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 ABSTRACT Objective: The aim of this study is to examine the 

effectiveness of linear mixed-effects (LME) model, one of the tradi-
tional models used in the classification of clustered data, and 

mixed-effects machine learning models, which are the latest ap-

proaches. Material and Methods: For the simulation, various data 
sets were created with different number of groups (250, 500, 1000) 

and different sample sizes (5000, 10000, 15000). Within the scope 

of the simulation, LME model, mixed-effects random forest 
(MERF) and Gaussian process boosting (GPBoost) models were 

compared in terms of root mean square error (RMSE) on two func-

tions. Results: When the error variance (EV) is 4 for the linear 
function, sample size is small and the number of groups is high, 

RMSE of MERF model is smaller. In all other scenarios, RMSE of 

the linear model was smaller and. In cases where EV for the 
nonlinear function is 1, the sample size is small and the number of 

groups is high, RMSE of MERF is smaller. In all other scenarios 

(while EV was 1), RMSE of GPBoost model was small, p<0.05 for 
the difference with LME, and p>0.05 for MERF. In cases where EV 

is 4 for the nonlinear function and the sample size and groups is 

high, RMSE of MERF is smaller. In all other scenarios (while EV 
was 4), RMSE of GPBoost model was smaller. Conclusion: As a 

conclusion, for a nonlinear function, GPBoost performed better 

than MERF and LME methods in terms of RMSE and time. How-
ever, when a linear function is considered, LME gives a better re-

sult. 
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ÖZET Amaç: Bu çalışmanın amacı, kümelenmiş verilerin sınıflama-

sında kullanılan geleneksel modellerden doğrusal karışık etkili [linear 
mixed-effects (LME)] model ile karışık etkili makine öğrenmesi mo-

dellerinin etkinliklerini incelemektir. Gereç ve Yöntemler: Benzetim 

tekniği için farklı küme sayılarında (250, 500, 1000) ve farklı örnek-
lem büyüklüklerinde (5000, 10000, 15000) çeşitli veri setleri oluştu-

rulmuştur. Benzetim çalışması kapsamında LME model, karışık etkili 

rastgele orman [mixed-effects random forest (MERF)] ve Gauss süre-
ci boosting [Gaussian process boosting (GPBoost)] yöntemlerinin 

hata kareler ortalamasının karekökü [root mean square error (RMSE)] 

değeri bakımından karşılaştırılması 2 fonksiyon üzerinde gerçekleş-
tirmiştir. Bulgular: Doğrusal fonksiyon için hata varyansı 4, örnek-

lem sayısı az ve küme sayısı fazla olduğunda, doğrusal model yerine 

MERF modelinin RMSE daha küçük bulunmuştur. Bunun haricinde-
ki tüm senaryolarda doğrusal modelin RMSE değerinin küçük olduğu 

görülmüştür. Doğrusal olmayan fonksiyon için hata varyansı 1, ör-

neklem sayısının küçük ve küme sayısının yüksek olduğu durumlar-
da, MERF modelinin RMSE değeri daha küçük bulunmuştur. Bunun 

haricindeki tüm senaryolarda (hata varyansı 1 iken) GPBoost modeli-

nin RMSE değerinin küçük, LME ile arasındaki fark için p<0,05, 
MERF ile ise farkın p>0,05 olduğu görülmüştür. Doğrusal olmayan 

fonksiyon için hata varyansı 4, örneklem ve küme sayısının yüksek 

olduğu durumlarda, MERF modeline ait RMSE daha küçük bulun-
muştur. Bunun haricindeki tüm senaryolarda (hata varyansı 4 iken) 

GPBoost modelinin RMSE değeri küçük bulunmuştur. Sonuç: Sonuç 

olarak doğrusal olmayan bir fonksiyon için GPBoost; MERF ve LME 
yöntemine göre RMSE ve zaman açısından daha iyi bir performans 

göstermiştir. Ancak doğrusal bir fonksiyon ele alındığında LME daha 
iyi bir sonuç vermektedir. 
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The aim of this study is to examine the effectiveness of linear mixed-effects (LME) model, one of the 

traditional models used in the classification of clustered data, and mixed-effects machine learning models, 

which are the latest approaches in terms of root mean square error (RMSE) and time (second). Mentioned 

methods are mixed-effects random forest (MERF) and Gaussian process boosting (GPBoost) methods. They 

both are used for the localization of gene and protein markers for contributing additional solution in the field 

of medicine, more informative and promising diagnostic decision-making about disease pathogenesis and eti-

ology. In the field of robotics; they perform learning with high speed and efficiency in motion planning, posi-

tioning, geolocation and mapping. In the field of sports; the prediction of NBA free agent player contract was 

modelled with MERF and this machine learning model will stay popular until a new model is built. 

