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biomarker is a biologic feature that can be used to detect the 

presence or the progress of a disease. It is important to define the 

threshold limit value (TLV) of a biomarker in diagnostic medicine. 

The TLV is a level of the biomarker to which it is believed that a patient 

can be free from a disease. The TLV of a biomarker should be accurate to 

define the presence or absence of a disease status. The diagnostic  accuracy  
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ABSTRACT Objective: Detection of novel biomarkers and immunotherapy targets for prostate 
cancer (PCa) is essential for better diagnosis and therapy. It is a challenge to establish the 
influence of a biomarker for disease management of prostate cancer (PCa). Material and 
Methods:  In this study gene expression data of normal and cancerous human prostate tissues 
are used to explore the influence of biomarkers. The most frequently overexpressed two genes are 
considered as biomarkers. The combination of these two biomarkers by an optimal linear 
combination is considered to establish the cutoff value. Results: In this paper, we propose a 
method to deal with two correlated continuous biomarkers by bivariate modeling through ROC 
curve under Beta distribution assumption. The proposed method is applied to simulated data set 
and applied into prostate cancer gene biomarkers. Conclusion: The optimum value of bivariate 
Beta distribution on example data is obtained through estimates of AUC on combine accuracy of 
the two biomarkers together. The simulation studies have been conducted to obtain the estimates 
of different correlation coefficient starting from 0 to 0.9. 
 
Keywords: ROC curves; area under the curve; sensitivity; specificity; risk prediction;  
    Kaplan-Meier Estimator  
 
 
ÖZET Amaç: Prostat kanseri (PCa) için immunoterapi hedeflerinin ve yeni biomarkırların tespit 
edilmesi, daha iyi teşhis ve tedavi için gereklidir. Prostat kanseri (PCa) hastalık yönetimi için 
biomarkırların etkisinin belirlenmesi zorlu bir iştir. Gereç ve Yöntemler: Bu çalışmada 
biomarkırların etkisini araştırmak için kanserli ve normal insan prostat dokularının gen 
ekspresyonları kullanılmıştır. En fazla okunan iki gen biomarkır olarak ele alınmıştır. Bu iki 
biomarkırın optimal linear kombinasyonu kesim değeri olarak ele alınmıştır. Bulgular: Bu 
makalede, Beta dağılımı varsayımı altında iki modelli ROC eğrisi aracılığıyla iki sürekli ve ilişkili 
biomarkırla ilgilenen bir yöntem önerdik. Önerilen yöntem simüle edilen veri setine ve prostat 
kanser geni biomarkırlarına uygulanmıştır. Sonuç: İki değişkenli Beta dağılımına sahip örnek veri 
setinin optimum değeri iki biomarkırın doğruluklarının AUC tahminleri ile birleştirilmesi ile elde 
edilmiştir. Simülasyon çalışmaları 0-0.9 aralığında farklı korelasyon katsayı tahminleri 
kullanılarak yapılmıştır.       
 
Anahtar Kelimeler: ROC eğrileri; eğri altında kalan alan; tanımlayıcılık; duyarlılık; risk tahmini;  
                                  Kaplan-Meier tahmini 
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of a biomarker to correctly detect the disease status can be defined as sensitivity (i.e., true positive rate) 

and specificity (i.e., true negative rate).1 The subject is labeled as diseased when the measurement of 

specific biomarker becomes greater than the TLV. The Biomarker specific TLV is required to be 

established for disease status detection. An important field of research serves literature with several 

methodologies of Bivariate and Multivariate distributions through marginal and conditional 

distributions.2-5,7 Different form of Bivariate Beta distributions have been proposed in the statistics 

literature.6,7,9,10,27 The application of Univariate and Bivariate Beta distributions are widely adopted in 

different fields. These are found suitable in population genetics, linkage analysis and drought intensity 

data analysis.11-13 These are used to find out the proportions of diseased second premolars and molars in 

dentistry and estimation of tree diameter in forestry and for retinal image recognition measurements.14-16 

The joint density function of Bivariate Beta distribution is applied to explore the readership of two 

monthly magazines.17 Recently the different class of Beta distributions are explored and has received a 

growing interest.18,19 It is one of the most widely adopted distribution in experimental research.20-22 

Univariate Beta-distribution is easy to implement. It can be applied through standard Gamma-

distribution.23,24 However, work with pairs of correlated beta-distribution is difficult to conduct due to 

non-availability of the multivariate form of the univariate Beta distribution.24 The marginal distribution 

functions and prior knowledge about a measurement of association are suitable to deal with such 

problems.25 Although it is limited with near normal and weakly correlated Beta distributions.24 The 

algorithm for generating data from bivariate Beta random variables has been attempted through three 

parameters.26 The generation of data on correlated bivariate Beta-distributed has been explored through 

mixture distribution approach.28 

The gene-biomarker expression values on prostate cancer patients are considered as diagnosis marker for 

illustration of correlated Beta Bivariate distribution.27,29,30,32 The proposed method is performed through 

MCMC technique to discriminate the TLV of gene -biomarker expressions among healthy and diseased 

individual. The specific Bivariate Beta distributions are studied and finally some empirical applications 

with gene-biomarker expression data are presented to obtain the TLV. 

    MATERIAL AND METHODS 

INITIAL ASSUMPTION 

A Beta distribution is assumed with parameter p� and other known parameters α	and β. The random 

number is assumed with k times of 'successes' that is drawn from a binomial distribution (likelihood) 

with parameters p�and v. In next step a random draw p� is attempted from a Beta-distribution with 

parameters p� + k and β+v-k to obtain the paired Beta-distributed random variables. The specified 

correlation v × (v + α + β)
� is utilized to generate the paired Beta-distribution. The estimation of p1 

and p2 were obtained through determination ofα;β; k and v respectively. 

