-course profiles where cell-cycle gene expres-

forward. We plan to further our investigation on sion data, or circadian rhythm data, can be consid-

the utility of this procedure in the analysis of long  ered as immediate application areas.
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