    MATERIAL AND METHODS 

GAUSSIAN PROCESS 

Gaussian process is a flexible non-parametric function model that achieves state-of-the-art estimation accu-

racy and allows making probabilistic estimations.
1,2 

 This process, which is one of the probabilistic supervised 

machine learning methods, is used in both regression and classification problems. 

Gaussian processes are used in areas such nonparametric regression, modelling of time series, spatial and 

spatio-temporal data, emulation of large computer experiments
 
optimization of expensive black box functions

 

and parameter tuning in machine learning models.
3-8 

In this approach, parameters are assumed to be independent, identically distributed random variables. 

Other supervised learning methods also learn exact values for each parameter. Gaussian process regression 

calculates the probability distribution over all acceptable functions that fit the data. First a priori point is de-

termined, then the posterior point is calculated using the training data and compared with the estimated poste-

rior at the respective points. In this method, result of           equation should be minimal.
9 

Because it 

means that the difference between predicted and true values is minimal. 

 

 

FIGURE 1: Classifier comparison outputs.10 

 

Figure 1 shows the classification functions learned by the different methods used to separate the blue and 

red dots. Neural network and random forest, which are widely used and powerful methods, produce predic-

tions away from the training data. The Gaussian process obtains the model output with greater accuracy, 

which is particularly important in authentication and security-critical uses.
1 

The Gaussian process is a non-parametric Bayesian approach to regression used to approximate func-

tions.
9
 The Bayesian approach determines a probability distribution over possible functions.

10
 The algorithm 
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for this process is a powerful algorithm for modelling nonlinear relationships between the pairs of random 

variables. It defines a distribution over functions that can be applied to demonstrate uncertainty about the ac-

tual functional relationship.
11

 In addition, the Gaussian process is widely used in motion planning, position-

ing, localization and mapping in the field of robotics.
12,13 

Gaussian process regression is used in areas that need to be modelled on people's preferences (such as 

understanding user preferences). Today, it is used in the modelling of dynamic animations such as human 

walking, dinosaur walking, fire, and explosion. After the low-resolution animations are shown to people and 

asked to rate them, the model parameters are finalized by scoring the people's perception of reality. The Gaus-

sian regression process models people's preferences as a function. Since the process is started as Bayesian, the 

model that starts with preliminary information at first becomes close to reality in the end. Thus, a high cost 

task is solved with a low processor cost. 

Gaussian processes are used not only in regression problems, but also in classification problems. An ex-

ample is Google's classification problems. When a picture is searched with the word 'cat' on Google, the 

search engine returns many pictures that it thinks are cats. When clicked, the photo that most resembles a cat, 

and the photo that the user prefers to print first, is generally accepted as the photo that most resembles a cat. 

The most clicked with a high voting rate categorizes it as “cat”. Then, by using this prior information, the 

search engine brings forward the photos that look more like cats in the cat search of later users by increasing 

the estimation performance in the “cat” classification problem. 

GPBoost 

The model is trained using the GPBoost algorithm. This takes place by training the covariance parameters of 

random effects and the mean F(X) function with a tree ensemble model. The algorithm used is a boosting 

algorithm that iteratively learns the covariance parameters and adds a tree to the tree ensemble using a gradi-

ent or Newton acceleration step. Covariance parameters can be learned using (Nesterov acceleration) gradi-

ent descent or Fisher scoring.
14 

Clustered data structure is a concept that emerges when data comes together under groups with certain 

characteristics.
15

 Patients in different hospitals, students in schools, teeth in the mouth can be given as exam-

ples of this data structure. Although these related data structures (panel, longitudinal and clustered data) are 

defined as special parts of multivariate designs, they contain many differences that completely affect the way 

of analysis. 