BIVARIATE BETA DISTRIBUTION 

Suppose the gamma variates G�, G�, G�  are independent having parameters �α�, β��, �α�, β��,  and 

�α�, β��respectively. Then the joint density is obtained from 

X = ��
�����

, Y = ��
�����

               (1) 
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TABLE 1: Estimated of C of bivariate beta for different shape and scale parameters. 

�� = 1.0 and �� = 1.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.20 1.5 1 0.21 2 1 0.22 2.5 1 0.23 3 1 0.23 
1 1.5 0.21 1.5 1.5 0.23 2 1.5 0.24 2.5 1.5 0.25 3 1.5 0.25 
1 2.0 0.22 1.5 2 0.24 2 2 0.25 2.5 2 0.26 3 2 0.26 
1 2.5 0.23 1.5 2.5 0.25 2 2.5 0.26 2.5 2.5 0.26 3 2.5 0.27 
1 3 0.23 1.5 3 0.25 2 3 0.26 2.5 3 0.27 3 3 0.27 

�� = 1.0 and �� = 1.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.21 1.5 1 0.23 2 1 0.24 2.5 1 0.25 3 1 0.25 
1 1.5 0.23 1.5 1.5 0.25 2 1.5 0.26 2.5 1.5 0.26 3 1.5 0.27 
1 2.0 0.24 1.5 2 0.26 2 2 0.27 2.5 2 0.27 3 2 0.28 
1 2.5 0.24 1.5 2.5 0.26 2 2.5 0.27 2.5 2.5 0.28 3 2.5 0.29 
1 3 0.24 1.5 3 0.26 2 3 0.28 2.5 3 0.28 3 3 0.29 

�� = 1.0 and �� = 2.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.22 1.5 1 0.24 2 1 0.25 2.5 1 0.26 3 1 0.26 
1 1.5 0.24 1.5 1.5 0.26 2 1.5 0.27 2.5 1.5 0.27 3 1.5 0.28 
1 2.5 0.24 1.5 2 0.26 2 2 0.27 2.5 2 0.28 3 2 0.29 
1 2.5 0.25 1.5 2.5 0.27 2 2.5 0.28 2.5 2.5 0.29 3 2.5 0.29 
1 3 0.25 1.5 3 0.27 2 3 0.28 2.5 3 0.29 3 3 0.30 

	�� = 1.0 and �� = 2.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.23 1.5 1 0.25 2 1 0.26 2.5 1 0.26 3 1 0.27 
1 1.5 0.24 1.5 1.5 0.26 2 1.5 0.27 2.5 1.5 0.28 3 1.5 0.29 
1 2.0 0.25 1.5 2 0.27 2 2 0.28 2.5 2 0.29 3 2 0.29 
1 2.5 0.25 1.5 2.5 0.27 2 2.5 0.28 2.5 2.5 0.29 3 2.5 0.30 
1 3 0.25 1.5 3 0.27 2 3 0.29 2.5 3 0.30 3 3 0.30 

	�� = 1.0 and �� = 3.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.23 1.5 1 0.25 2 1 0.26 2.5 1 0.27 3 1 0.27 
1 1.5 0.24 1.5 1.5 0.26 2 1.5 0.28 2.5 1.5 0.28 3 1.5 0.29 
1 2.0 0.25 1.5 2 0.27 2 2 0.28 2.5 2 0.29 3 2 0.30 
1 2.5 0.25 1.5 2.5 0.27 2 2.5 0.29 2.5 2.5 0.30 3 2.5 0.30 
1 3 0.25 1.5 3 0.27 2 3 0.29 2.5 3 0.30 3 3 0.30 

 

and the generalized Beta distribution with density is 

f(x, y) = �
#(α�,α�,α�)

λ�α�$α�%�(�
$)%(α�&�)λ�α�$α�%�(�
$)%(α�&�)
[��λ�(

�%(�λ�)
�%)]α�&α�&α�                        (2) 

for0 < ,, - < 1; α/,β/ > 0 for i = 0,1,2, and λ/ = β�
β�

for i=1,2. In (1.2) B(α�, … … . . , α4) = ∏ Γ(α6)
Γ(∑ α6) 

Is the generalized beta function. When λ/ = 1, the density (2) reduces to a Bivariate Beta distribution 

with parameters by: 

f(x, y) = �
#(α�,α�,α�)

$α�%�(�
$)α�&α�%�8α�%�(�
8)α�&α�%�
(�
$8)α�&α�&α�            (3) 

The correlation coefficient between X and Y is range from [0; 1][9]. Suppose V;W, are beta random 

variates and 

their relation with X and Y with V = X/(1 − X) = (G� + G<)/(G= + G>) 

and = Y/(1 − Y) = (G� + G=)/(G< + G>).  