Clustered data can be modelled as follows; 

1. Group structure can be ignored. 

2. Each group (e.g. each student) can be modelled separately. 

3. The grouping variable (e.g. student or customer ID) is included in the model and treated as a cate-

gorical variable. While this is a viable approach, it has some disadvantages. Mostly, the number of meas-

urements per group (e.g., number of tests per student) is small, and the different groups are large (e.g., stu-

dents, etc.). In this case, the model needs to learn many parameters (one for each group) based on less data, 

which can make the learning inefficient. Also, large numbers of categorical variables can be problematic for 

trees. 

4. The grouping variable is treated as random effects, and the Gaussian process and the mixed-effects 

model approach can be used.
14 

Briefly, this approach proposes to model the mean function and the predicted parameters of the covari-

ance structure of random effects together with the mean function, with a population of basic learners such as 

regression trees that learn incrementally using boosting.
16 
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In the machine learning literature, F(X)=0 is assumed in mixed-effects models with the Gaussian proc-

ess, while the priori distribution function is assumed to be as in Equation 1 in mixed-effects models with the 

Gaussian process. 

        ,     ,  vector of covariate    (Equation 1) 

The purpose of this approach is to relax the linearity assumption, or the zero-prior mean assumption.  

GPBoost is built on the popular tree-boosting models, which have state-of-the-art predictive accuracy, 

such as eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM).
17,18

 The 

nonlinear function, F, in GPBoost is built on LightGBM, but trained with the GPBoost algorithm nto learn 

the covariance parameters of the random effects and the nonlinear function F(X) using a LightGBM tree en-

semble.
19

 

SIMULATION STUDY 

Data generation was performed in different scenarios according to sample size, number of groups, random 

effect variance and error variance. The sample sizes for the simulation technique are 5000, 10000 and 15000; 

number of groups was taken as 250, 500, 1000. 

Within the scope of the simulation study, the LME model, MERF and GPBoost methods were com-

pared in terms of RMSE value on two functions. The first of these functions is a linear function and is shown 

in Equation 2. In addition, a single grouping variable was used. However, hierarchically nested random ef-

fects and crossed random effects can be used. Random effect variance of 1, error variance of 1 and 4 were 

taken separately in the study. Each scenario was repeated 100 times. A linear function is included to observe 

the comparison between the mixed-effects machine learning model and a LME model. This function is 

shown in Equation 2. In addition, the nonlinear function “friedman3” is also included in the simulation 

study. “friedman3” function was first introduced by Friedman (1991) and is frequently used to compare non-

parametric regression models (Equation 3).
20

 This function is a nonlinear function containing 4 independent 

variables and since it has a multidimensional structure, it is generally tried to obtain the closest estimation 

value to the y response variable by using this function within the scope of machine learning. 

  ( ) = C*   + 2       (Equation 2) 

  ( ) = C*        
     

 

    

  
      (Equation 3) 

The constant C is chosen so that the variance of F(X) is equal to 1, as can be seen in previous equations, 

namely F(X) has the same power as the random effects. 

                                            (Equation 4) 

A single grouping variable was used. However, random effects can also be used, including hierarchi-

cally clustered, nested, crossed, and random coefficient effects.  

MODEL PARAMETERS FOR GPBoost 

Max_Depth: Tree based algorithms have 4 different components: root, internal, leaf nodes and brances. 

maxdepth is the value of the tree’s branches (edges) extending downwards. Any point where a decision must 

be made is known as a decision node. Branches are the branches that extend from a decision node, and each 

branch represents one of the options or possible courses of action that are currently available. In other words, 

max_depth is the depth of the tree. Depth of the tree is the total number of edges from root to leaf in the 

longest part. It should be optimized to avoid over-learning. Too much branching causes over-learning and 

too little branching causes under-learning. maxdepth tells to split the tree to 3 times. 0 indicates no limit on 

depth. In the current study it is taken as 6. 
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Learning_rate: A value between 0-1 for scaling trees. A smaller value helps better predictive 

power. But, it will increase learning time and the possibility of over-learning. The default parameter is taken 

as 0.1. 