In this context, bivariate Beta distributions with five independent gamma variates[G�, G�, G<, G	andG>] 



Atanu BHATTACHARJEE et al.                                                                                                                                      Turkiye Klinikleri J Biostat 2017;9(2):105-20 
 

 108

and common scale parameter 1 is defined by Arnold and Ng3 and it is considered as It is defined as 

X = ����B
����B��C��D	                                                                                              (4) 

Y = ����C
����B��C��D

                             (5) 

This joint density is free from closed form and can be calculated numerically. In this work, we applied 

the correlation structure through consideration of δ. The value of δ  finalized with simulation. These 

random variables have distributions which are usually called Beta distribution of the second kind. The 

joint probability density 

function (p.d.f) of(V, W, G<, G=, G>) is readily verified to be of the form: 

f(v, w, g, g, g) = (g< + g>)(g= + g>)
Γ(α�)Γ(α�)Γ(α<)Γ(α=)Γ(α>) [v(g= + g>) − g<]α�
�

× [w(g< + g>) − g=]α�
�g<
αB
�g=

αC
�g>
αD
�exp	{	−[g<w + g=w + g>(v + w + 1)]} g=

w − g>
< g< < (g= + g>)v, g= > 0, g> > 0, K > 0, L > 0 

Therefore, the joint p.d.f of (V,W) is obtained as 

fM,N(v,w) = O O O f(v, w, g<, g=, g>)dg<dg=dg>, v, w > 0
(PC�PD)Q

PC
R%SD

∞

�

∞

�
 

And the joint p.d.f. of (X,Y) is  

fT,U(x, y) = �
(�
$)�(�
8)� fM,N V $

�
$ , 8
�
8W , 0 < , < 1,0 < - < 1          (7) 

CORRELATION BETWEEN BIVARIATE BETA DISTRIBUTIONS 

Let the XYZ[\]^_]� is defined as �̀and XYZ[\]^_]� (`�)	follows Beta distribution. The distribution is 

defined as a_b(��, ��)and b(��, ��). 

 It is defined as  

` = c(d)
c(d)�c(e)                (8) 

where the random variable f(�)is distributed with standard Gamma distribution with parameters � and 

1�f\[(�; 1)�. Further the independent random variable f(�) is a standard Gamma distribution having 

parameters �and 1�f\[(�; 1)�. 

It is defined as g( �̀) = h� = ��/(�� + ��)and g( �̀) = h� = ��/(�� + ��)	. 
Further, i\]( �̀) = h�(1 − h�) = (1 + �� + ��) and  i\](`�) = h�(1 − h�) = (1 + �� + ��)  , 

respectively. 

The correlated random variable is handled through shared random variable technique, that further 

extended with correlated binary variables.31,33 Let the sum of two independent random standard Gamma 

variables is called as f(��∗) + f(k�∗) is distributed with f\[(��∗ + l�, 1).34,35 

Now,  

�̀ = c(d�∗)�c(m�)
c(d�∗)�c(m�)�c(e�∗)�c(m�)              (9) 

`� = c(d�∗)�c(m�)
c(d�∗)�c(m�)�c(e�∗)�c(m�)            (10) 
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The terms l�  and l�  are linked with ��, ��, ��and	��   as ��∗ + l� = ��, ��∗ + l� = ��, ��∗ + l� = ��,and 

��∗ + l� = ��, respectively for the marginal distributions of �̀ and `�.35 The covariance (noo) between 

�̀ and `� is approximated with first-ordered Taylor series through 

n = g V pq�
c(m�) × pq�

c(m�)W × K\](f(l�)) + g( pq�
c(m�) × pq�

c(m�)) × K\](f(l�))       (11) 

where, E denotes the expected value operator. The simplified form of this expression is 

noo = d�×d�×m��(��e�)×(��e�)×m�
(d��e�)×(d��e�)×(��d��e�)×(��d��e�)                               (12) 

The terms  kr� and kr� are estimated through 

kr� = noo × (1 + �� + ��) × s            (13) 

kr� = noo × (1 + �� + ��	) × s            (14) 

where 

s = √d�×d�×e�×e�×(��d��e�)×(��d��e�)
(��d�)×(��e�)×(��e�)�d�(��e��e��e�e��d�(��e��e�))         (15) 

DATA METHODOLOGY 

The proposed extensions of the bivariate Beta distribution model was applied to real data set, publicly 

available in the GEO(Gene Expression Omnibus) database. The GEO accession number of the data set is 

GDS4824. A total of 21 samples (13 prostate cancer patients and 8 normal individuals)   are considered in 

this study. The study was about gene expression of malignant and benign stage of prostate tissues. It 

provides insight about gene expression signature for prostate cancer. The objective of the primary study 

was the Identification of novel biomarkers and immunotherapy targets for prostate cancer (PCa) is 

crucial to better diagnosis and therapy. The library ("limma") in R (open source  software) is used to 

explore and tabled the most significant genes ID.36 Initially, all gene expression changes among cancer 

and normal individuals are observed and given in Figure 1 through Heatmap representation. It has been 

observed through colors that few genes were expressed significantly different between malignant and 

benign tissues. Thereafter significant level cut off the value of p=0.05 is considered to be labeled the 

most differently expressed genes and that are given in Figure 2. In next step, a significant level was 

decided with $p=0.001$ is selected to detect the genes those expressions were highly different between 

malignant and benign tissues. It has been observed only genes (Figure 3) were differently expressed 

malignant and benign tissues. Only Two genes from there i.e (gene ID with 209426 and 207147), were 

considered in this study for computation simplicity and AUC estimation. 

BAYESIAN ANALYSIS 

Suppose the pair of independent random variables areu�v and u�v .It is assumed that  

u�v~aYxZ[Y\y	(x�v , h�)andu�v~aYxZ[Y\y	(x�v , h�), Y = 1,2,… . z 

The parameters to be estimated are h� and  h� respectively. It is assumed that h� and  h�are correlated  

in prior beliefs. Let u� = ∑ u�v{v|�  and u� = ∑ u�v ,{v|� x� = ∑ x�v{v|� and x� = ∑ x�v{v|� . The prior 

distribution of the parameters h�  and  h�  are from (4) with (��, ��, �<, �=, �>)  and 	
Pr(u� = ^�, u� = ^�|h�, h�) = (x�^�)h���(1 − h�)��
��(x�^�)h���(1 − h�)��
��                                         (16) 
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FIGURE 1: Heat map showing identification of the transcription factor as a potential biomarker and immunotherapy target in  

prostate cancer  patietns in comparison normal individuals. 