Iterations: It shows the number of trees to be created. It is also used with the names 

“num_boost_round”, “n_estimators”, “num_trees”, and “num_iterations” in different algorithms. If it is 

taken too small, it can cause under-learning, and too much can cause over-learning. In addition, the increase 

in the number increases the training time. The default parameter is taken as 100. 

Early_stopping_rounds: It is the parameter used to prevent over-learning. After finding the most suit-

able step, number of trials should be specified. With the value of 100, the model performs 100 more itera-

tions after the optimal, and the model stops learning even if the target parameters are not captured. For ex-

ample, if the number of iterations is 2000 in the first parameter, if the optimal moment is reached in the 

1000th iteration, the model will stop there. The default parameter is taken as 5. 

Verbosity: In each iteration, the model's learning status, total time and remaining time are output. This 

output takes up too much space on the screen in case of multiple iterations and does not provide enough in-

formation to be worth it. The default parameter is set to 0. 

Feature_fraction: If less than 1.0, it randomly selects a subset of features (parameters) at each iteration 

(tree). For example, if taken as 0.8, the algorithm will select 80% of the parameters before training each tree. 

The default parameter is 1.0. 

Subsample: The subsample ratio of the training sample. It checks the samples given to the trees. For ex-

ample, if set to 0.5 it means allowing the algorithm to randomly sample half of the training data before grow-

ing the trees, which will prevent over-learning. The default parameter is 1.0. 

In order to make an objective comparison of the decision tree algorithm and boosting algorithms used, 

the basic parameters used in the algorithms were entered the same for each algorithm. Parameters with the 

same values are respectively; “n_estimators” are “learning_rate” and “max_depth”. A high “max_depth” 

value creates a more complex model and increases the likelihood of overfitting. In addition, the cross valida-

tion value operation was performed by determining the K-fold value as 4. The cross validation value process 

was used in all models in this study with the same parameter values. On the other hand, “n_jobs” parameter 

ensures that the calculation process is done using parallel processors, so that the processes are carried out 

faster. Taking the value of -1 for this parameter ensures that all CPUs are used.
21 

TUNING PARAMETERS FOR GPBoost  

Tuning parameters were chosen using 4-fold cross validation as seen on Figure 2 on the training data with 

RMSE as a criterion and ignoring random effects for GPBoost model predictions. 

 

 

FIGURE 2: Parameter tuning for the training set using 4-fold cross validation.21 
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MODEL PARAMETERS FOR MERF 

merf Python package (version 0.3) is used for the MERF algorithm. A maximum tree depth limit was not set 

and the number of trees was set to 300. These are the default values of the MERF package.
22

 For the MERF 

algorithm; we choose the proportion of variables considered for making splits ∈ {0.5, 0.75, 1}. These are the 

default values of the MERF package and have also been used in Hajjem et al.
12 

SYSTEM CAPACITY 

All remaining calculations are performed on a personal computer with Intel(R) Xeon(R) Gold 6136 3 GHz 

16-core processor and 256 GB random access memory. In addition, Python Jupyter Notebook 6.4.8 was used 

in the analysis in the study. 

    RESULTS 

A total of 108 different scenarios were created according to the cases where the sample size was 5000, 10000 

and 15000, the number of groups was 250, 500 and 1000, the random effect variance was 1 and the error 

variance was 1 and 4. Results for all scenarios RMSE, standard deviation of RMSE and time (second) crite-

rias are tabulated in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 and the order of importance for 

the main feature selection of the “friedman3” model is made on the figures using the SHApley Additive ex-

Planations (SHAP) technique. 