 

 
FIGURE 2: Heat map showing selected genes( with p value 0.05) as a potential biomarker and immunotherapy target  

in prostate cancer patients in comparison normal individuals. 

 

 
FIGURE 3: Heat map showing selected genes( with p value 0.05) as a potential biomarker and immunotherapy target in prostate cancer  

patietns in comparison normal individuals. 
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FIGURE 4:-BetaROC curve for biomarker 1 with AUC as 0.90. 

 

FIGURE 5:- BetaROC curve for biomarker 1 with AUC as 0.86. 

where ^� = 0,1,2, . . … x� ,^� = 0,1,2, . . … x� 

Further, 

�(h�, h�|u� = ^�, u� = ^�) = �����|��,��|��|��,��	)���,��(��,���
� � �����|��,��|��|��,��)	���,��(��,���p��p���

�
�
�

       (17) 

where 0 < h� < 1,0 < h� < 1 

The expected value of posteriors of h� and h� are obtained through 

g(h�) = � � h��(h�, h�|u� = ^�, u� = ^�)�h��h�
�
�

�
�          (18) 

and 

g(h�) = � � h��(h�, h�|u� = ^�, u� = ^�)�h��h�
�
�

�
�          (19) 

The random variables are obtained from ���,��(h�, h�) for specified prior values of (��, ��, �<, �=, �>), Y =
1,2,… . . [. and thereafter it approximated with integrals by 

�� = � � Pr(u� = ^�, u� = ^�|h�, h�) �h��h�
�
�

�
�            (20) 

�� ≈ �
� ∑ h����(1 − h��)��
��h�v��(1 − h��)��
����|�          (21) 

�� = � � h��(h�, h�|u� = ^�, u� = ^�)�h��h�
�
�

�
�           (22) 
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�� ≈ �
��� ∑ h����(1 − h��)��
��h�v����(1 − h��)��
����|�          (23) 

where s = (x�^�)(x�^�)  

The 100(1 − �)% highest posterior density (HPD) interval for the parameter h�,(��, ��) is obtained for 

the parameters through  

� � �(h�, h�|u� = ^�, u� = ^�)�h��h� = 1 − �/2��
�

�
�           (24) 

and 

� � �(h�, h�|u� = ^�, u� = ^�)�h��h� = �/2��
�

�
�           (25) 

The Monte Carlo integration is used with interval (0,1) to approximate the values of U� and L�. 
The estimation for p�  is obtained through 100(1 − γ)%  highest posterior density (HPD) interval. 

Similarly, for p� the HPD is obtained through 100(1 − γ)%. Initial data of (p�, p�) are obtained from 

f��,��(p�, p�) with parameter(α�, α�, α<, α=, α>). 

In next step it is used to generate values of K�, K�),say (k�, k�). The Monte Carlo simulation is used to 

evaluate the parameters 20,000 simulations are used for each setting with sample size n=50 and 100. The 

simulated biases and mean squared errors (MSEs) of the estimators are presented in Table 2 and Table 3 

for two representative sets of parameter (α�, α�, α<, α=, α>) =(1,1.5,2,2.5,3) and (1,1.5,2,2.5,3), 

respectively. It is to be noted that the biases and MSEs decrease when the sample size increases. 

ROC ANALYSIS 

Sometimes two biomarkers may be highly associated with the presence of disease and it is indispensable 

to consider both the biomarkers for detecting the disease status.38 Let ( �̀, `�) be two sets of related 

biomarkers taken from a healthy group and let (��, ��) be two sets of biomarkers value taken from 

disease subjects. A particular subject is identified as disease when the values of ��  and ��  are large 

enough.38 The CDF for healthy and disease population are defined by �o(b�, b�) =  ( �̀ ≤ b�, `� ≤ b�) 

and �¢(b�, b�) =  (�� ≤ b�, �� ≤ b�)  respectively. The FPR and TPR in the bivariate criteria can be 

defined by  ( �̀ > b�, `� > b�) and  (�� > b�, �� > b�) respectively. Let X and Y be random vectors of 

continous biomarker values from the healthy and disease groups, respectively. 

Further, it is assumed that �o(b�, b�)~a_(��, ��) and �¢(b�, b�)~a_(��, ��)	. The estimation procedure 

for parameters above is obtained from mean and variance of Beta distribution for each sample. The mean 

and variance observed separately disease and not disease individuals. The moment approach is easy to 

use for the iterative solution for the maximum likelihood estimates. It is assumed for the disease 

individual, the mean is standard deviations is σ$�. Similarly, from the sample data in normal individual, 

the mean p£� and standard deviations is σ8� respectively, the estimates of the parameters is  

α¤� = p¥�{p¥�(1 − p¥�)σ$� − 1}, α¤� = p¥�¦p¥�(1 − p¥�)σ8� − 1§, 
β�̈ = (1 − p�¥¥¥){p�¥¥¥(1 − p�¥¥¥)σ$� − 1}, β�̈ = (1 − p�¥¥¥)¦p�¥¥¥(1 − p�¥¥¥)σ8� − 1§ 
The AUC of bivariate beta ROC curve takes the following form: 

AUC = P(Y� > X�, Y� > X�) � � I(y� > x�, y� > x�)dFT(t�, t�)dFU(t�, t�)       (26) 
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TABLE 2: Estimated of C of bivariate beta for different shape and scale parameters. 