 

 

TABLE 1: Results for the grouped random effects model and the mean F='linear (for sample size=5000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number 
of groups 

  
    

  RMSE SD 
Time 

(s) 
RMSE SD 

Time 
(s) 

RMSE SD 
Time 

(s) 
Linear  

ME-GPBoost 
MERF-

GPBoost 

5000 

250 1 1 1.254 0.0212 <0.001 1.260 0.0212 172.01 1.264 0.0209 0.813 8.67E-59 9.41E-38 

500   1.246 0.0178 0.016 1.252 0.0179 188.58 1.253 0.0179 0.053 1.55E-62 1.89E-43 

1000   1.264 0.0134 <0.001 1.268 0.0135 283.73 1.271 0.0131 0.228 1.98E-66 2.42E-38 

5000 

250 1 4 2.139 0.0226 <0.001 2.149 0.0228 131.162 2.161 0.0225 0.098 9.63E-58 1.47E-36 

500   2.134 0.0310 <0.001 2.147 0.0235 186.91 2.145 0.0254 0.094 0.0105 2.86E-10 

1000   2.252 0.0245 0.016 2.183 0.0209 283.36 2.187 0.0321 0.141 0.0173 5.83E-40 

 

  
  : Random effects variance;   

  : Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: Standard deviation. 

 
 
 
 

TABLE 2: Results for the grouped random effects model and the mean F='linear (for sample size=10000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number 
of groups 

  
    

  RMSE SD 
Time 

(s) 
RMS

E 
SD 

Time 
(s) 

RMSE SD 
Time 

(s) 
Linear ME-
GPBoost 

MERF-
GPBoost 

10000 

250 1 1 1.250 0.0217 <0.001 1.252 0.0216 154.57 1.254 0.0217 0.047 1.85E-68 1.79E-44 

500   1.246 0.0157 <0.001 1.249 0.0158 211.10 1.251 0.0157 0.098 2.80E-63 3.75E-43 

1000   1.244 0.0109 0.016 1.246 0.0108 329.77 1.248 0.0109 0.047 5.93E-62 2.79E-41 

10000 

250 1 4 2.142 0.0184 <0.001 2.144 0.0185 153.73 2.147 0.0186 0.173 1.65E-67 4.32E-40 

500   2.135 0.0162 0.016 2.140 0.0163 212.83 2.144 0.0163 0.176 1.04E-60 3.14E-40 

1000   2.149 0.0166 <0.001 2.152 0.0143 319.77 2.156 0.0143 0.141 1.61E-14 1.34E-34 
 

  
  : Random effects variance;   

  : Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: Standard deviation. 
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TABLE 3: Results for the grouped random effects model and the mean F='linear (for sample size=15000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number 
of groups 

  
    

  RMSE SD 
Time 

(s) 
RMSE SD 

Time 
(s) 

RMSE SD 
Time 

(s) 
Linear ME-
GPBoost 

MERF-
GPBoost 

15000 

250 1 1 1.242 0.0193 <0.001 1.244 0.0192 225.95 1.246 0.0192 0.113 9.37E-68 1.16E-42 

500   1.253 0.0144 <0.001 1.254 0.0143 216.71 1.255 0.0144 0.109 1.40E-63 8.49E-38 

1000   1.243 0.0106 0.016 1.245 0.0106 328.19 1.246 0.0105 0.098 6.23E-65 2.04E-43 

15000 

250 1 4 2.127 0.0152 0.016 2.132 0.0152 228.20 2.134 0.0152 0.237 1.73E-67 5.23E-43 

500   2.141 0.0139 <0.001 2.143 0.0138 216.34 2.146 0.0142 0.191 1.28E-60 1.20E-38 

1000   2.144 0.0124 0.016 2.147 0.0125 327.82 2.150 0.0124 0.238 1.24E-69 1.53E-45 
 

  
  : Random effects variance;   

  : Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: Standard deviation. 
 
 
 

TABLE 4: Results for the grouped random effects model and the mean F='friedman3'. (for sample size=5000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number of 
groups 

  
    

  RMSE SD 
Time 

(s) 
RMSE SD Time (s) RMSE SD 

Time 
(s) 

Linear ME-
GPBoost 

MERF-
GPBoost 

5000 

250 1 1 1.395 0.0214 <0.001 1.256 0.0237 133.599 1.251 0.0229 0.063 9.66E-118 0.05130 

500   1.391 0.0187 <0.001 1.248 0.0171 197.464 1.248 0.0167 0.083 4.37E-111 0.00032 

1000   1.405 0.0163 <0.001 1.255 0.0154 303.210 1.258 0.0149 0.063 1.19E-116 0.30796 

5000 

250 1 4 2.221 0.0241 <0.001 2.147 0.0254 133.345 2.150 0.0242 0.129 5.82E-94 2.22E-34 

500   2.222 0.0345 <0.001 2.140 0.0222 200.187 2.145 0.0260 0.123 3.03E-53 9.10E-10 

1000   2.275 0.0252 <0.001 2.152 0.0223 315.551 2.214 0.0297 0.121 1.95E-53 2.57E-48 
 

  
 : Random effects variance,   

   Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: SS: Standard deviation. 
 