	�� = 1.5 and �� = 1.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.21 1.5 1 0.23 2 1 0.24 2.5 1 0.24 3 1 0.24 
1 1.5 0.23 1.5 1.5 0.25 2 1.5 0.26 2.5 1.5 0.26 3 1.5 0.26 
1 2.0 0.24 1.5 2 0.26 2 2 0.27 2.5 2 0.27 3 2 0.28 
1 2.5 0.25 1.5 2.5 0.26 2 2.5 0.27 2.5 2.5 0.28 3 2.5 0.28 
1 3 0.25 1.5 3 0.27 2 3 0.28 2.5 3 0.29 3 3 0.29 

	�� = 1.5 and �� = 1.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.23 1.5 1 0.25 2 1 0.26 2.5 1 0.26 3 1 0.26 
1 1.5 0.25 1.5 1.5 0.26 2 1.5 0.27 2.5 1.5 0.28 3 1.5 0.28 
1 2.0 0.26 1.5 2 0.27 2 2 0.29 2.5 2 0.29 3 2 0.30 
1 2.5 0.26 1.5 2.5 0.28 2 2.5 0.29 2.5 2.5 0.30 3 2.5 0.31 
1 3 0.26 1.5 3 0.28 2 3 0.30 2.5 3 0.31 3 3 0.31 

	�� = 1.5 and �� = 2.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.22 1.5 1 0.26 2 1 0.27 2.5 1 0.27 3 1 0.28 
1 1.5 0.26 1.5 1.5 0.27 2 1.5 0.29 2.5 1.5 0.29 3 1.5 0.30 
1 2.5 0.26 1.5 2 0.28 2 2 0.30 2.5 2 0.30 3 2 0.31 
1 2.5 0.27 1.5 2.5 0.29 2 2.5 0.30 2.5 2.5 0.31 3 2.5 0.32 
1 3 0.27 1.5 3 0.29 2 3 0.31 2.5 3 0.31 3 3 0.32 

	�� = 1.5 and �� = 2.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.25 1.5 1 0.26 2 1 0.26 2.5 1 0.26 3 1 0.27 
1 1.5 0.26 1.5 1.5 0.28 2 1.5 0.27 2.5 1.5 0.28 3 1.5 0.29 
1 2.0 0.27 1.5 2 0.28 2 2 0.28 2.5 2 0.29 3 2 0.29 
1 2.5 0.27 1.5 2.5 0.29 2 2.5 0.28 2.5 2.5 0.29 3 2.5 0.30 
1 3 0.27 1.5 3 0.30 2 3 0.29 2.5 3 0.30 3 3 0.30 

	�� = 1.5 and �� = 3.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.25 1.5 1 0.27 2 1 0.28 2.5 1 0.27 3 1 0.27 
1 1.5 0.26 1.5 1.5 0.28 2 1.5 0.31 2.5 1.5 0.28 3 1.5 0.29 
1 2.0 0.27 1.5 2 0.29 2 2 0.31 2.5 2 0.29 3 2 0.30 
1 2.5 0.27 1.5 2.5 0.30 2 2.5 0.31 2.5 2.5 0.30 3 2.5 0.30 
1 3 0.27 1.5 3 0.30 2 3 0.31 2.5 3 0.30 3 3 0.30 

 

The explicit form of FPR and TPR in case of bivariate setting is analytically complicated. The FPR from 

a bivariate biomarker at the thresholds t� and t� are defined for TLVs for respective biomarkers. The 

FPR and TPR is presented through Beta distribution.  

Let the density function X is defined as 

�o = �
®(d�,e�) ,d�
�(1 − ,)e�
�, �� ≥ 1, �� = 1          (27) 

and 

�¢ = �
®(d�,e�) -d�
�(1 − -)e�
�, �� = 1, � ≥ 1          (28) 

The term B(.) provides a normalization constant that equals to 
�
d�

 and 
�
e�

 for equations with the interval 

[0,1].27 Now subscripts of (��, ��) and (��, ��) are presented as (�, �) respectively. Integrating over the 

equation from 0 to b� gives the following 

� ° = ,d�              (29) 

± ° = 1 − (1 − ,)e�             (30) 

Similarly, the equation (28) provides  
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TABLE 3. Estimated of C of bivariate beta for different shape and scale parameters. 

	�� = 2.0 and �� = 1.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.22 1.5 1 0.24 2 1 0.24 2.5 1 0.25 3 1 0.25 
1 1.5 0.24 1.5 1.5 0.26 2 1.5 0.26 2.5 1.5 0.27 3 1.5 0.27 
1 2.0 0.25 1.5 2 0.27 2 2 0.27 2.5 2 0.28 3 2 0.28 
1 2.5 0.26 1.5 2.5 0.27 2 2.5 0.28 2.5 2.5 0.29 3 2.5 0.29 
1 3 0.26 1.5 3 0.28 2 3 0.29 2.5 3 0.29 3 3 0.30 

	�� = 2.0 and �� = 1.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.24 1.5 1 0.26 2 1 0.26 2.5 1 0.27 3 1 0.27 
1 1.5 0.26 1.5 1.5 0.27 2 1.5 0.28 2.5 1.5 0.29 3 1.5 0.29 
1 2.0 0.27 1.5 2 0.29 2 2 0.30 2.5 2 0.30 3 2 0.31 
1 2.5 0.27 1.5 2.5 0.29 2 2.5 0.30 2.5 2.5 0.31 3 2.5 0.31 
1 3 0.28 1.5 3 0.30 2 3 0.31 2.5 3 0.32 3 3 0.32 

	�� = 2.0 and �� = 2.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.24 1.5 1 0.26 2 1 0.26 2.5 1 0.27 3 1 0.27 
1 1.5 0.26 1.5 1.5 0.27 2 1.5 0.28 2.5 1.5 0.29 3 1.5 0.29 
1 2.5 0.27 1.5 2 0.28 2 2 0.30 2.5 2 0.30 3 2 0.31 
1 2.5 0.27 1.5 2.5 0.29 2 2.5 0.30 2.5 2.5 0.31 3 2.5 0.31 
1 3 0.28 1.5 3 0.30 2 3 0.31 2.5 3 0.32 3 3 0.32 

	�� = 2.0 and �� = 2.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.25 1.5 1 0.27 2 1 0.27 2.5 1 0.28 3 1 0.28 
1 1.5 0.27 1.5 1.5 0.29 2 1.5 0.30 2.5 1.5 0.30 3 1.5 0.31 
1 2.0 0.27 1.5 2 0.30 2 2 0.31 2.5 2 0.31 3 2 0.32 
1 2.5 0.28 1.5 2.5 0.30 2 2.5 0.31 2.5 2.5 0.32 3 2.5 0.33 
1 3 0.28 1.5 3 0.31 2 3 0.32 2.5 3 0.33 3 3 0.33 

	�� = 2.0 and �� = 3.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.26 1.5 1 0.27 2 1 0.29 2.5 1 0.29 3 1 0.30 
1 1.5 0.28 1.5 1.5 0.30 2 1.5 0.31 2.5 1.5 0.32 3 1.5 0.32 
1 2.0 0.28 1.5 2 0.31 2 2 0.32 2.5 2 0.33 3 2 0.33 
1 2.5 0.29 1.5 2.5 0.31 2 2.5 0.33 2.5 2.5  0.33 3 2.5 0.34 
1 3 0.29 1.5 3 0.31 2 3 0.33 2.5 3 0.34 3 3 0.35 

 

	� ° = ,d�              (31) 

± ° = 1 − (1 − ,)e�             (32) 

The relation between TFR and FPR has been established as ± ° = 1 − (1 − � °�
²)e, � ≥ 1, � ≥ 1	(33) 

The area under a ROC is considered from FPR=0 to FPR=³ is 

where a(³�
², �, � + 1) is the incomplete beta function. Further AUC is extended as 

��s = � 1 − (1 − � °�
²)e�� ° = ³ − �a(³�

², �, � + 1)�
�         (33) 

    SIMULATION STUDY 

Initially we explore with different values of �v and �v to obtained the possible estimates of sr .The 

simulated values of sr with different combinations of �vand �vare presented in details in Table1-5. It is to 

be noted that the sr values are quite consistent over different choice of�vand �v respectively. Further, 

estimated values of sr.is used to get estimates about n£	, lr�, and lr�.It shows that the estimates of lr�, and  

lr� are quite less and almost near to zero as desired in theoretical section.There after the random selected 

values of  �v and �v (from the  frame  of i=1,1.5,2,2.5,3)  are  considered  to  generate  the  ��ś  for  gene  
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TABLE 4. Estimated of C of bivariate beta for different shape and scale parameters. 

	�� = 2.5 and �� = 1.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.23 1.5 1 0.24 2 1 0.25 2.5 1 0.25 3 1 0.25 
1 1.5 0.25 1.5 1.5 0.26 2 1.5 0.26 2.5 1.5 0.27 3 1.5 0.27 
1 2.0 0.26 1.5 2 0.27 2 2 0.27 2.5 2 0.28 3 2 0.29 
1 2.5 0.26 1.5 2.5 0.28 2 2.5 0.28 2.5 2.5 0.29 3 2.5 0.30 
1 3 0.27 1.5 3 0.29 2 3 0.29 2.5 3 0.30 3 3 0.30 

	�� = 2.5 and �� = 1.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.25 1.5 1 0.26 2 1 0.27 2.5 1 0.27 3 1 0.27 
1 1.5 0.26 1.5 1.5 0.28 2 1.5 0.29 2.5 1.5 0.29 3 1.5 0.30 
1 2.0 0.27 1.5 2 0.29 2 2 0.30 2.5 2 0.31 3 2 0.31 
1 2.5 0.28 1.5 2.5 0.30 2 2.5 0.31 2.5 2.5  0.32 3 2.5 0.32 
1 3 0.28 1.5 3 0.31 2 3 0.32 2.5 3 0.32 3 3 0.33 

	�� = 2.5 and �� = 2.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.26 1.5 1 0.27 2 1 0.28 2.5 1 0.28 3 1 0.29 
1 1.5 0.27 1.5 1.5 0.29 2 1.5 0.30 2.5 1.5  0.31 3 1.5 0.31 
1 2.5 0.28 1.5 2 0.30 2 2 0.31 2.5 2 0.32 3 2 0.33 
1 2.5 0.29 1.5 2.5 0.31 2 2.5 0.32 2.5 2.5  0.33 3 2.5 0.33 
1 3 0.29 1.5 3 0.31 2 3 0.33 2.5 3 0.34 3 3 0.34 

	�� = 2.5 and �� = 2.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.26 1.5 1 0.28 2 1 0.29 2.5 1 0.29 3 1 0.30 
1 1.5 0.28 1.5 1.5 0.30 2 1.5 0.31 2.5 1.5 0.32 3 1.5 0.32 
1 2.0 0.29 1.5 2 0.31 2 2 0.32 2.5 2 0.33 3 2 0.33 
1 2.5 0.29 1.5 2.5  0.32 2 2.5 0.33 2.5 2.5 0.34 3 2.5 0.34 
1 3 0.30 1.5 3 0.32 2 3 0.33 2.5 3 0.34 3 3 0.35 