 
 

TABLE 5: Results for the grouped random effects model and the mean F='friedman3'. (for sample size=10000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number 
of groups 

  
    

  RMSE SD 
Time 

(s) 
RMSE SD 

Time 
(s) 

RMSE SD 
Time 

(s) 
Linear ME-
GPBoost 

MERF-
GPBoost 

10000 

250 1 1 1.395 0.0194 <0.001 1.246 0.0215 161.466 1.246 0.0211 0.083 6.27E-129 9.49E-15 

500   1.399 0.0150 <0.001 1.243 0.0143 216.028 1.238 0.0144 0.079 1.65E-128 3.74E-29 

1000   1.414 0.0126 0.008 1.256 0.0128 358.004 1.251 0.0126 0.113 2.67E-133 3.08E-32 

10000 

250 1 4 2.238 0.0187 <0.001 2.156 0.0192 157.910 2.161 0.0190 0.145 2.08E-111 6.71E-30 

500   2.258 0.0180 0.016 2.162 0.0166 213.937 2.164 0.0166 0.145 1.49E-105 5.82E-27 

1000   2.280 0.0258 0.016 2.181 0.0172 473.814 2.187 0.0217 0.177 2.023E-70 1.65E-05 
 

  
 : Random effects variance,   

   Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: Standard deviation. 
 
 
 
 

TABLE 6: Results for the grouped random effects model and the mean F='friedman3'. (for sample size=15000). 
 

 Linear ME MERF GPBoost p value 

Sample 
size 

Number 
of groups 

  
    

  RMSE SD 
Time 

(s) 
RMSE SD Time (s) RMSE SD 

Time 
(s) 

Linear ME-
GPBoost 

MERF-
GPBoost 

15000 

250 1 1 1.376 0.0170 0.016 1.241 0.0192 215.126 1.229 0.0189 0.114 6.00E-145 1.09E-27 

500   1.382 0.0132 <0.001 1.235 0.0142 222.246 1.229 0.0143 0.129 4.70E-141 1.51E-47 

1000   1.385 0.0108 0.016 1.248 0.0117 335.205 1.242 0.0120 0.141 1.62E-145 1.38E-53 

15000 

250 1 4 2.220 0.0168 <0.001 2.141 0.0170 220.922 2.142 0.0171 0.206 3.09E-124 1.74E-20 

500   2.234 0.0143 0.016 2.148 0.0136 221.315 2.151 0.0138 0.240 1.06E-119 5.40E-20 

1000   2.238 0.0130 <0.001 2.162 0.0136 344.900 2.160 0.0140 0.252 3.84E-124 8.66E-26 
 

  
 : Random effects variance,   

   Error variance; ME: Mixed-effects; MERF: Mixed-effects random forest; GPBoost: Gaussian process boosting; RMSE: Root mean 
square error; SD: Standard deviation. 
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FIGURE 3: Comparison of actual and estimated fixed effects for the 'linear' function (  
    and   

   , n=5000, number of groups m=250). 

 

Figure 3 shows a comparison of the true and fitted fixed effects for the 'linear' function (  
    and 

  
   , n=5000, number of groups m=250) 

SHAP TECHNIQUE  

The SHAP technique was used to evaluate the importance of each feature in estimating the response vari-

able.
23

 In the SHAP technique, the model can be interpreted based on the Shapley values that explain the 

contribution of each feature to the prediction.
24 

According to Figure 4, it is seen that the “variable 1” attribute 

contributes the most to the prediction model in determining the y response variable. 