	�� = 2.5 and �� = 3.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.27 1.5 1 0.29 2 1 0.29 2.5 1 0.29 3 1 0.30 
1 1.5 0.28 1.5 1.5 0.31 2 1.5 0.31 2.5 1.5  0.32 3 1.5 0.33 
1 2.0 0.29 1.5 2 0.31 2 2 0.31 2.5 2 0.33 3 2 0.34 
1 2.5 0.30 1.5 2.5 0.32 2 2.5 0.32 2.5 2.5  0.33 3 2.5 0.35 
1 3 0.30 1.5 3 0.32 2 3 0.32 2.5 3 0.34 3 3 0.35 

 

biomarkers. The estimated value of ��ś is observed with 95% credible intervals are presented in Table 

9. Based on simulated data the ROC curves are generated (Figure 1, 2). 

    RESULT 

A total of 20,000 separate iterations is performed to obtain the estimates of ��ś. The SD,95% HPD and 

MC error for ��s of bivariate beta ROC curve are presented in Table 9.From Table 1-8, we found that 

then	is reversely proportional between biomarkers.  It may be the due present correlation between 

biomarker is negligible or X and Y are independent. The program to generate AUC has been performed 

in OpenBUGS. The convergence of parameters has been observed with trace plots obtained from 

OpenBUGS outputs. For example Table 9 shows that for �� = 1, �� = 2, �� = 2, �� = 2, the posterior 

mean estimates of AUC is 0.83 with credible interval (0.81,0.86).The SD is observed with 0.03. From 

Table 9, we observe that as the estimated parametric values deviate more among each other especially 

AUC decreases with incline value of ��. 
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TABLE 5. Estimated of C of bivariate beta for different shape and scale parameters. 

	�� = 3.0 and �� = 1.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.23 1.5 1 0.24 2 1 0.25 2.5 1 0.25 3 1 0.25 
1 1.5 0.25 1.5 1.5 0.26 2 1.5 0.27 2.5 1.5  0.27 3 1.5 0.27 
1 2.0 0.26 1.5 2 0.28 2 2 0.28 2.5 2 0.29 3 2 0.29 
1 2.5 0.27 1.5 2.5 0.28 2 2.5 0.29 2.5 2.5 0.30 3 2.5 0.30 
1 3 0.27 1.5 3 0.29 2 3 0.30 2.5 3 0.30 3 3 0.30 

	�� = 3.0 and �� = 1.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.25 1.5 1 0.26 2 1 0.27 2.5 1 0.27 3 1 0.27 
1 1.5 0.27 1.5 1.5 0.28 2 1.5 0.29 2.5 1.5 0.29 3 1.5 0.30 
1 2.0 0.28 1.5 2 0.29 2 2 0.30 2.5 2 0.31 3 2 0.31 
1 2.5 0.29 1.5 2.5 0.30 2 2.5 0.31 2.5 2.5 0.32 3 2.5 0.32 
1 3 0.29 1.5 3 0.31 2 3 0.32 2.5 3 0.32 3 3 0.33 

	�� = 3.0 and �� = 2.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.29 1.5 1 0.28 2 1 0.28 2.5 1 0.29 3 1 0.29 
1 1.5 0.28 1.5 1.5 0.30 2 1.5 0.31 2.5 1.5 0.31 3 1.5 0.31 
1 2.5 0.29 1.5 2 0.31 2 2 0.32 2.5 2 0.33 3 2 0.33 
1 2.5 0.29 1.5 2.5 0.32 2 2.5 0.33 2.5 2.5 0.33 3 2.5 0.34 
1 3 0.30 1.5 3 0.32 2 3 0.33 2.5 3 0.34 3 3 0.35 

	�� = 3.0 and �� = 2.5 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.27 1.5 1 0.28 2 1 0.29 2.5 1 0.30 3 1 0.30 
1 1.5 0.29 1.5 1.5 0.31 2 1.5 0.31 2.5 1.5 0.32 3 1.5 0.32 
1 2.0 0.29 1.5 2 0.32 2 2 0.33 2.5 2 0.33 3 2 0.34 
1 2.5 0.30 1.5 2.5 0.32 2 2.5 0.34 2.5 2.5 0.34 3 2.5 0.35 
1 3 0.30 1.5 3 0.33 2 3 0.34 2.5 3 0.35 3 3 0.35 

	�� = 3.0 and �� = 3.0 
�� �� C �� �� C �� �� C �� �� C �� �� C 
1 1 0.27 1.5 1 0.29 2 1 0.30 2.5 1 0.30 3 1 0.30 
1 1.5 0.29 1.5 1.5 0.31 2 1.5 0.32 2.5 1.5 0.33 3 1.5 0.33 
1 2.0 0.30 1.5 2 0.32 2 2 0.33 2.5 2 0.34 3 2 0.35 
1 2.5 0.30 1.5 2.5 0.33 2 2.5 0.34 2.5 2.5  0.35 3 2.5 0.35 
1 3 0.30 1.5 3 0.33 2 3 0.35 2.5 3 0.35 3 3 0.36 

 

    DISCUSSION 

It is a tedious job to handle with multiple diagnostic biomarkers to take the decision about diagnosis and 

management of a disease. The challenge is to provide the comprehensive conclusion about disease status 

and stage to the treated patients in the presence of multiple biomarkers through TLV. In this paper, we 

have proposed the method of diagnostic decision about two correlated randomly selected biomarkers. 

The parametric distribution is adopted to calculate the diagnostic accuracy of bivariate beta distributed 

biomarkers. The method is proposed for combining the biomarkers to predict the accuracy. We 

emphasized the application of Beta distribution over normal distribution because the range of normal 

distribution is (−∞, ∞).Bivariate Beta distributions are widely adopted in different applications. It is 

most suitable to be assumed as a prior distribution for the correlated binomial variable in Bayesian 

setup.39 The prior information of two correlated random variables applied in clinical trials.40,41  

    CONCLUSION 

The above-mentioned applications are not appropriate for positively correlated random variab- 

les. However in real life, it may not be possible to get only positively correlated random variables.  In  a  
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TABLE 6: Estimated of C of bivariate beta for different shape and scale parameters. 