 

 

FIGURE 4: SHApley Additive exPlanations values for the “friedman3” function (for Equation 3). 
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FIGURE 5: “friedman3” function (for Equation 3) SHAP summary graph. 

SHAP: SHApley additive explanations. 

 

A variable has a high SHAP value (and because it is in the negative direction) means that it is associated 

with high and positive values on its estimation (Figure 5). Figure 5 shows the order of importance of 4 vari-

ables. The SHAP summary graph shows the most important features and their impact on the dataset. This 

graph shows that there is a positive correlation between “variable 2” and “variable 3” and the response vari-

able when the “friedman3” function is used. Also it shows a negative relationship between “variable 1” and 

the response variable. 

 

 

FIGURE 6: “friedman3” function (for Equation 3) SHAP interaction graph. 

SHAP: SHApley additive explanations. 

 

Figure 6 and shows that “variable 2” interacts frequently with “variable 3”. In this drawing, the gradient 

color of each point corresponds to the original value of the number of “variable 3” from low (blue) to high (red). 
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    DISCUSSION 

It is recommended to use generalized mixed-effects models to relax the linearity assumption in mixed-effects 

models. This may cause the model to be built incorrectly. For this reason, clustered or grouped random ef-

fects models for longitudinal data or non-parametric, machine learning-based approaches have been pro-

posed. The MERF model was used by Manifold AI,
25

 and GPBoost model was used by Sigrist.
14 

GPBoost 

machine learning algorithm is an effective method for not only relaxing the linearity assumption in Gaussian 

process and mixed-effects models, but also the independence assumption for boosting. If the mixed-effects 

machine learning model contains a linear function, LME method will often be more efficient than the 

GPBoost and MERF methods, both in terms of RMSE and time (s), but if it contains a nonlinear function, 

the performance of the GPBoost method is generally better compared to other models. 

Considering the results obtained, when the error variance is 4 for the linear function, the sample size is 

small and the number of groups is high, the RMSE of the MERF model is smaller than the linear model, and 

this difference is statistically significant. In all other scenarios, it is seen that the RMSE of the linear model 

is small and this difference is statistically significant. Sigrist, on the other hand, indicated that the RMSE of 

the LME model to be smaller and this difference statistically significant in each simulation model where the 

number of groups is small and the sample size is low.
14

 

In cases where the error variance for the nonlinear function is 1, the sample size is low and the number 

of groups is high, the RMSE of the MERF model is smaller instead of the GPBoost model, and this differ-

ence is statistically significant. In all other scenarios (while the error variance is 1), it is seen that the RMSE 

of the GPBoost model is small, the difference between LME is statistically significant, and the difference be-

tween MERF is not statistically significant. Sigrist, on the other hand, indicated that the RMSE of the 

GPBoost model to be small and this difference statistically significant in every simulation model where the 

number of groups and the sample size is low.
14

 

In cases where the error variance is 4 for the nonlinear function and the sample size and groups is high, 

the RMSE of the MERF model is smaller instead of the GPBoost model, and this difference is statistically 

significant. In all other scenarios (when the error variance is 4), the RMSE of the GPBoost model is small 

and this difference is statistically significant. 

In order to be applied to real life data, there is a need in the literature to carry out simulation studies and 

studies in which sample size, number of groups and error variances are handled in different ways. 

    CONCLUSION 

In the simulation step of the study, for a nonlinear function, GPBoost performed better than MERF and LME 

methods in terms of RMSE and computational time. However, when a linear function is considered, LME 

gives better results. p values were also calculated from t-tests for dependent groups comparing the GPBoost 

algorithm with other approaches in terms of RMSE. The results showed that the difference between the 

methods was statistically significant (p<0.001). In terms of computational time, it is observed that the speed 

of the MERF algorithm is very slow compared to the others, which is thought to be due to the fact that it has 

not a properly defined expectation-maximization algorithm.
14 

Mixed-effects models with the Gaussian process method, in the field of medicine; is used for the local-

ization of gene and protein markers for contributing additional solution, more informative and promising di-

agnostic decision-making about disease pathogenesis and etiology. In the field of sports; the prediction of 

NBA free agent player contract was modelled with MERF and this machine learning model will stay popular 

until a new model is built.
26
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