	�� = 1.0 and �� = 1.0 
�� �� n£ �� �� n£ �� �� n£ �� �� n£ �� �� n£ 
1 1 0.03 1.5 1 0.02 2 1 0.02 2.5 1 0.02 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.02 2 1.5 0.02 2.5 1.5  0.02 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.02 2 2 0.02 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.02 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 1.5 
�� �� n£ �� �� n£ �� �� n£ �� �� n£ �� �� n£ 
1 1 0.02 1.5 1 0.02 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.0 
�� �� n£ �� �� n£ �� �� n£ �� �� n£ �� �� n£ 
1 1 0.01 1.5 1 0.01 2 1 0.02 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.02 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.02 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.5 
�� �� n£ �� �� n£ �� �� n£ �� �� n£ �� �� n£ 
1 1 0.01 1.5 1 0.01 2 1 0.02 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.02 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.02 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 3.0 
�� �� n£ �� �� n£ �� �� n£ �� �� n£ �� �� n£ 
1 1 0.01 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.00 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.00 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.00 3 2 0.00 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.00 2.5 2.5  0.00 3 2.5 0.00 
1 3 0.00 1.5 3 0.00 2 3 0.00 2.5 3 0.00 3 3 0.00 

 

clinical setting, most of the biomarkers do not take any infinite values. The limited range of maximum 

and minimum values of biomarkers can be standardized into 0 to 1 scale range. In this scenario, Beta 

distribution is suitable enough to handle with biomarker than normal distribution as the parametric 

choice. It is also difficult to get a large number of the sample size of multiple biomarker measurements 

in any clinical setting due to cost and ethical issues.  Hence, it is appropriate to assume Beta distribution 

than the normal distribution. 

The characteristics of the proposed method have also been observed through changes of different 

correlation measurement and changes of parametric values. The MCMC iteration method is used to 

explore the approximate value of AUĆ. The proposed method is illustrated with a real-life example of 

prostate cancer data set.  

The bivariate beta ROC model is applied to obtain the relation between FPR and TPR. The optimum 

value of bivariate Beta distribution on example data is obtained through estimates of AUC on combine 

accuracy of the two biomarkers together. The simulation studies have been conducted to obtain the 

estimates of different correlation coefficient starting from 0 to 0.9. It is assumed that individual is 

diseased when the values of Y� and Y� are large enough. The bivariate ROC curve for each biomarker 

plotted separately and it is concluded that the bivariate beta ROC model can be applied once the data fit 

the bivariate Beta distribution. 
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TABLE 7: Estimated parameter of l�C of bivariate beta for different shape and scale parameters. 

	�� = 1.0 and �� = 1.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.02 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.02 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 1.5 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.01 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.01 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.5 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.01 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 3.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.01 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.01 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.01 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.01 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.01 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 
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TABLE 8: Estimated parameter of l�C of bivariate beta for different shape and scale parameters. 

	�� = 1.0 and �� = 1.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.02 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 1.5 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.01 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.02 1.5 3 0.01 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.01 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.02 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.02 1.5 3 0.02 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 2.5 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.02 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.02 2 2.5 0.01 2.5 2.5  0.01 3 2.5 0.01 
1 3 0.02 1.5 3 0.02 2 3 0.01 2.5 3 0.01 3 3 0.01 

	�� = 1.0 and �� = 3.0 
�� �� lr� �� �� lr� �� �� lr� �� �� lr� �� �� lr� 
1 1 0.02 1.5 1 0.01 2 1 0.01 2.5 1 0.01 3 1 0.01 
1 1.5 0.02 1.5 1.5 0.01 2 1.5 0.01 2.5 1.5  0.01 3 1.5 0.01 
1 2.0 0.02 1.5 2 0.02 2 2 0.01 2.5 2 0.01 3 2 0.01 
1 2.5 0.02 1.5 2.5 0.02 2 2.5 0.01 2.5 2.5 0.01 3 2.5 0.01 
1 3 0.02 1.5 3 0.02 2 3 0.01 2.5 3 0.01 3 3 0.01 

 

TABLE 9: Posterior estimated parameters, ��ś,SD(��ś) and 95% credible interval for AUC of bivariate beta ROC 
curve for different shape and scale parameters. 

µ¶·¸·¹º	»¹º¼½ ¾¹¿¹À½¸½¿ Á½¹¶ ÂÃ ÁÄ	Å¿¿Æ¿ Ç. È% ÉÊËÌÍÎ 97.5% 

�� = 1, �� = 1, �� = 1, �� = 2 AUC 0.9882 0.0841 0.0027 0.9585 0.9721 0.9980 
�� = 1, �� = 2, �� = 1, �� = 2 AUC 0.9779 0.0256 0.0080 0.9417 0.97277 0.9974 
�� = 1, �� = 2, �� = 2, �� = 1 AUC 0.9645 0.0189 0.0043 0.9249 0.9563 0.9741 
�� = 2, �� = 1, �� = 1, �� = 2 AUC 0.9616 0.0190 0.0056 0.9308 0.9532 0.9904 
�� = 2, �� = 1, �� = 2, �� = 1 AUC 0.7681 0.0213 0.0065 0.7412 0.7342 0.8065 
�� = 1, �� = 1, �� = 2, �� = 2 AUC 0.8356 0.0314 0.0086 0.8122 0.7855 0.8690 
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